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Abstract: This paper proposes a particle filter (PF)-based electricity load prediction method to
improve the accuracy of the microgrid day-ahead scheduling. While most of the existing prediction
methods assume electricity loads follow normal distributions, we consider it is a nonlinear and
non-Gaussian process which is closer to the reality. To handle the nonlinear and non-Gaussian
characteristics of electricity load profile, the PF-based method is implemented to improve
the prediction accuracy. These load predictions are used to provide the microgrid day-ahead
scheduling. The impact of load prediction error on the scheduling decision is analyzed based
on actual data. Comparison results on a distribution system show that the estimation precision
of electricity load based on the PF method is the highest among several conventional intelligent
methods such as the Elman neural network (ENN) and support vector machine (SVM). Furthermore,
the impact of the different parameter settings are analyzed for the proposed PF based load prediction.
The management efficiency of microgrid is significantly improved by using the PF method.

Keywords: electricity load prediction; day-ahead scheduling; particle filter; microgrid energy management

1. Introduction

Since the increasing penetration level of renewable-based distributed generators (RE-DGs) such
as photovoltaic-based (PV) arrays and wind turbines [1], the energy management and operation
of a microgrid becomes more challenging. The uncertainty introduced by these RE-DGs and electricity
loads emphasizes the importance of an accurate prediction method in the microgrid day-ahead
scheduling [2,3]. The neural network method is a typical representative of data-driven forecasting
methods. It is widely used in the predicting electricity load [4–6]. A variety of new neural
network structures are produced by combining with other techniques in forecasting research, such
as Elman neural network (ENN) [7–9], recurrent neural networks (RNN) [10–13], recurrent extreme
learning machine (RELM) [14]. These new neural networks not only have the structural advantages
of traditional neural networks, but also have some improvements in calculation efficiency and
operating cost. Besides, some mature artificial intelligence algorithm models (such as support vector
machines (SVM) [15–18], support vector regression (SVR) [19,20], and fuzzy logic [21,22]) that used
to solve prediction problems with nonlinear characteristics, are applied to forecast electricity load.
Due to the difference of the practical problems and the diversity of feature selection methods, there is
no regular feature selection model method and various classifiers have different effects on the result of
feature selection. It is difficult to determine which feature selection method can bring optimal estimated
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performance to the model for the first time when facing practical problems. Another important factor
affecting data-driven method is data sampling.

In practice, the data provided to the power load system is affected by the operative mode of
the equipment, and the operating environment, which are regularly non-linear and non-Gaussian
as shown in Figure 1. It can not accurately predict for traditional intelligent forecasting models.
To get more accurate prediction results, A hybrid model based on improved empirical mode
decomposition, autoregressive integrated moving average, and wavelet neural network optimized
by fruit fly optimization algorithm is presented by Zhang et al. [23]. The hybrid model divided
the state information of power load into two parts: linear and nonlinear. The linear part is regarded
as a definite linear time series, which changes steadily with time. The nonlinear part has high volatility
and randomness, which is mainly affected by historical power load and future weather conditions
(such as temperature). However, this disadvantage is to increase the calculation cost and accumulated
error caused by the separate calculation. For addressing the issues in data-driven, the particle filter
(PF) method is introduced to electricity load forecasting, and optimal assign power references to make
better decisions in microgrid day-ahead scheduling. According to the literatures, PF-based method has
been widely used in remaining useful life forecasting [24–27], filtering and state estimation for nonlinear
systems [28–30]. Since the particle filter is on the basis of Bayesian sampling estimation, it is better
suitable for solving nonlinear and non-Gaussian problem. As a sequential important sampling (SIS)
filter algorithm, the probability density function (PDF) of the particle filter is represented by particles.
The PDF will change with particles. Therefore, the prediction precision of the PF-based method is
higher than the traditional function-driven method for electricity power load. To our knowledge, this
is the first description in the literature of the using PF-based method for electricity load forecasting
in day-ahead scheduling.

Figure 1. Variations of actual electricity load of in the city of Ottawa during the year 2004.

Our work and innovation are emphasized in the rest of this paper which is organized as follows:
Section 2 provides deterministic grid-connected microgrid day-ahead scheduling formulation is built.
Section 3 is the description of the PF method. Comparison results on a distribution system with
ENN-based method and SVM-based method are shown in Section 4. The analysis results of Day-ahead
scheduling are also presented in this section. The influence factors and the number of particles for
the PF method are discussed in Section 5. The final section concludes the paper.
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2. Deterministic Grid-Connected Microgrid Day-Ahead Scheduling Formulation

As the same as most previous studies, the deterministic grid-connected microgrid day-ahead
scheduling can be regarded as the nonlinear optimization problem Equation (1) [31]:

min
PCi

Cost =
24

∑
t=1

N

∑
i=1

(ci,tPCi,t + cgrid,tPgrid,t)

constraints :

PCi,t+PNi,t−PDi,t =Vi,tVj,t(Gi,j,t cos(θi,j,t)+Bi,j,t sin(θi,j,t)),

QCi,t+QNi,t−QDi,t =Vi,tVj,t(Gi,j,t sin(θi,j,t)+Bi,j,t cos(θi,j,t)),

SLmin ≤ SLi,j,t ≤ SLmax,

PCimin ≤ PCi,t ≤ PCimax,

QCimin ≤ QCi,t ≤ QCimax,

PNimin ≤ PNi,t ≤ PNimax,

QNimin ≤ QNi,t ≤ QNimax,

PGridmin ≤ Pgrid,t ≤ PGridmax,

Vimin ≤ Vi,t ≤ Vimax,

θi,j,min ≤ θi,j,t ≤ θi,j,max.

(1)

All parameters and corresponding notations are shown in Table 1.

Table 1. Nomenclature, reprint with permission [31], 2017, IET GTD.

Notations Denotation

PCi,t (QCi,t ) Active (reactive) power output of the ith controllable DG at tth time interval
ci,t Generation price of the ith controllable DG at tth time interval
PDi,t Active (reactive) power demand of the i-th load at t-th time interval
PNi,t Active (reactive ) power of the i-th uncontrollable DG at t-th time interval
Pgrid,t Active power injected from the grid at t-th time interval
cgrid,t Electricity price at tth time interval
θi,j,t Voltage angular difference between bus i and bus j at tth time interval
Gi,j,t, Bi,j,t Elements of the admittance matrix at t-th time interval
SLi,j,t Instantaneous power in the branch connecting bus i and bus j at t-th time interval
Vi,t Voltage at the i-th bus at t-th time interval
θi,j,min, θi,j,max Lower and upper limits of the voltage angular difference
SLmin, SLmax Minimum and maximum instantaneous power in the branch connecting bus i and bus j
PCimin,PCimax Minimum and maximum active power of controllable DG i
QCimin,QCimax Minimum and maximum reactive power of controllable DG i
PNimin,PNimax Minimum and maximum active power of uncontrollable DG i
QNimin,QNimax Minimum and maximum reactive power of uncontrollable DG i
PGridimin,PGridimax Minimum and maximum active power injected to or absorbed from the grid
Vimin,Vimax Minimum and maximum voltage at bus i

For this microgrid day-ahead scheduling, the main objective is to obtain optimized cost
by rationalizing the distribution which utilizes forecasted power production PNi,t from uncontrollable
DGs and loads demand PDi,t of power references PDi,t for all controllable DGs. It can be seen from
the cost function as shown in Equation (1), the Pgrid,t is an active power. It means that the Pgrid,t
can be either positive or negative. When Pgrid,t is positive, it needs to be injected from the main grid.
Because the power produced by the DGs is less than the consumed power by load. On the contrary,
when Pgrid,t is negative, the power produced by the DGs is more than the consumed power by load,
it can be transported to the main grid. As shown in Figure 2, the photovoltaic prediction data, the time
of use (TOU) electricity price, and all-day prediction load data are the main input parameters for
day-ahead optimal scheduling. Since the TOU is fixed, the PV is relatively stable and less fluctuation,
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the accuracy of OPF is mainly determined by the precision of the electricity power load prediction.
Hence, it is imperative to accurately predict electricity power load demand. Since the variation of actual
electricity load is drastic and non-Gaussian distribution, it is a huge challenge to predict electricity
load by using the general prediction method. Moreover, OPF is not a linear system model due to
it consisting of various kinds of noise distributions. Although we use the Modified Harr two-point
model to estimate the variation ranges, it cannot accurately predict the electricity load. The estimation
accuracy and efficiency of this method are easily infected by the number of input variables. In the past,
the traditional Kalman filter (KF) was extensively used to load forecasts. However, the deficiency of
KF-based method is that it is not suitable for the non-Gaussian and nonlinear system dynamics of
electricity load. Furthermore, the calculation burden of the KF-based method is too heavy. Since the
particle filter is on the basis of Bayesian sampling estimation, it is better suitable for solving nonlinear
and non-Gaussian problem. As a sequential important sampling (SIS) filter algorithm, the probability
density function (PDF) of the particle filter is represented by particles. The PDF will change with
particles. Hence, satisfactory prediction results were achieved by utilizing PF-based method for
electricity power load in grid-connected microgrid day-ahead scheduling.

Figure 2. Key input for grid-connected mircrogrid day-ahead scheduling.

3. Particle Filtering Based Prediction

As mentioned above, the actual electricity load system is nonlinear and non-Gaussian, so it is
unsuitable to analyze the electricity load forecasting problem using analytic methods. Particle Filter
which also called Bayesian Importance Sampling relies upon a sequential important sampling (SIS) filter
algorithm. For nonlinear and non-Gaussian systems, it is often complicated to get an analytic solution.
In order to avoid the problem, the integration is used to investigate the solution of nonlinear operator
equation in the PF-based method. Furthermore, the integral calculations are substituted by a series of
particles. According to their importance, the particles will be given different weights in the posterior
probability density. The error between the distribution characteristics represented by particles and
the posterior probability distribution of the system state gradually decreases as the number of particles
increased. When the particles reached a certain scale, it is approximately equal to each other. The P̂i

Dt
represents active power demand. In the paper, it can be estimated by the probability density function
which is constructed from measured active power. The details are as follows:

Pi
Dt

= Pi
Dt−1

(
Ci

t
Ci

t−1
)exp(λi

t∆T) (2)

P̂i
Dt

= Pi
Dt

+ νt. (3)

The t and ∆T represent time step and sampling interval, respectively. The Pi
Dt

is the required
power in the starting stage. According to iteration criteria, the value of Pi

Dt
can be calculated the Pi

Dt−1
.

In addition, the P̂i
Dt

represents the measured value by sensor. The λ represents degradation or increasing
rate, C represents discrete change with unusual demand active power. λ, C follow the complex Gaussian
distribution with χ(0, ω2), χ(µ, ω2). The νt is random noise at time step t.

Similar to other SIS algorithms, the posterior PDF p(xt|Zt) can be represented by a set of random
particles xi

t(i = 1, 2, . . . , N) with their associated weights wi
t as follows:
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p(xk|Z1:t) ≈
N

∑
i=1

wi
tδ(xt − xi

t),
N

∑
i=1

wi
t = 1, (4)

where i is the i-th particle, N is the number of particles. The weights wi
t for each particles is variable

and constantly updating. It is determined by the observed values of the system. For each particle,

wi
t ∝ wi

t−1
p(Zt|xi

t)p(xi
t|xi

t−1)

q(xi t|xi
t−1, Zt)

(5)

where, Zt is the observed value, xt is the unobserved system state, p(xt|xt−1) is the transition density
function. and the q(xt|xt−1, Zt) is the optimal function. Since it is complicated to establish a suitable
optimization function, it is common to select

q(xi
t|xi

t−1, Zt) = p(xi
t|xi

t−1). (6)

Substituting Equation (6) into Equation (5), the Equation (5) can be simplified into,

wi
t ∝ wi

t−1 p(Zt|xi
t). (7)

The modified algorithm flow is described as shown in Figure 3.

Figure 3. The development PF-based algorithm flow.
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4. Case Studies and Validations

To prove the effectiveness of the PF-based algorithm, an equivalent 44 kV distribution feeder system
in the city of Ottawa (see Figure 4) is used to test load prediction for distribution system day-ahead
scheduling. It can be seen from Figure 4, this system contains a 230 kV utility source, a 230/44 kV
transformer, a 20 Mvar capacitor bank, two circuit breakers, a PV-DGs, a natural gas turbine and a diesel
generator. There are six loads in the system. Readers can refer our previous paper [31] for detailed system
parameters. According to [32], the PV power is calculated by solar irradiance, system load data and
temperature. In this work, for the simplification, we assume that the measurements of solar irradiance
and temperature are consistent with the actual value. Therefore, the accuracy of the distribution system
day-ahead scheduling is only affected by the prediction accuracy of the system load. In the rest of this
section, we will analyze the electricity load prediction based on the PF method. Then, the impact of load
forecast errors on the microgrid day-ahead scheduling is investigated. Furthermore, we compare our
proposed particle filter method with two typical artificial intelligence methods including SVM and ENN.

Figure 4. Equivalent distribution feeder system.

4.1. Electricity Load Prediction

The historical electricity load data of Ottawa, for two years (from 1 January 2004, 24:00 to
31 December 2005, 24:00) is utilized to confirm the accuracy and validity of our presented PF-based
method. Furthermore, to validate the effectiveness and performance of PF-based method, we compare
our proposed method with two maturely and commonly used electricity load intelligent predicting
methods, i.e., SVM and ENN.

Firstly, the electricity load data set was divided into two categories. The data from 1 January 2004
to 31 December 2004 composed the training set. The rest of the data from 1 January 2005 to 31 December
2005 was composed the set. For the sake of narrative and to make the results clear, we selected three
typical moments of every day (i.e., 10:00, 15:00, and 21:00) for discussion. The year divide into spring
(January, February, March), summer (April, May, June), autumn (July, August, September) and winter
(October, November, December) seasons in 2004 and 2005. This representation provides the expected
results for the whole year.

The predicted results for electricity load in different moments are shown in Figure 5. The errors
between predictions and actual values are also shown in these figures. It can be seen from Figure 5,
comparing with SVM and ENN, the PF-based method predictions (represented in red star) is the most
accurate. Furthermore, it can accurately represent the trend of the actual measured value (represented
in black circle) by the sensor. Especially in the summer and winter, even when the electricity load vary
more dramatically than other seasons, the PF-based method is more efficient and stable predictions
than SVM and ENN. Note that the vertical bold black lines in the picture are the border lines of different
data sets (training and testing, respectively). It is not difficult to find that the trend of electricity load
in the two years is roughly the same.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Four seasons of electricity load predictions and errors at 10:00 everyday. (a) predictions of
Spring, (b) errors of Spring, (c) predictions of Summer, (d) errors of Summer, (e) predictions of Autumn,
(f) errors of Autumn, (g) predictions of Winter, (h) errors of Winter.

As for the moment of 10:00 in the morning, Figure 5 shows the comparisons of the different
predicting method and actual electricity load. It is obvious that PF-based method is relatively better
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with an error less than 5% while the SVM-based and ENN-based are almost more than 10% and
20%, respectively. Hence, the prediction accuracy of electricity load was improved by around 50%
by using our proposed PF-based method. Furthermore, the biggest error of SVM-based in autumn
reached 75.6%. The worst predicted result in winter of ENN-based is 46.2%. However, the results
of PF-based for four seasons are stable except for a few unusual results in the fall. Since the figure
shows similar results for the moment of 15:00 in the afternoon and 21:00 in the evening, we do not
give these figures in this paper. Comparing with SVM-based and ENN-based methods, the PF-based
method achieved higher precision at the moment of 15:00 in the afternoon. The predicted curve almost
coincides with the actual electricity load. The forecast error is less than 10% in spring and summer.
The most of error in winter is below 5%. The mean absolute percentage error (MAPE) of the PF-based
method is about 3%. There are also some poor predictions which are up to about 20% as the same as
mentioned before. For the moment of 21:00 in the evening, all of these three method have relatively
poor predicting behaviors. For the SVM-based and ENN-based methods, most errors are in the range
of 10–30% in spring, summer and winter. In the fall, the performance of the SVM-based method is poor.
The biggest error of this method is about 67.2%. Although the PF-based method also has some unusual
results in four seasons, most of the results are satisfactory. Especially the largest error rate in fall of
PF-based method is 17.6% which is also the biggest error in all seasons and all moments mentioned
before. Therefore, we can come to the conclusion that the PF-based method is predicted to be more
accurate than the other two methods.

Furthermore, due to the MAPE and standard deviation (SD) are easy to understand, the MAPE
and (SD) is used to represent the accuracy of different algorithm. The detailed mathematical definition
for MAPE and (SD) are as follows:

MAPE =
1
N

N

∑
k=1

|Zk − Zk′ |
Zk

× 100% (8)

MAE =
1
N

N

∑
k=1
|Zk − Zk′ | (9)

RMSE =
1
N

√√√√ N

∑
k=1

(Zk − Zk′ )
2 (10)

SD =

√√√√ 1
N

N

∑
k=1

(Zk′ − µ)2, (11)

where Zk is the actual measured value of electricity load for kth day, Zk′ is the prediction of
electricity load for kth day, N is the number of days predicted, µ is the mean of actual electricity
load. The performance indicators of SVM, ENN, and PF are given in Table 2.

Table 2. Performance metrics of different algorithms for electricity load prediction.

Algorithms Criterion 10 h 15 h 21 h

Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter

ENN MAPE(%) 6.61 5.65 7.67 7.48 5.49 7.61 7.85 7.78 4.47 9.33 7.21 8.91
MAE 103.50 75.83 97.22 117.77 74.81 111.60 99.80 119.38 68.03 131.38 88.98 149.24
RMSE 9.35 7.13 9.14 11.44 6.96 11.21 10.04 11.12 6.38 12.14 9.01 13.91

SVM MAPE(%) 7.04 8.98 11.82 10.26 8.28 10.49 13.24 10.21 7.09 9.99 9.05 9.81
MAE 108.66 121.10 149.66 171.47 113.87 146.01 167.90 161.33 104.48 138.41 131.38 158.23
RMSE 10.51 10.92 13.46 16.04 11.59 13.04 14.93 14.77 10.06 12.11 10.59 14.26

PF MAPE(%) 1.38 1.01 1.11 1.46 2.91 3.00 2.98 2.59 1.85 0.70 1.79 1.58
MAE 21.02 13.72 13.99 23.01 40.32 41.55 38.00 39.52 29.01 9.54 21.84 26.53
RMSE 1.94 1.27 1.40 2.11 3.34 3.35 3.17 3.31 2.69 0.95 2.39 2.33

As shown in Table 2, all performance indicators of our proposed PF-based method are lower
than ENN-based and SVM-based algorithms for four seasons at different moments. It is clear
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that the PF-based method is more accurate than the other two comparison methods. Specifically,
the fluctuation range of MAPE values based on PF-based method is 1.01–3%. The SVM-based
and ENN-based fluctuation ranges are 7.04–13.24%, 4.47–9.33%, respectively. The maxima and
minima of MAE for PF-based method is 41.55 and 9.54. The maximum and minimum values for
the other two methods are 171.47 and 68.03, which are several higher than the PF-based algorithm.
For the performance metrics of RMSE, the PF-based method is in the range of 0.95–3.35. However,
the SVM-based method and ENN-based method are in the range of 10.06–16.04, 6.38–13.91, respectively.
Therefore, obviously, the prediction accuracy of the PF-based method is higher and more stable than
SVM-based and ENN-based for electricity load predicted.

4.2. Impact of Prediction Errors on Microgrid Day-Ahead Scheduling

As mentioned in Section 2, the microgrid day-ahead scheduling is used to optimize operation
through accurately predicting power production from uncontrollable DGs and load demand to
reasonably allocate the optimal reference power to all controllable DGs. This means when the load
demand predictions have higher accuracy, then the reference power will be more suitable. So it can
achieve optimal operation by reducing cost. After comparing and verifying the accuracy and stability
of the PF-based method for electricity load which is utilized to discuss the scheduled DGs P∗C. Similarly,
we also compared the three different methods at 10:00, 15:00 and 21:00 for four seasons. The comparing
results are presented in Figures 6–8. It is confirmed that the forecasted power by PF-based method fits
active power more accurately than the other two methods at every moment in four seasons. Moreover,
the PF-based method performs with better stability than SVM-based and ENN-based method for
forecasting. The summary of calculating results of the scheduled DG power is presented in Table 3.

(a) (b)

(c) (d)

Figure 6. The regression results of active power for four seasons at 10:00 every day, (a) spring,
(b) summer, (c) autumn, (d) winter.
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As seen from Figure 6, the regression estimates for forecasting power using a different method at
each active (actual) power along the regression line shown in these figures. The forecasting power by
PF-based method was performed with actual power in every season at 10:00. It is obvious that the MAPE
values of all seasons are not more than 1%. However, the MAPE values of ENN-based method and
SVM-based method are both higher than 2%. The maximum error occurs at utlizing the SVM-based
method whose MAPE value is 7.97 in the summer. Furthermore, it is not difficult to see that our
proposed PF-based algorithm obtained more stable forecasting than others. Especially, the MAPE value
of summer (0.41) is approximately equal to the value of autumn (0.42) for the PF-based method.

For the moment of 15:00 and 21:00, Figures 7 and 8 show the obtained regression lines of
the comparison for the different methods. The results also demonstrate the superiority of the PF-based
method. Specifically, all the MAPE values of our proposed PF-based algorithm is less than 1.5%.
The maximum and minimum are 1.36% and 0.33%, respectively. The MAPE values of the other two
methods are quite different. The maximum and minimum are 8.48% and 2.80%, respectively. It means
that the PF-based method achieved nearly 7–8 times less MAPE than the other method. Therefore,
this superiority is especially clear when comparing with the ENN-based and SVM-based method.

(a) (b)

(c) (d)

Figure 7. The regression line of active power for four seasons at 15:00 every day, (a) spring, (b) summer,
(c) autumn, (d) winter.

Additionally, as shown in Tables 2 and 3, it is noticed that all evaluation criterion of the PF-based
method for electricity load is better than SVM-based method and ENN-based method. Same as
electricity load, the calculating results of scheduled DG power for PF-based method outperforms
the other two methods. The reason is that prediction errors are inherently unavoidable. Since
the PF-based method has better forecasting performance, is stable for all the testing electricity load
data, the calculating results of scheduled DG power is also better beyond doubt.
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Table 3. Impaction of predicted errors on microgrid day-ahead scheduling for different algorithms.

Algorithms Criterion 10 h 15 h 21 h

Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter

ENN MAPE(%) 2.76 3.35 2.93 4.18 5.38 4.15 3.04 4.94 2.80 3.27 3.25 5.14
MAE 76.02 100.70 85.34 104.30 157.30 122.50 87.84 127.50 66.49 82.38 85.30 115.70
RMSE 6.93 8.64 8.02 10.13 13.09 10.43 8.84 11.81 6.24 8.02 8.32 10.66

SVM MAPE(%) 3.48 7.97 5.53 6.23 3.76 5.74 8.48 5.06 3.83 3.69 3.40 6.17
MAE 94.47 244.00 163.10 150.90 111.00 167.90 244.90 129.50 94.67 95.30 90.70 137.20
RMSE 9.12 19.94 14.69 14.01 11.50 15.25 20.96 11.67 8.92 8.78 8.63 12.50

PF MAPE(%) 0.69 0.41 0.42 0.81 1.25 1.26 1.16 1.36 1.07 0.33 0.71 1.03
MAE 18.75 12.16 12.30 20.27 35.50 36.57 33.53 34.86 25.74 8.52 19.29 23.50
RMSE 1.71 1.13 1.23 1.86 2.94 2.95 2.80 2.92 2.39 8.51 2.11 2.06

(a) (b)

(c) (d)

Figure 8. The regression line of active power for four seasons at 21:00 every day, (a) spring, (b) summer,
(c) autumn, (d) winter.

5. Discussion

The testing results and comparisons confirmed that our proposed PF-based algorithm is powerful
and stable for forecasting electricity load. Furthermore, due to more accurate predictions of electricity
load, it will assign optimal power references active power for all controllable DGs, and make better
operational decisions for microgrid day-ahead scheduling. This means that the management of
microgrid day-ahead scheduling is greatly determined by the accuracy of the electricity load prediction.

Since the setting of relevant parameters of the particle filter algorithm is important to the accuracy
of predictions, it is not trivial to find the optimal parameters. Firstly, the quantity of selected particles
will have a direct impact on calculating time in the prediction process, large amounts of particles
will lead to temporal redundancy in the computation, or the accuracy of the forecast is decreased.
Next, the setting of system noise is also extremely important to the accuracy of the predicted result.
The forecast data will have little variation when the system noise is too small. Otherwise, it will
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make the data change too violent and lead the forecasting data to deviate from the actual value.
The selection of different parameter values for the particle filter algorithm on the prediction result has
distinct effects, as shown in Figure 9. The comparison results of the particle filter algorithm within
different parameters are carried out. Results obtained are shown in Table 4, where it can be clearly
observed that the accuracy of the forecast results decreased significantly when the parameter is not
getting properly selected. When the parameters of the PF algorithm are select to be sub-optimal,
the accuracy of prediction results is still higher than other algorithms, but it is not the highest. It notes
that improper parameters (for instance, particle leanness and strong noise) will result in higher
prediction errors. The best prediction results came from only when the parameters are optimal.
As for solving different practical problems, there is no fixed criterion for the selection of calculation
parameters in the particle filter. Therefore, the process of particle filter optimal prediction becomes
complicated. The setting of the number of particles in the particle filter algorithm will directly affect
the computing time of the prediction process and the accuracy of the prediction results. Generally
speaking, the more particles you set, the more accurate the prediction result will be. The computing
time will increase accordingly. In order to reduce the computational cost under the premise of ensuring
a certain prediction accuracy, we conduct preliminary comparison experiments to select the optimal
number of particles. Through the comparative experiment of setting different particle numbers in three
typical time periods in the spring of 2004 as shown in Table 5. It can be seen from the prediction
results that when the number of particles is between 100 and 2500 and the number of set particles
increases, the MAPE of the prediction results will gradually decrease while the computing time will
gradually increase. When the number of particles set is increased to 3000, the computing time is still
increasing, but the accuracy of the prediction results has no obvious change at this time. Compared
with the setting of 2500 particles, the MAPE of the prediction results is only reduced by 0.1%. Therefore,
in the actual prediction process of the particle filter, the optimal number of particles is set to 2500,
so that the prediction results can achieve higher accuracy and reduce the computation quantity.

Figure 9. Particle filter (PF)-based prediction with different parameters.
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Table 4. Performance metrics of particle filter for four seasons with different paraments.

Algorithms Criterion 10 h 15 h 21 h

Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter

Particles Leanness MAPE(%) 8.72 10.21 8.87 7.20 3.66 7.62 6.52 3.37 2.44 1.42 3.74 2.77
MAE 132.26 139.33 115.74 116.25 50.53 108.55 87.37 51.46 37.97 19.47 46.57 46.38
RMSE 10.83 11.25 9.84 9.62 4.80 9.56 8.26 5.06 3.64 2.02 4.36 4.30
SD 139.02 114.47 126.78 209.42 126.81 129.23 138.92 202.12 147.18 129.95 132.22 212.03

Strong noise MAPE(%) 5.19 6.16 6.02 4.80 6.91 8.53 8.39 6.33 2.53 1.44 2.31 3.32
MAE 78.48 83.35 76.26 76.63 95.57 117.48 106.58 95.40 39.75 19.88 29.05 57.34
RMSE 7.13 7.76 7.44 7.09 8.57 10.61 9.83 8.12 3.97 1.96 2.99 5.45
SD 145.11 135.94 159.53 232.25 131.01 176.98 181.06 200.63 148.19 116.10 139.73 211.38

Optimal MAPE(%) 1.38 1.01 1.11 1.46 2.91 3.00 2.98 2.59 1.85 0.70 1.79 1.58
MAE 21.02 13.72 13.99 23.01 40.32 41.55 38.00 39.52 29.01 9.54 21.84 26.53
RMSE 1.94 1.27 1.40 2.11 3.34 3.35 3.17 3.31 2.69 0.95 2.39 2.33
SD 136.79 117.04 131.79 227.50 113.49 159.97 162.55 178.70 156.17 118.88 121.77 217.60

Table 5. The influence of the number of particles on the computing results.

Time Particle Number Computing Time/s MAPE/%

10:00

100 10.472 4.419
500 18.558 4.161

1000 44.233 4.039
2000 169.575 3.996
2500 256.480 2.953
3000 376.188 2.952

15:00

100 9.984 4.449
500 19.041 4.099

1000 49.819 4.023
2000 169.311 2.938
2500 266.816 2.610
3000 391.618 2.536

21:00

100 10.308 4.761
500 18.709 4.665

1000 44.057 4.073
2000 146.095 3.853
2500 218.248 2.642
3000 318.991 2.586

6. Conclusions

Due to the properties of nonlinear and non-Gaussian distributions, the issue of prediction has
always been a difficult problem for electricity load. This also leads to the difficulty of obtaining accurate
microgrid operation decisions. To provide accurate load prediction for the microgrid day-ahead
scheduling, a PF-based method is proposed in this work. The historical electricity data of Ottawa,
Ontario, Canada, for two years is used to certify the accuracy and validity of our proposed PF-based
method. Testing and comparing results show that good performance and stability regardless of any
time of any seasons. It is noticeable that this superiority is especially clear when compared with
the ENN-based method and SVM-based method. Furthermore, an equivalent 44 kV distribution feeder
system is utilized to prove the validity and accuracy of PF-based load prediction for distribution
system day-ahead scheduling. The results confirmed that by accurately predicting electricity load and
robustly providing the scheduled DG power for microgrid operation center, the PF-based predicted
method can be an efficient and reliable tool to improve the accuracy and confidence for the decision
making in microgrid energy management. Additionally, the performance metrics of particles and
the influence of different numbers of particles are discussed. In future work, we will introduce
the PF-based algorithm to island microgrids. .
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