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Abstract: Image-based evaluation methods are a valuable tool for source rock characterization.
The time and resources needed to obtain images has spurred development of machine-learning
generative models to create synthetic images of pore structure and rock fabric from limited image
data. While generative models have shown success, existing methods for generating 3D volumes
from 2D training images are restricted to binary images and grayscale volume generation requires
3D training data. Shale characterization relies on 2D imaging techniques such as scanning electron
microscopy (SEM), and grayscale values carry important information about porosity, kerogen content,
and mineral composition of the shale. Here, we introduce RockFlow, a method based on generative
flow models that creates grayscale volumes from 2D training data. We apply RockFlow to baseline
binary micro-CT image volumes and compare performance to a previously proposed model. We also
show the extension of our model to 2D grayscale data by generating grayscale image volumes from
2D SEM and dual modality nanoscale shale images. The results show that our method underestimates
the porosity and surface area on the binary baseline datasets but is able to generate realistic grayscale
image volumes for shales. With improved binary data preprocessing, we believe that our model is
capable of generating synthetic porous media volumes for a very broad class of rocks from shale to
carbonates to sandstone.

Keywords: porous media; image analysis; shale; deep learning; generative flow model

1. Introduction

Image-based characterization of source rock samples is crucial for indirectly measuring structural
and petrophysical properties. A persistent barrier to image-based characterization though is obtaining
enough imaging data to quantify the uncertainty in estimated rock properties, especially for highly
multiscale samples such as shales that require nanoscale imaging techniques. To overcome this challenge,
one approach is to develop models that synthesize source rock images and to then estimate the distribution
of source rock properties by computing them from images sampled from this model.

Previous work on synthesizing porous media samples has focused on statistical techniques such as
multipoint statistics (MPS) [1,2] or application of deep learning methods [3]. While these existing
methods have been successful at generating many types of porous media images, no existing method
is able to both generate grayscale image volumes and train on only 2D data.
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Here, we propose RockFlow. It is a fundamentally new method for generating volumetric images
of porous media samples using generative flow models [4,5], a type of deep learning generative
model. Our algorithm is based on two ideas: source rock sample images are isotropic along all
dimensions, where images acquired along each plane will be indistinguishable from each other,
and linear interpolation in latent space produces semantic interpolation in image space for generative
flow models applied to porous media [6]. Latent space is a learned representation of the data space
that has a known and tractable distribution that enables sampling images. Our approach allows for
more stable training on larger image slices than previously proposed models; parallel generation of
image slices in an image volume; and a first model that generalizes 3D volume synthesis to grayscale,
two-dimensional, and multimodal datasets. In what follows, we present an overview of generative
modeling for synthesis of porous media images, describe our volume generation method, and apply
our method to several 2D and 3D image datasets of porous media.

2. Background

2.1. Image-Based Characterization of Porous Media

High-contrast, high-resolution, and multiscale imaging technologies have become indispensable
tools for the study of shale source rock [7–9]. Many recent studies on 4D characterization and flow
transport tests have used imaging techniques as the foundation of their investigations, including work
on pore network connectivity and storage [8–10], diffusion [11,12], permeability and absorption [13],
and organic matter maturation [14,15]. In such a workflow, images of the source rock are first acquired
using techniques such as micro-CT, nuclear magnetic resonance (NMR) [16], transmission electron
microscopy [17], or scanning electron microscopy (SEM). The images are then segmented into regions
of interest, usually pore and grain phases. Then, properties such as Minkowski functionals [18,19],
permeability, or mercury intrusion capillary pressure are computed. When the imaging modality is
nondestructive, as with micro-CT or NMR, this approach allows for characterization of a sample while
preserving the sample for further experimentation.

Image-based characterization, while powerful, is often challenging due to the limited availability of
high-resolution/high-contrast imaging data. Nanoscale characterization is crucial for characterization
of shales but is particularly difficult due to factors such as limited availability of imaging machines,
potentially large costs, and the time and expertise required to prepare samples and to acquire image
data. Recent interest in deep learning-based methods for source rock characterization has only grown the
need for large amounts of imaging data. A sizable body of work therefore has focused on developing
generative models to create synthetic data to improve characterization, and in recent years, the focus has
shifted to applying deep learning generative models to source rock images.

2.2. Deep Generative Models Overview

Generative models seek to learn the probability distribution of data or to create new data
samples. These are in contrast to discriminative models that predict a response value from input data.
Deep generative models are deep learning-based models that either model the probability distribution
of training data using a deep neural network or train a neural network to sample datapoints from the
training data distribution. The most popular deep generative models include generative adversarial
networks (GANs) [20], variational autoencoders (VAEs) [21], and autoregressive models [22].

GANs consist of two networks: a generator and discriminator. During training, these two
networks play a minimax game against each other: the generator network attempts to synthesize
realistic datapoints and the discriminator classifies an input sample as real or fake. At convergence,
this approach generates datapoints that are statistically indistinguishable from the training data.
By feeding latent random noise vectors into the generator network, we are then able to sample
new datapoints.



Energies 2020, 13, 6571 3 of 19

VAEs train an encoder network to project data into a latent space with a known distribution and a
decoder network to transform latent space vectors back into data space. This allows for sampling new
datapoints by passing latent space vectors of known distribution into the decoder network. Both GANs
and VAEs allow for a latent representation of datapoints but cannot provide the likelihood for a
given datapoint.

Autoregressive models seek to model the probability distribution of the data by predicting
the next datapoint in a series using previous datapoints. These models are trained to predict
successive datapoints from past datapoints by maximizing the likelihood of a given sequence.
Autoregressive models have the advantage of providing an exact likelihood computation for a given
sequence of data but do not provide a latent representation of data and can be impractical for modeling
images because they are inherently not parallelizable [22].

2.3. Synthesis of Geologic Samples

Generative modeling for porous media samples has primarily revolved around two families
of techniques: statistical and deep learning methods. Statistical methods treat the phase of a given
pixel or voxel as a Bernoulli random variable for which the value is determined by an underlying
random process. These techniques tend to fall into either multi-point statistics (MPS) [23] or
simulated annealing-based methods [24]. MPS methods have been shown to generate effectively
microscale images even from relatively sparse training data [1,25,26], but they may be very slow.
Furthermore, MPS methods may have difficulty capturing long-range and multiscale features [27–29].
This difficulty significantly impacts reconstruction of shale volumes due to the multiscale nature of
shales [30]. Simulated-annealing methods incorporate multiple correlation functions and capture
larger-scale features, but they can take hours or even days to generate large volumes [31,32].

More recent work has focused on using deep generative models to synthesize porous media
images. While this work has been more limited than statistical methods, these methods represent
an emerging and powerful class of techniques for porous media synthesis. Mosser et al. [3] applied
deep convolutional GANs (DCGANs), a variant of GANs where the generator and discriminator
network are convolutional neural networks (CNNs), to generate sandstone and limestone images
from binarized micro-CT data. The results from this work showed close agreement with ground-truth
values for topological and flow features of the rock samples, and further work was able to generalize
this model to generate arbitrarily large image volumes [33]. The major drawback of a DCGAN-based
approach is that DCGANs require 3D training data to synthesize 3D image volumes. This limits the
number of applications, especially in shale fabric reconstruction. Other related work on shale image
reconstruction has focused on reconstructing fine-scale features from coarse-scale images of shales [34]
or on assimilating multimodal imaging data [35]. However, beyond these studies, there is little work
on synthesizing or reconstructing source rock images using deep generative models.

A persistent challenge in generating porous media is synthesizing 3D image volumes when
only 2D training data is available [36]. So far, only statistical methods have been able to address
this problem. These approaches model the source rock as a two-phase isotropic porous medium and
optimize the 3D data such that the 2D correlation function matches that of the training data [37].
These methods may be highly efficient and able to synthesize entire image volumes from a single 2D
training image [27]. However, given the importance of grayscale features and multimodal images for
shale fabric characterization, there exists a need for an approach that is able to synthesize 3D volumes
from 2D image data. Generalization to any type of porous medium images, including grayscale and
multimodal, is also needed.

3. Methodology

In this work, we introduce RockFlow, a porous media volume synthesis algorithm using
generative flow models [4–6]. To the best of our knowledge, RockFlow is the first attempt to apply
generative flow models to the synthesis of porous media images. Below, we give an overview of
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generative flow models, the porous media volume synthesis algorithm introduced here, and steps for
calculating the latent space representations used to generate the porous media volumes.

3.1. Generative Flow Models

Generative flow models were originally introduced in [4] and further generalized in [5,6,38].
At a high level, these models train a bijective mapping between data space and a latent space
of known distribution. Because the mapping is bijective, we exactly computed the likelihood of
a given datapoint using the change of variables formula. In doing so, generative flow models
combine the latent representation property of GANs and VAEs with the exact likelihood property of
autoregressive models.

Generative flow models are trained to maximize the likelihood of the observed datapoints in the
dataset D. This is equivalent to minimizing the negative log-likelihood of the datapoints {x}N

i=1:

− logL(D) = 1
N

N

∑
i=1
− log pθ(xi)

From here, we chose our latent vectors z to follow a given distribution z ∼ pθ(z) and model
our datapoints x = gθ(z), where gθ(·) is an invertible function or composition of invertible functions.
Let z = fθ(x) = fK ◦ fK−1 ◦ . . . ◦ f1(z) = g−1

θ (x). Then, we computed the log-likelihood of the sampled
data point as follows:

x = gθ(z)

log px(x) = log pz(z) +
n

∑
i=1

log det |dhi+1/dhi|

using the change of variable formula for probability distributions and defining h0 ≡ x, hK ≡ z,
and hi = fi(z). By using this change of variables, we recasted the likelihood computation for the
datapoint x in terms of the tractable likelihood for the latent representation z. Assuming the functions
fi(·) are sufficiently smooth, the generator function fθ(·) allows for interpolation between latent
vectors z.

In this work, we used the Glow model from Kingma and Dhariwal [6]. The model is summarized
in Figure 1. Each of the L steps of the flow contains a squeeze step; a flow step consisting of an actnorm
layer, 1× 1 invertible convolution, and an affine coupling layer; and a split layer. At sampling time,
we fed noise of a known distribution into the reversed network to produce a synthetic data sample.
We refer the reader to [6] for further details on the model and its implementation. Is the italic format of
word “Glow” in the sentence before “The model” necessary? If yes, please unifrom it all the text.

Figure 1. Glow model architecture adapted from [6]: during training (black arrows), the image is
passed into the network, and successive flow steps transform the data into a vector z that follows a
Gaussian distribution. During sampling (red arrows), vectors zi are sampled from pθ(z) and fed into
the reversed network.
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3.2. Volume Generation Approach

The latent space interpolation property is the most important feature of generative flow models
that the RockFlow algorithm exploits. This property states that a linear combination of latent
representation vectors in latent space produces a semantic interpolation in image space. The property
is illustrated in Figure 2. Latent space interpolation is widely observed in generative flow models
as well as other deep generative models such as GANs.

Figure 2. Depiction of the linear interpolation property of the RockFlow porous media generation
algorithm (top). For generative flow models, linear interpolation in the latent space is equivalent to
semantic interpolation in image space (bottom).

Our method exploits the latent space interpolation property in conjunction with the isotropic
nature of porous media samples to generate 3D volumes by training only on 2D input data. The volume
generation algorithm is given in Algorithm 1. In this workflow, we first trained a generative flow
model on 2D image slices. To generate the volume, we selected “anchor slices” with fixed latent space
vectors, interpolated between the anchor slices by taking an affine combination between the latent
representations of the nearest anchor slices, and calculated the image slices corresponding to each of
the computed latent representations.

Algorithm 1 RockFlow algorithm with glow models.
G(·)←− trained Glow model on 2D image dataset D Select interpolation step number n
Sample latent vectors for anchor slices {z}M

i=1 for i in 1, . . . , M do
Calculate latent representations of interpolated slices zij = αjzi + (1− αj)zi+1 for

j = 1, . . . , n Generate interpolated slices xij = G(zij) in parallel
end
Post-process generated volumes ;

The volume generation process is depicted in Figure 3. In this example, only two interpolation
steps are taken between anchor slices. In practice, this quantity must be computed or set by the user.
After generating volumes, the results are postprocessed to improve image quality or to correct any
artifacts from model training. In particular, we found that median filtering helps reduce artifacts and
that thresholding is necessary to produce binary images for morphology or permeability calculations.
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(a) (b)

(c)

Figure 3. Image volume generation algorithm: (a) anchor slices are sampled by choosing random
vectors zi according to the prior optimized during model training and then by sampling the
corresponding rock image slices. For automatic step number computation, these images are binarized
and the pore chord length is computed. (b) Linear combinations of the anchor slice latent vectors
are computed, and the intermediate image slices are evaluated to create the full image volume.
Evaluation of all volume slices can be done in parallel. (c) Postprocessing was performed for generated
images. Applying a spherical median filter to the generated images improves the resulting output
images. Images are optionally segmented using Otsu thresholding to create a final image binary for
quantifying spatial statistics or for performing flow simulations. Other segmentation algorithms or
software could be used, but we leave this as an area for future exploration.

Training on only 2D input data carries several advantages. First, this model is able to generalize
to datasets where only 2D data is available. For inherently 2D imaging modalities such as electron
microscopy, this capability allows for analysis of image volumes without relying on destructive
imaging processes such as focused ion beam scanning electron microcscopy (FIB-SEM). Furthermore,
our model is able to generate 3D volumes from 2D data for grayscale datasets. This is a generalization
from the MPS and simulated annealing methods that only have this capability for binary images.

In addition to only requiring 2D training data, RockFlow is able to generate image slices in parallel.
Computation of the latent space vectors is inexpensive and easily vectorized. Evaluation of an image
volume therefore becomes equivalent to evaluating a batch of slices. This is in contrast with existing
GAN-based models that must train on and generate entire image volumes simultaneously.

3.3. Latent Vector Calculation

The accuracy of the RockFlow algorithm depends heavily on choosing the correct number of
interpolation steps between anchor slices. In our implementation, we used the pore chord length as
the number of interpolation steps. When interpolating between anchor slices, the phase of a given
pixel should not change if the phase is the same in the two nearest anchor slices. The pore chord length
is the average number of voxels that a pore spans. Hence, it is a natural choice for the number of
interpolation steps.

To calculate the pore chord length, we first calculated the two-point covariance function:

S2(r) = P(x ∈ P, x + r ∈ P)

where P(x ∈ P) is the probability that point x in the volume lies in the pore phase and P(x ∈ P, x+ r ∈ P)
is the probability that two points separated by vector r are both in the pore phase. After computing the
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two-point covariance of pore phase points, we calculated the slope of the two-point covariance at the
origin S′2(0) using linear regression [3,39]. The pore length is then calculated as follows [39]:

l̄pore
c =

φ

S′2(0)

where φ is the porosity. We rounded this to the nearest integer to find the number of interpolation
steps between anchor slices. In our workflow, we based our implementation of the pore chord length
following the code of Mosser et al. [3].

A different approach calculates the number of interpolation steps by finding the
likelihood-maximizing number of steps between anchor slices. However, such an approach is
extremely computationally expensive because it relies on computing Monte Carlo estimates of the
likelihood for full image volumes over a wide range of interpolation step sizes. Here, we used
the pore chord length approach because it is straightforward and efficient to calculate when the
data is easily binarized. Importantly, it is justified by known statistical properties of porous media
samples [3,39].

3.4. Evaluation Criteria

For the baseline datasets presented below, we evaluated the models quantitatively by
comparing agreement of the 3D Minkowski functionals among training and computed images.
Minkowski functionals are stereological estimators providing local and global morphological
information that is related to single-phase flow mechanisms [18,19]. In 3D, there are four
Minkowski functionals that describe the geometric parameters of a set X with a smooth surface
∂X: volume V(X), surface area S(X), integral of mean curvature b(X), and Euler–Poincaré
characteristic χ(X). Here, we focused on the porosity φ calculated from the volume, surface area,
and Euler–Poincaré characteristic:

V(X) =
∫

X
dx

φ =
Vpore

V

S(X) =
∫

∂X
dx

χ(X) =
1

4π

∫
∂X

κ1(x)κ2(x) dx

where Vpore is the number of voxels in the pore phase after segmentation and κ(x) is the curvature
corresponding to the maximum and minimum curvature radii, with κ(x) = 1

r(x) .
We estimated these values using the MorphoLibJ library in ImageJ [40,41]. The volume and

porosity were implemented by directly counting the number of voxels in the pore phase and the total
number of voxels. The mean breadth was computed from the Crofton formula and was proportional
to the integral of the mean curvature [42,43]. The Euler–Poincaré characteristic in 3D describes the
connectivity of the volume and was calculated as the sum of the number of vertices, edges, faces,
and solids using a 6-adjacency system that considers only neighbors in the three primary directions:

χ = nvertices − nedges + n f aces − nsolids

We refer the reader to the documentation of the MorphoLibJ library for further details on
implementation of these metrics.
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4. Results

4.1. Model Training and Image Postprocessing

In all results that follow, the x− y plane is considered the plane in the image volume along which
image slices are synthesized and the z axis is the interpolation axis. The x− z and y− z planes therefore
refer to cross sections along the interpolation direction of the synthesized image volumes.

All models are implemented in PyTorch and pre-/postprocessing done with scikit-image and
ImageJ [44]. The glow model implementation is adapted from [45]. For all glow models, we use
affine coupling layers and temperature = 1 during training and sampling and train using the Adam
optimizer [46] for all models. The models are trained for a differing number of epochs. We found that
models for grayscale images converged in ∼25 epochs while models for binary images were trained
for 100 epochs. When sampling image volumes, we also postprocess the images. The learned model
may not be reversible at all points in the latent space resulting in undefined points in the output image.
To compensate for this effect, we chose to convert undefined values to be the median value of our pixel
values, e.g., 0.5 if all Iij ∈ [0, 1]. We also postprocess with a spherical median filter with radius r = 1 to
minimize artifacts in the final reconstructed image.

Additional pre- and postprocessing are used for binary image data. We discuss these further
steps below.

4.2. Baseline Datasets

Mosser et al. [3] proposed the Berea sandstone and Ketton limestone binary µ-CT images as baseline
datasets for rock image generation. We therefore began by evaluating our volume generation algorithm
on these datasets as a point of comparison with the previously proposed DCGAN model in [3].

During training, we discovered that the chosen generative flow model is unable to train on binary
image data. When training on unprocessed binary data, the model either collapses to outputting all
undefined pixels or exhibits extremely slow convergence. We believe this is because binary images
are equivalent to very high contrast images, and therefore, it is too difficult for the model to map
effectively between these input image and the desired latent space.

To address this issue, we preprocess our images by applying a small blur kernel and by clamping
the values. Let I be the original binary image with all pixels Iij ∈ {0, 1}. Our preprocessing step is
then as follows:

Itraining = Blur3×3 mean(min{max{Ioriginal, 0.25}, 0.75})

This preprocessing pipeline, in effect, creates synthetic micro-CT data by restoring the edge
blurring present in natural sandstone and limestone images and by moving grayscale values away
from the extremes of the pixel value range. An example of this preprocessing is shown in Figure 4.
We found that this preprocessing pipeline allowed for significantly improved model convergence and
stability over training on raw binary data. Indeed, when training on the binary datasets, the models
without this preprocessing in their data pipelines almost never converged while the models with
preprocessing almost always converged. While we did not explore the effect of the truncation values
on the results, we do observe that using values that are symmetric about the median pixel value does
improve results.

Example synthetic and ground-truth slices are shown in Figures 5 and 6. In our postprocessing
pipeline, we apply a r = 1 spherical median filter to eliminate artifacts such as undefined pixels or
“jittering” of grain-pore boundaries between slices and segment using Otsu thresholding [47].
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(a) (b)

Figure 4. Illustration of preprocessing for input images: without preprocessing the binarized input
images, the glow models do not converge during training. (a) Original binary image patch; (b)grayscale
preprocessed image patch.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Berea example images with resolution at 3.0 µm/voxel: (a–d) ground-truth training images
in the x− y plane, (e–h) binarized synthetic images taken from the x− y plane, and (i–l) binarized
synthetic images taken from the x− z plane.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Ketton example images with resolution at 15.2 µm/voxel: (a–d) ground-truth training images
in the x− y plane, (e–h) binarized synthetic images taken from the x− y plane, and (i–l) binarized
synthetic images taken from the x− z plane.

We also evaluated quantitative topological metrics for the synthesized samples and compared
them to the ground-truth sample and DCGAN model. These results are summarized in Figure 7
for the Berea sample and Figure 8 for the Ketton sample. The data for the ground-truth images
and DCGAN model are taken from Mosser et al. [3]. The ground-truth and DCGAN values were
evaluated for 2003 voxel volumes, while our results are only for 1283 volumes. This difference in
evaluation volumes reflects one shortcoming of our model: DCGAN models are fully convolutional
and therefore can be evaluated for an arbitrarily large volume at sample time [33], but the RockFlow
model has fixed dimensions in the training image plane i.e., the x− y plane. From the quantitative
results, we see that the RockFlow model underestimates porosity for the Berea sandstone model,
overestimates surface area for both samples, and obtains a close match for the Euler characteristic for
both baseline training samples.
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Figure 7. Comparison of Minkowski functionals among ground-truth images, DCGAN model, and the
presented generative flow model for Berea sandstone images for (left) porosity, (middle) surface area,
and (right) Euler characteristic. The ground-truth and DCGAN data were evaluated on 2003 image
volumes and taken from [3]. The generative flow model was evaluated on 1283 image volumes.

Figure 8. Comparison of Minkowski functionals among ground-truth images, DCGAN model, and the
presented generative flow model for Ketton sample images for (left) porosity, (middle) surface area,
and (right) Euler characteristic. The ground-truth and DCGAN data were evaluated on 2003 image
volumes and taken from [3]. The generative flow model was evaluated on 1283 image volumes.

4.3. Volume Generation from 2D Data

The biggest advantage of RockFlow over existing porous media synthesis algorithms is the ability
to synthesize 3D grayscale image volumes from 2D training data. Many important imaging modalities
for shale characterization, such as electron microscopy, only acquire 2D image data. While some
techniques, such as FIB-SEM, reconstruct image volumes with the resolution and contrast of SEM
images by successively milling and imaging a sample, this is at the expense of destroying the sample
during image acquisition. Grayscale values in shale electron microscopy images carry important
information about pore space, kerogen content, and mineral composition. Consequently, binary image
volume generation methods cannot reconstruct all desired features of shale images. The RockFlow
algorithm is able to generate grayscale images in 3D from data acquired only in 2D.

To demonstrate this capability, we train a model to synthesize image volumes for a shale FIB-SEM
dataset. The FIB-SEM dataset was acquired for a 10× 10× 3.91 µm Bakken shale sample and comprises
787 slices approximately 5 nm apart with a voxel size of 2.44× 2.33× 5 nm [48,49]. We downsampled
these images to have resolution 9.39× 8.97× 5 nm so that the field of view of the training image
patches is increased. Figure 9 shows a full training image and synthesized image slices, and Figure 10
shows a rendering of a reconstructed volume with orthoslice cutouts. The interpolation step size was
chosen manually for generation of these image volumes because shale images are not easily segmented
using Otsu thresholding. Qualitatively, the synthetic images resemble the training images in both the
training plane (x− y images) and synthesized plane (x− z images). The rendered volume shows that
our method is capable of synthesizing realistic grayscale FIB-SEM data for shale samples.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)
Figure 9. (a) Example training image for FIB-SEM image, (b–e) x− y plane images for synthesized
image volume, and (f–i) x− z plane images for synthesized image volume: the sampled images are
128× 128 px patches. All images have 9.39× 8.97 nm/voxel resolution in the x− y plane.
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Figure 10. Volume rendering of synthetic FIB-SEM images with orthoslice cutouts shown. The images
are trained on 128× 128 pixel image patches and a 1283 image volume is synthesized.

4.4. Multimodal Image Synthesis

A key emerging method for shale characterization is multimodal imaging to infer unknown image
data by assimilating data from multiple modalities, such as predicting high-contrast destructive imaging
data from low-contrast nondestructive data or enhancing low-resolution images using single image
super-resolution methods. Such image translation and super-resolution models require large amounts of
imaging data to train. However, multimodal data can be challenging, time-intensive, or sample-destructive
to acquire and, therefore, are not always practical in experimental setups. The capability to synthesize
grayscale multimodal image data of porous media samples from 2D data allows for training paired image
translation and super-resolution models [50] for multimodal/multiscale data using synthetic data without
needing to directly acquire 3D multimodal data.

Towards these applications, we present results for synthesizing multimodal imaging data from
2D training data. The dataset used is 2D aligned transmission X-ray microscopy (TXM) and FIB-SEM
nanoscale images acquired for a Vaca Muerta shale sample. Such a dataset is usable for training
image translation models to predict high-contrast, sample-destructive FIB-SEM data from low-contrast
nondestructive TXM data [35]. We synthesized the multimodal data by training the multimodal image
as a 2-channel input image to the flow model.

Figure 11 shows example training images and generated 128 × 128 px image patches for
dual modality TXM and FIB-SEM data. The synthetic images closely resemble the training data
and are applicable to image translation models. We also render an image volume, shown in
Figure 12. The rendered image does contain some artifacts in the TXM volume along the z-axis.
However, the rendered volume nevertheless demonstrates the ability of the RockFlow model to
synthesize jointly multimodal 3D data from 2D training data. This opens up many applications to
other image modalities where 3D information is desired but only 2D information is available.
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(a) Transmission X-ray microscopy (TXM) training
image slice

(b) SEM training image slice

(c) (d) (e) (f)

(g) (h) (i) (j)
Figure 11. Training slices and synthesized multimodal slices with resolution of 62.4 µm/voxel:
(c–f) synthetic TXM image patches and (g–j) synthetic SEM image patches corresponding to the generated
TXM images.

(a) (b)
Figure 12. Dual-modality (a) TXM and (b) SEM 3D image volumes generated for a Vaca Muerta
shale sample.
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5. Discussion

The results from the grayscale image volume generation show that the RockFlow model
reconstructs realistic porous media images from 2D training data. Both the FIB-SEM and dual modality
TXM/FIB-SEM synthetic images closely resemble the training data. Thus, these models may be applied
to quantify properties of the shale fabric from image data or to generate synthetic training data for
other image processing tasks such as image translation.

The results from the binary data highlight some of the difficulties of our model. First, we found
that training models to convergence on raw binary data is nearly impossible, even when the pixel
values are clamped away from the extreme values. It was only by applying a 3× 3 mean blur filter
that the model was able to learn the binary data. This limitation presents a significant challenge
when grayscale data is not available. However, when acquiring and analyzing data for new samples,
this limitation should not be a factor, as all CT image data begins as grayscale before binarizing.

The results for evaluating morphological properties of the baseline samples are mixed. For both
samples, the RockFlow model overestimates the surface area and correctly matches the Euler
characteristic. We believe that the surface area is overestimated due to artifacts present in images
generated with this method. The results in [51] show that RockFlow applied to a grayscale
Bentheimer sandstone dataset is able to match closely the spatial covariance, Minkowski functionals,
and permeability of the ground-truth sample. Accordingly, we conclude that the baseline results are
not due to an inherent limitation of our algorithm but rather due to difficulty pre-/postprocessing
binary data for flow models.

The training dynamics for both the grayscale and binary image models further demonstrate that
the presented method is more readily applied to grayscale datasets than binary data. Figure 13 shows
the training dynamics for the Berea sandstone model with binary images and the FIB-SEM model.
We see that the FIB-SEM model converges much more quickly, obtaining good images in <10 epochs
and fully converging within 25 epochs. The Berea sandstone model meanwhile still has sampling
errors after 100 epochs of training, further demonstrating the difficulty of training RockFlow models
on binary data.

(a) (b)

Figure 13. Learning curves for (a) Berea sandstone model and (b) FIB-SEM image datasets that
are binary and grayscale images, respectively. We see that training is much slower for the binary
images, and there are still more sampling errors after 50 epochs of training than 25 epochs for the
grayscale images.

Reconstruction for binary datasets can be improved by modifying the postprocessing pipeline.
For the results presented here, we only apply an r = 1 spherical median filter to remove some of the
artifacts associated with the interpolation. However, more advanced postprocessing strategies for
inpainting undefined pixels or for removing other artifacts could be developed. The artificial blurring
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of the binary images may also be the cause of reduced porosity and surface area, so a postprocessing
method compensating for closure of the pores could improve the porosity and surface area results.

Indeed, postprocessing can greatly affect the qualitative performance of the presented model.
Figure 14 shows x− z plane slices for synthesized Berea sandstone images with different radii for a
spherical median filter applied after image generation. The median filter is able to mitigate some of
the “jittering” effect between slices. However, as shown by the r = 3 images, a larger median filter
kernel can distort the image significantly and can remove small features present in the image.

(a) (b) (c) (d)

Figure 14. Comparison of different amounts of median filtering applied to the same synthesized image
volume for the Berea sandstone model: images are taken from the x− z plane of a generated image
volume. As the size of the spherical median filter is increased, there is less jittering between image
slices and undefined pixels are eliminated, but smaller details are lost. (a) Original; (b) Binary; (c) r = 1;
(c) r = 3.

6. Summary

RockFlow is a fundamentally new method for synthesizing porous media samples that only
requires 2D training images, is generalized to grayscale and multimodal images, and evaluates full
image stacks in parallel. To the best of our knowledge, this is the first porous media synthesis algorithm
that generates 3D grayscale data from 2D images. We apply our model to baseline datasets and show
that the model closely matches the Euler characteristic; overestimates surface area; and for one baseline
sample, underestimates porosity. We also demonstrate the ability of our model to generate realistic
nano-scale FIB-SEM volumes and multimodal image data, an important emerging method for shale
fabric characterization.

Future work on the RockFlow model will focus on two main avenues. First, the binary data
handling pipeline should be improved. While we were able to train the models stably and to generate
sample images, the performance for our model lags behind that of the DCGAN model from [3] for
the baseline binary datasets. We believe that, with improved pre- and postprocessing of binary image
data, it is possible to obtain performance comparable to GAN-based models for the baseline datasets.
Possible directions could include an improved pipeline for input data to the network and a check on
the thresholding value used during postprocessing to match known or expected porosity of the sample.

The second area of future work focuses on application of this model to other imaging datasets.
Guan et al. [51] have applied this model to a Bentheimer sandstone, but there remains much room for
further applications, specifically for shale image synthesis and characterization. Multimodal image
synthesis for shale fabric characterization and multiscale image synthesis—e.g., joint generation of CT
and micro-CT images—are promising areas. We believe that RockFlow is particularly applicable to
nanoscale multimodal characterization of shales due to our algorithm’s ability to generate 3D samples
even from 2D electron microscopy data.

While the performance for the baseline binary datasets can be improved, the presented
algorithm has many applications for porous media characterization and specifically for analysis and
characterization of shale fabrics. This algorithm is capable of generating 3D grayscale rock volumes
from 2D data, which will greatly expand our ability to characterize petrophysical properties of source
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rock samples using nondestructive, multimodal, or limited image data. With further development,
RockFlow will become a useful tool for image-based characterization of porous media.
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