Numerical Simulation of a GH2/LOx Single Injector Combustor and the Effect of the Turbulent Schmidt Number
Abstract
:1. Introduction
2. Materials and Methods
2.1. RCM-3 Combustor
2.2. Numerical Setup
2.2.1. Governing Equations
2.2.2. Sub-Grid Scale Model
2.2.3. Equation of State
2.2.4. Combustion Model
2.2.5. Computational Grid
2.2.6. Solver Setup
3. Results
3.1. Flow and Flame Field Characteristics
3.2. Unsteady Flow and Flame Features
3.3. Effect of Turbulent Schmidt Number on Flow Field
3.4. Effect of Turbulent Schmidt Number on Flame Field
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
, , | coefficients of quadratic equation of |
energy parameter of RK–PR equation | |
size-related parameter of RK–PR equation | |
mass diffusivity, m2/s | |
diameter, m | |
turbulent kinetic energy, m2/s2 | |
Lewis number | |
length, cm or m | |
parameter defining the temperature dependence of the attractive term of RK–PR equation | |
mass flow rate, g/s | |
pressure, bar or atm | |
probability density function | |
Prandtl number | |
universal gas constant, J/kg·mol | |
Strain rate tensor, 1/s | |
Schmidt number | |
temperature, K | |
reduced temperature | |
time, s | |
velocity magnitude, m/s | |
velocity component, m/s | |
molar volume, m3/mol | |
x-coordinate, m | |
Cartesian coordinate, m | |
y-coordinate, m | |
dimensionless wall distance | |
mixture fraction | |
mixture fraction variance | |
filter cutoff length, m | |
, , | parameters of -pdf |
gamma function | |
Kronecker delta | |
third parameter of RK–PR equation | |
von Kármán constant | |
absolute viscosity, N·s/m2 | |
kinematic viscosity, cSt | |
density, kg/m3 | |
stress tensor, N/m2 | |
scalar dissipation rate, 1/s | |
Subscripts | |
, | Cartesian direction |
stoichiometric quantity | |
turbulent quantity | |
van Driest | |
eddy dissipation rate, m2/s3 | |
Superscripts | |
intact core of liquid oxygen | |
sub-grid scale | |
spatially filtered quantity | |
Favre-filtered quantity |
References
- Juniper, M.; Tripathi, A.; Scouflaire, P.; Rolon, J.-C.; Candel, S. Structure of cryogenic flames at elevated pressure. Proc. Combust. Inst. 2000, 28, 1103–1109. [Google Scholar] [CrossRef]
- Habiballah, M.; Orain, M.; Grisch, F.; Vingert, L.; Gicquel, P. Experimental studies of high-pressure cryogenic flames on the Mascotte facility. Combust. Sci. Technol. 2006, 178, 101–128. [Google Scholar] [CrossRef]
- Poschner, M.M.; Pfitzner, M. Real gas simulation of supercritical H2-LOX combustion in the Mascotte single-injector combustor using a commercial CFD code. In Proceedings of the 46th AIAA Aerospace Science Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. AIAA 2008-952. [Google Scholar]
- Kim, T.H.; Kim, Y.M.; Kim, S.K. Real-fluid flamelet modeling for gaseous hydrogen/cryogenic liquid oxygen jet flames at supercritical pressure. J. Supercrit. Fluids 2011, 58, 254–262. [Google Scholar] [CrossRef]
- Coclite, A.; Cutrone, L. Numerical investigation of high-pressure combustion in rocket engines using flamelet/progress-variable models. In Proceedings of the 53th AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. AIAA 2015-1109. [Google Scholar]
- Benmansour, A.; Liazid, A.; Logerals, P.O.; Durastanti, J.F. A 3D numerical study of LO2/GH2 supercritical combustion in the ONERA-Mascotte test-rig configuration. J. Therm. Sci. 2016, 25, 97–108. [Google Scholar] [CrossRef]
- Seidl, M.J.; Aigner, M.; Keller, R.; Gerlinger, P. CFD simulation of turbulent nonreacting and reacting flows for rocket engine applications. J. Supercrit. Fluids 2017, 121, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, T.; Staffelbach, G.; Ducruix, S.; Gröning, S.; Hardi, J.; Oschwald, M. Large-eddy simulations of a sub-scale liquid rocket combustor: Influence of fuel injection temperature on thermo-acoustic stability. In Proceedings of the 7th European Conference for Aeronautics and Aerospace Science (EUCASS), Milan, Italy, 3–6 July 2017. [Google Scholar]
- Riedmann, H.; Banuti, D.; Ivancic, B.; Knab, O. Modeling of H2/O2 single element rocket thrust chamber combustion at sub- and supercritical pressures with different computational fluid dynamics tools. Prog. Prop. Phys. 2019, 11, 247–272. [Google Scholar]
- Lubbers, C.L.; Brethouwer, G.; Boersma, B.J. Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dyn. Res. 2001, 28, 189–208. [Google Scholar] [CrossRef]
- Yimer, I.; Campbell, I.; Jiang, L.Y. Estimation of the turbulent Schmidt number from experimental profiles of axial velocity and concentration for high-Reynolds-number jet flows. Can. Aeronaut. Space J. 2002, 48, 195–200. [Google Scholar] [CrossRef]
- Crocker, D.S.; Nickolaus, D.; Smith, C.E. CFD modelling of a gas turbine combustor from compressor exit to turbine inlet. In Proceedings of the American Society of Mechanical Engineers (ASME) Turbo Expo ‘98—Land, Sea, Air, Stockholm, Sweden, 2–5 June 1998. 1998-GT-184. [Google Scholar]
- Cannon, S.M.; Smith, C.E.; Anand, M.S. LES predictions of combustor emissions in an aero gas turbine engine. In Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, USA, 20–23 July 2003. AIAA-2003–4521. [Google Scholar]
- Jiang, L.Y.; Campbell, I. Prandtl/Schmidt number effect on temperature distribution in a generic combustor. Int. J. Therm. Sci. 2009, 48, 322–330. [Google Scholar] [CrossRef]
- Ivancic, B.; Riedmann, H.; Frey, M.; Knab, O. Investigation of different modeling approaches for CFD simulation of high pressure rocket combustors. In Proceedings of the 5th European Conference for Aeronautics and Aerospace Science (EUCASS), Munich, Germany, 1–5 July 2013. [Google Scholar]
- Smagorinsky, J. General circulation experiments with the primitive equations I. the basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Faghri, A.; Zhang, Y.; Howell, J.R. Advanced Heat and Mass Transfer; Global Digital Press: Columbia, MO, USA, 2010; pp. 420–421. [Google Scholar]
- Cismondi, M.; Mollerup, J. Development and application of a three-parameter RK–PR equation of state. Fluid Phase Equilibria 2005, 232, 74–89. [Google Scholar] [CrossRef]
- Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27, 1197–1203. [Google Scholar] [CrossRef]
- Peng, D.Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundamen. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology Webbook. Available online: http://webbook.nist.gov/chemistry/fluid (accessed on 1 June 2020).
- Kang, J.S.; Heo, J.Y.; Sung, H.G.; Yoon, Y.B. Dynamic characteristics of a cryogenic nitrogen swirl injector under supercritical conditions. Aerosp. Sci. Technol. 2017, 67, 398–411. [Google Scholar] [CrossRef]
- Oevermann, M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerosp. Sci. Technol. 2000, 4, 463–480. [Google Scholar] [CrossRef]
- Li, S.; Ge, Y.; Wei, X.; Li, T. Mixing and combustion modeling of hydrogen peroxide/kerosene shear-coaxial jet flame in lab-scale rocket engine. Aerosp. Sci. Technol. 2016, 56, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Jian, D.; Biao, C.G.; Yang, Z.; NanJia, Y. Experimental and numerical investigation of combustion characteristics on GO2/GH2 shear coaxial injector. Aerosp. Sci. Technol. 2018, 77, 725–732. [Google Scholar]
- Liu, F.; Guo, H.; Smallwood, G.J.; Gülder, Ö.L.; Matovic, M.D. A robust and accurate algorithm of the β-pdf integration and its application to turbulent methane–air diffusion combustion in a gas turbine combustor simulator. Int. J. Therm. Sci. 2002, 41, 763–772. [Google Scholar] [CrossRef]
- Triantafyllidis, A.; Mastorakos, E. Implementation issues of the conditional moment closure model in large eddy simulations. Flow Turb. Combust. 2010, 84, 481–512. [Google Scholar] [CrossRef]
- Conaire, M.Ó.; Curran, H.J.; Simmie, J.M.; Pitz, W.J.; Westbrook, C.K. A comprehensive modeling study of hydrogen oxidation. Chem. Kinet. 2004, 36, 603–622. [Google Scholar] [CrossRef]
- Zhukov, V.P.; Suslov, D.I. Measurements and modelling of wall heat fluxes in rocket combustion chamber with porous injector head. Aerosp. Sci. Technol. 2016, 48, 67–74. [Google Scholar] [CrossRef]
- Caretto, L.S.; Gosman, A.D.; Patankar, S.V.; Spalding, D.B. Two calculation procedures for steady, three-dimensional flows with recirculation. In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics (Volume 19 of Lecture Notes in Physics); Cabannes, H., Temam, R., Eds.; Springer: Berlin, Germany, 1972; pp. 60–68. [Google Scholar]
- Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comp. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Roe, P.L. Characteristic-based schemes for the euler equations. Ann. Rev. Fluid Mech. 1986, 18, 337–365. [Google Scholar] [CrossRef]
- Gurliat, O.; Schmidt, V.; Haidn, O.J.; Oschwald, M. Ignition of cryogenic H2/LOX sprays. Aerosp. Sci. Technol. 2003, 7, 517–531. [Google Scholar] [CrossRef]
- Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B. Real gas CFD simulations of hydrogen/oxygen supercritical combustion. Prog. Prop. Phys. 2013, 4, 583–614. [Google Scholar]
- Xiao, X.; Edwards, J.R.; Hassan, H.A. Variable turbulent Schmidt-number formulation for scramjet applications. AIAA J. 2006, 44, 593–599. [Google Scholar] [CrossRef]
- Crow, S.C.; Champagne, F.H. Orderly Structure in Jet Turbulence; Boeing Scientific Research Laboratories: Seattle, WA, USA, 1970; D1-82-0991. [Google Scholar]
- Hakim, L.; Schmidtt, T.; Ducruix, S.; Candel, S. Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing: Influence of the modulation frequency on the flame response. Combust. Flame 2015, 162, 3482–3502. [Google Scholar] [CrossRef]
CFD Solver | Grid System | Number of Cells | Combustion Model | Equation of State | Turbulence Model | RCM-3 Case | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Poschner and Pfitzner | ANSYS CFX | Axi. | 340,000 | EDM, RIF | RK, PR | ) = 0.5, 0.7, 0.8, 0.9 | Standard k-ε | A60 | [3] |
Kim et al. | in-house | Axi. | 35,560 | SLFM | SRK | Le = 1 | RANS | C60 | [4] |
Coclite and Cutrone | in-house | Axi. | 18,000 | FPV | PR | Le = 1 | Low Reynolds number k-ω | A60 | [5] |
Benmansour et al. | ANSYS Fluent | 3d | 794,270–915,349 (AMR) | EDM | polynomial fitting of NIST data | Le = 1 | Standard k-ε, Realizable k-ε | A60 | [6] |
Seidl et al. | TASCOM3D | Axi. | 63,500 | FRC | SRK-C | N/A | q-ω, k-ω SST | A60 | [7] |
Schmitt et al. | AVBP | 3d | 11,000,000 | Equilibrium | SRK | ) = 0.6 | LES(WALE) | A60, C60 | [8] |
Riedmann et al. | Airbus DS Rocflam3, DLR TAU, ANSYS CFX | Axi., 3d | 1,600,000 or less | Equilibrium, FRC, CFX Flamelet | BWR, real-gas data from UDF | N/A | Standard k-ε Spalart–Allmaras, k-ω SST | A10, A60 | [9] |
[g/s] | [g/s] | [K] | [K] | [bar] | [bar] | [kg/m3] | [kg/m3] | ||
---|---|---|---|---|---|---|---|---|---|
70 | 100 | 287 | 85 | 60 | 60 | 5.51 | 1177.8 | 236 | 4.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, W.-S.; Han, W.; Huh, K.Y.; Kim, J.; Lee, B.J.; Choi, J.-Y. Numerical Simulation of a GH2/LOx Single Injector Combustor and the Effect of the Turbulent Schmidt Number. Energies 2020, 13, 6616. https://doi.org/10.3390/en13246616
Hwang W-S, Han W, Huh KY, Kim J, Lee BJ, Choi J-Y. Numerical Simulation of a GH2/LOx Single Injector Combustor and the Effect of the Turbulent Schmidt Number. Energies. 2020; 13(24):6616. https://doi.org/10.3390/en13246616
Chicago/Turabian StyleHwang, Won-Sub, Woojoo Han, Kang Y. Huh, Juhoon Kim, Bok Jik Lee, and Jeong-Yeol Choi. 2020. "Numerical Simulation of a GH2/LOx Single Injector Combustor and the Effect of the Turbulent Schmidt Number" Energies 13, no. 24: 6616. https://doi.org/10.3390/en13246616
APA StyleHwang, W. -S., Han, W., Huh, K. Y., Kim, J., Lee, B. J., & Choi, J. -Y. (2020). Numerical Simulation of a GH2/LOx Single Injector Combustor and the Effect of the Turbulent Schmidt Number. Energies, 13(24), 6616. https://doi.org/10.3390/en13246616