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Abstract: Many types of dense suspensions are complex materials exhibiting both solid-like and
fluid-like behavior. These suspensions are usually considered to behave as non-Newtonian fluids and
the rheological characteristics such as yield stress, thixotropy and shear-thinning/thickening can have
significant impact on the flow and the engineering applications of these materials. Therefore, it is
important to understand the rheological features of these fluids. In this paper, we study the flow of a
nonlinear fluid which exhibits yield stress and shear-thinning effects. The geometries of interests are a
straight channel, a channel with a crevice and a pipe with a contraction; we assume the fluid behaves
as a Herschel-Bulkley fluid. The numerical simulations indicate that for flows with low Reynolds
number and high Bingham number an unyielded plug may form in the center of the channel. In the
case of a channel with a crevice, the fluid in the deep portion of the crevice is at an extremely high
level of viscosity, forming a plug which is hard to yield. For the pipe with a contraction, near the pipe
neck the unyielded region is smaller due to the enhanced flow disturbance.
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1. Introduction

Fluid–solid dense suspension with yield stress are complex materials used in many industrial
applications. These fluids usually show both solid-like and fluid-like behaviour [1–3]. In many
situations, these complex fluids are modelled as non-linear fluids where their material properties can
depend on temperature, shear rate, shear history and so forth [4,5]. The complex rheological behaviour
can influence the design of the system [6]. The high viscosity and the yield stress increase the frictional
losses, while the shear dependent viscosity and fluid–solid transition caused by the yield stress make it
more difficult to control the operation of these complex fluids. Therefore, understanding the rheological
behaviour of these non-linear fluids is of great importance in these industrial applications.

Complex fluids with yield stress show solid-like behavior, when the local stress is lower than a
critical value, called the yield stress [7]. Many experiments have been designed and performed to
investigate the behavior of these types of fluids. Coussot et al. (2002) [8] show the “abrupt” solid–fluid
transition in gels and clay suspensions. They indicate that such an abrupt solid–fluid transition is
associated with a bifurcation of the rheological property of the materials: for small stresses lower than
the critical value, the apparent viscosity of the material increases in time, with the material stopping to
flow eventually. Once the stresses become larger than the critical value, the apparent viscosity begins
to decrease continuously (due to the change of the material microstructure) and as a result the flow
accelerates. According to Stickel (2005) [6], at zero shear rate, dense suspensions may exhibit yield
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stress behavior, while general suspensions are Newtonian. As the shear rate increases, the viscosity of
the suspensions is shear thinning until it reaches a Newtonian plateau, followed by a short region of
shear thickening; however, the viscosity variation beyond this region is still inconclusive. Zhu et al.
(2002) [9] measured the yield stress of suspensions using a slotted-plate technique, where multiple slots
are opened and dragged through the suspensions. As a result, a shearing motion is created to eliminate
the effects of the wall slip and the value of the yield stress could be determined by the point on the
experimentally measured force versus time curve that deviates from linearity. Qian et al. (2018) [10]
indicated that the dynamic yield stress can be obtained by fitting the Bingham model, where the
equilibrium flow curve is measured by a shear rate controlled steady-state protocol. On the other hand,
they suggested that the static yield stress is related to the creep stress where a viscosity bifurcation
occurs in a stress-controlled creep recovery measurement. Although the concept of yield stress has
been widely used in many engineering applications and investigated in numerous experiments, there
still exits some uncertainty about accurate measurement of the yield stress [see Barnes and Walters
(1985) [7], Barnes (1999) [5] and Putz and Burghelea (2009) [4]]. In 2017, Malkin et al. [11] discussed
the recent developments in yield stress. They pointed out that yielding is now widely regarded as a
transition that extends to a certain range of stress and this occurs over time, rather than the collapse of
structure at the transition to fluid material. Therefore, the yield stress should be characterized by the
durability depending on the stress.

The flow behavior of a yield stress fluid is difficult to predict, as it usually involves solid to fluid
transition and shear thinning effects; these effects cannot be simply predicted a priori without the
help of numerical simulations [12]. Based on the experimental tests, Gomes et al. [13] developed a
finite volume model to study the flow of a Bingham plastic and a Herschel-Bulkley fluid in annular
and jetting regions. Their numerical simulations agree with the results presented in the literature,
indicating that numerical simulations supported by reliable experimental data can effectively promote
the study of flow under extreme conditions. Saeid et al. [14] numerically investigated the effects of
operating conditions and geometries on the flow of a suspension in a vertical well; the suspension is
modeled as a water-based mixture exhibiting shear-thinning behavior. They found that increasing the
number of jets and rotational speed as well as decreasing of Reynolds number both help reduce the
pressure drop. In 2000, Subramanian [15] experimentally studied the pressure drop of five different
suspension in pipe and annular flows and moreover, they compared the measured data with the results
predicted by the numerical models using the Bingham plastic, power-law and yield power-law models.
Their results indicated that for most of the suspension tested, the yield power-law model, namely the
Herschel-Bulkley fluid, predicts better than the others but for different specific situations, the accuracy
of the models needs further study. Ovarlez et al. (2015) [16] carried out experimental and theoretical
investigations on the rheology of noncolloidal spheres suspended in yield stress fluids. Their results
indicate that the Hershel-Bulkley model with the index of the interstitial fluid can be used to study
suspensions. On the specific usage of Herschel-Bulkley model, Saasen et al. (2020) [17] suggested that
accurate and proper parameters should be selected carefully and the dimensionless shear rate is better
to use in the Herschel-Bulkley model for wider applications.

In this paper, we study the flow of a yield-stress and shear-thinning fluid in three representative
geometries used in many engineering delivery applications. In Section 2, we discuss the governing
equations and the constitutive relation. We present the geometries and a brief discussion of the
boundary conditions in Section 3. And the numerical results are presented and discussed in Section 4.

2. Mathematical Framework

Flows of fluids infused with small macroscopic solid particles can be modeled in a variety of
ways. These are multi-component materials, especially when the suspension is considered to be dense,
that is, a large number of particles are present in the fluid. In general, at least three different ways of
modeling, based on the methods in continuum mechanics, are available. The first and perhaps the
most advanced approach is to use Mixture Theory where governing equations are presented for each
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component. In this approach, for a simple two-component case, three constitutive relations are needed;
namely the stress tensor for each component and one vector equation for the interaction forces. In
this approach, the coupled equations have to be solved numerically [see Soo (1990) [18]; Raj and Tao
(1995) [19], Johnson et al. (1991) [20], Massoudi (2010) [21]]. In the second approach, the mixture is
considered to be a non-homogeneous single component fluid; in this approach the governing equations
for the single component fluid also includes a convection-diffusion equation for the particle motion.
Two constitutive relations are needed: one for the stress tensor and one for the concentration flux [see
Phillips et al. (1992) [22]; Wu et al. (2016) [23]; Tao et al. (2019) [24]]. This approach is simpler than the
first one, both from a modeling point of view and also from a computational perspective. Finally, in
the third approach, the suspension is treated as a single component homogenous fluid where the basic
equations of motion are needed and only one constitutive relation is necessary, namely for the stress
tensor. This is by far the simplest and most often used methods in engineering applications. In this
paper, we use this approach. Other methods include numerical simulations, statistical mechanics and
experimental or phenomenological approaches [see Peker and Helvaci, (2011) [25]].

2.1. Governing Equations

If thermo-chemical and electro-magnetic effects are ignored, the governing equations for a single
component non-linear fluid, are the conservation equations for mass and linear momentum [26].

2.1.1. Conservation of Mass

The conservation of mass is:
∂ρ

∂t
+ div(ρv) = 0, (1)

where ρ is the density of the fluid; ∂/∂t is the partial derivative with respect to time; div is the divergence
operator and v is the velocity vector. For an incompressible fluid, the equation is simplified to:

div v = 0. (2)

2.1.2. Conservation of Linear Momentum

The conservation of linear momentum is:

ρ
dv
dt

= divT + b, (3)

where T is the Cauchy stress tensor, b is the body force vector, which is ignored in this paper and d/dt
is the total time derivative, given by d(.)/ dt = ∂(.)/∂t+ [grad(.)]v, where grad designates the gradient
operator. The conservation of angular momentum indicates that in the absence of couple stresses the
stress tensor is symmetric, that is, T = TT. Notice that in flows of fluid–solid suspensions, in general,
the fluid is non-homogenous and particle volume fraction is variable, thus the convection-diffusion
equation is necessary in many applications [27]. For alternative ways of modeling non-homogeneous
fluids, we refer the reader to Massoudi and Vaidya (2008) [28]. In this paper, we ignore the presence of
the particles and model the suspension as a homogenous nonlinear fluid.

2.2. Constitutive Equation for the Stress Tensor

Dense suspensions are complex multi-component fluids; they are composed of a base (host) fluid,
for example, water, with other dispersed components such as sand, oil and so forth, as well as some
chemicals. Both viscous stress with shear-thinning characteristic and yield-stress behavior should be
considered in the constitutive relation for stress tensor of these complex fluids. We therefore assume
that the total stress tensor is composed of two parts, where:

T = Ty + Tv,
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where Ty is the yield stress and Tv is the viscous stress. Many nonlinear fluids show distinct
non-Newtonian features, such as thixotropy, yield stress, shear dependent viscosity [29–31] and so
forth. In this paper, we consider the constitutive equation for a fluid which has a yield stress in addition
to its viscous characteristics:

T = −pI + Ty + Tv (4)

Tv = ηp
( .
γ
)
A1 (5)

A1 = gradv + gradvT,
.
γ =

√
1/2tr(A1)

2, (6)

where p is the pressure, I the identity tesnor, ηp is the shear (plastic) viscosity depending on the shear
rate, tr is the trace of a tensor and

.
γ is the shear rate, which is defined by the second invariant of A1.

As observed by many experiments [2,32,33], many dense suspensions show shear-thinning
behavior which can be described by a power law model:

ηp = ηr
.
γ

n−1, (7)

where ηr is the reference viscosity, and n is the power-law exponent, indicating the intensity of the shear
rate dependency; when n < 1, the fluid is shear-thinning, when n > 1 the fluid is shear-thickening,
and when n = 1 the fluid behaves as a Newtonian fluid. The shear viscosity of non-linear fluids is, in
general, a function of several parameters such as time, shear rate, temperature, pressure, concentration,
material composition, molecular weight, electric field, magnetic field and so forth. In this paper, we
assume that the viscosity depends only on the shear rate. That is, even though we recognize that
particle concentration or in general, the microstructure of the suspension, can influence the rheological
behavior of the suspension, for example, as sedimentation, in this paper, we are ignoring those factors
([see our previous work [24,27] for details).

In general, a yield-stress fluid is broadly defined as a material that behaves as a solid material
below a critical applied stress and would flow like a fluid at higher stresses. One of the most popular
model for a yield stress fluid is the generalized Bingham viscoplastic fluid model, known as the as
Herschel-Bulkley model where the constitutive equation is given as [34,35]: Ty =

(
τy

√
1/2IIDA1

+ ηp

)
A1,
√

1/2IIT ≥ τy

A1 = 0,
√

1/2IIT < τy

, (8)

where τy is the yield stress, IIA1 is the second invariant of the A1 and IIT is the second invariant of the
stress tensor. If ηp is constant, then the above equation reduces to the basic Bingham model [see Prager
(2004), p. 136 [36]] The effective viscosity, defined as the ratio of the shear stress to the shear rate, is:

η =
T

A1
= ηp +

τy
.
γ

. (9)

If T > τy everywhere, then ηp is well defined and in the computational scheme we can use
methods suitable for Newtonian fluids. However, when the stress approaches the yield stress, the
viscosity will tend to infinity and this is physically unreasonable; therefore, we need some other
methods to approximate the viscosity. The most common approach is to remove the discontinuity
by regularization [34,37], which transforms the computational problem into a conventional one for a
purely viscous fluid and then to vary the regularization parameter to try to obtain convergence to the
solution of the discontinuous problem. At least three regularization approaches are used [34,38]:

Simple model [39]:

η = ηp + τy

(
1

ε+
.
γ

)
. (10)
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Bercovier and Engelman model [40]:

η = ηp + τy

 1[
ε2 +

.
γ

2]1/2

. (11)

Papanastasiou model [41]:

η = ηp + τy

1− e−
.
γ/ε

.
γ

. (12)

The Bingham model should be obtained in all three formulations as ε→ 0 . Physically, the
regularized viscosity approaches a large but finite viscosity at zero shear rate. In this paper, we first
test all three regularization methods and then we use the simple model combined with the power law
model for the simulations. That is, we assume:

η = ηr
.
γ

n−1
+

τy

ε+
.
γ

. (13)

2.3. Expanded Form of the Governing Equations

The following dimensionless form of the governing equations can be obtained:

div∗V = 0 (14)

ρ∗
(
∂V
∂τ

+ V·grad ∗V
)
= −grad ∗P +

1
Re∗

div∗


 .
γ
∗m +

B[
ε2 +

.
γ
∗2
]1/2

A1
∗

 (15)

using the non-dimensional parameters:

Y =
y
H , X = x

H , V = v
v0

, τ = tv0
H , P =

p
ρrv02 ,ρ∗ = ρ

ρr
, Re∗ = ρrv0

1−mH1+m

ηr

grad ∗(·) = Hgrad(·), div ∗(·) = Hdiv(·), A1
∗ = H

v0
A1, B =

τyH1+m

ηrv01+m ,

where v0 is a reference velocity and m equals n− 1 in Equation (13) for simplicity. As a result of this
non-dimensionalization, two dimensionless numbersRe∗ and B—appear, where Re∗ is the ratio of the
inertia force to the viscous force and is similar to the Reynolds number and B is the ratio of the yield
stress to the viscous stress which is equivalent to the Bingham number. Flow of yield-stress fluids are
frequently characterized by the dimensionless Bingham number, reflecting the relative importance of
the yield stress and the viscous stress.

3. Problem Description

In this paper, we assume that the flow is laminar. We investigate the flow of a yield-stress
shear-thinning fluid in three different geometries, see Figure 1 for the details. First, we will study the
flow in a horizontal and straight channel to reveal the basic features of the fluid, see Figure 1a. Half of
the height is H and the length of the channel is kept at 10H, which is long enough to guarantee that for
all the cases the flow near the crevice and the contraction will not be affected by the outlet boundary.
The criterion is that the gradient of the dimensionless velocity along the axial direction is less than 10−3.
In order to save computational cost, we have assumed that the flow is two dimensional (axisymmetric).

The second problem is a two-dimensional channel with a crevice representing geometries
commonly found in industrial products, such as the parts joints and weld crack, as shown in Figure 1b.
The width of the channel is Wi and Li is the length of the straight channel, assumed to be 3.3Wi (for a
fully developed flow). In order to simulate the effect of crevice, the width Wc and the depth D are both
set as 0.7Wi. The length of the channel after the crevice is Lo = 2Wi.
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Figure 1c shows the geometry of a two-dimensional pipe with a contraction, which may represent
a portion of a valve in a real industrial application. We also make use of the symmetry in this
problem. The radius of the pipe is Ri and the radius in the contraction part is Rc = 0.3Ri, the length
of the contraction is Ri, the length of the part before and after the contraction are set as 5Ri and
4Ri, respectively.
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Figure 1. Schematic of (a) straight channel (b) channel with a crevice (c) pipe with a contraction.

Table 1 presented the boundary conditions. The average apparent viscosity is also defined in this
paper, η1 for the pipe geometry and η2 for the channel:

η1 = 1
R2

∫
2ηrdr

η2 = 1
W

∫
ηdy.

(16)

The grid convergence tests are carried out in order to determine the appropriate meshes to use.
Here we only show the results of the straight channel with an inlet generalized Reynolds number of
1× 10−2 and a Bingham number of 612

(
Re∗ = 3.3× 10−3, B = 15

)
, as shown in Table 2 As a result, Grid

C is chosen for further studies. The convergence criterion is that the residuals of pressure and velocity
are less than 10−6 and 10−7, respectively.

Table 1. Boundary conditions used in the numerical simulations.

Boundary Type Boundary Conditions

Pressure Velocity

Wall Zero gradient Fixed value (0)
Inlet Zero gradient Fixed value

Outlet Fixed value (0) Zero gradient

Table 2. Mesh dependency study.

Label Grid Number Mean Plastic Viscosity at Exit (102)

Grid A 25,000 2.12074
Grid B 43,956 2.04562
Grid C 69,104 2.00631
Grid D 100,000 1.99802
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4. Results and Discussion

We define a generalized Reynolds number often used in flow of non-Newtonian fluids using the
power-law type model [42]

(
η = ηr

.
γ

n−1):
Re =

ρv2−ndn

ηr
(
0.75 + 0.25

n

)n
8n−1

, (17)

where d is the inlet diameter. We also use the dimensionless Bingham number Bn = τyH/ηrv0

(B = (H/v0)
mBn) to characterize the influence of the yield stress.

4.1. Convergence Properties of the Regularization Methods

For the flow of yield stress fluids, as the yield surface is approached, the presence of the
.
γ in the

denominator of Equation (9) makes the apparent viscosity unbounded. Moreover, while calculating
the velocity field, the shape and the location of the yield surface are unknown a priori. To overcome
this difficulty, several regularization methods have been proposed; these are continuous and apply to
both the yielded and unyielded regions. In this section, we first test the convergence properties of three
typical regularization methods, introduced in Section 2.2, on the determination of the yield surface; we
do this by simulating the flow of a yield stress fluid in a straight channel for different regularization
parameter, ε. We set the reference length and the reference velocity as half of the inlet height and the
mean velocity, respectively; we also assume Re = 1.18 × 10−4, Bn = 163

(
Re∗ = 3.89× 10−5, B = 31

)
.

The yield surface for different regularization parameter using the three regularization methods are
shown in Figure 2 It can be observed that the unyielded region is reduced as ε (the regularization
parameter) decreases and eventually converges. In addition, when ε is small enough for convergence,
the yield surface of the three regularization methods is nearly at the same position. However, the
maximum value of ε required to represent the yield surface is much lower for the Simple model
than that of the Papanastasiou and the Bercovier & Engelman models. Therefore, the appropriate
choice of the regularization parameter should be made depending on both the flow condition and the
regularization method. In the following simulations, the simple regularization method with the proper
regularization parameter, ε, is used.
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4.2. Flow in a Straight Channel

We first investigate the flow characteristics of a yield-stress, shear-thinning fluid in a straight
channel. The reference length and the reference velocity are half of the inlet height and the mean
velocity. Typical flow fields with inlet Reynolds number of 1.18 × 10−4 and Bingham number of
612

(
Re∗ = 3.89× 10−5, B = 117

)
are shown in Figure 3 As it can be seen, the maximum value of the

velocity is obtained at the center line where the shear rate is almost zero, resulting in a high plastic
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viscosity. The apparent viscosity depends on both the plastic viscosity and the yield stress, see Equation
(9), therefore, the apparent viscosity reaches an extremely high value near the center line. In this region,
the fluid has not yielded and it is flowing with the same velocity, as the plug flow. This observation is
similar to Abdali’s work (1992) [43] where the flow is fully developed, also see Mitsoulis (2017) [44] for
a review of several benchmark problems dealing with yield stress shear-thinning fluids.Energies 2019, 12, x FOR PEER REVIEW 8 of 21 
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inlet Reynolds number of 1.18× 10−4 and Bn = 612.

Figure 4 shows the velocity and viscosity distributions along the Y-axis for different Reynolds
numbers. Here, the reference velocity, V0, is the mean velocity at the inlet, the reference viscosity ηr

is the viscosity coefficient appearing in the power-law model; the viscosity is plotted in logarithmic
coordinates. It can be seen that as the Reynolds number increases, the velocity profile becomes more
parabolic and near the axis, the constant-velocity profile becomes smaller, indicating that the size of
the unyielded plug is reduced. That is, the shear banding becomes larger. Figure 4b indicates that
the plastic viscosity gradually increases near the pipe axis, due to the decreasing of the shear rate; the
gradient of the apparent viscosity becomes large near the edge of the plug flow region. The variation of
the apparent viscosity is similar to the plastic viscosity; however, with the influence of the yield stress,
the magnitude of the apparent viscosity is several times larger than the plastic viscosity. Furthermore,
the apparent viscosity in the yield region decreases when the Reynolds number increases, while in the
plug flow region, the difference is less significant. The position of high viscosity gradient gradually
approaches the center line. The yield region for different Reynolds numbers are shown in Figure 5 It
can be seen that the plug flow decreases for larger Reynolds number and the variation is similar to that
of the apparent viscosity. The location where the apparent viscosity abruptly changes also roughly
coincides with the location where the yield occurs; in addition, due to the flow disturbance the yield
surface moves away from the inlet.
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Figure 5. Distribution of the yield surfaces for different Reynolds numbers. The shaded regions
are unyielded.

In addition, we also consider the effect of the Bingham number. The viscosity and velocity
profiles along the Y-axis for different Bingham numbers are plotted in Figure 6. The Bingham number
characterizes the ratio of the yield stress to the viscous stress; as the Bingham number increases, the
plug size becomes larger. The viscosity increases for higher Bingham numbers, which is in contrast to
the behavior for the Reynolds number; furthermore, the maximum value of the apparent viscosity
changes with Bingham number. Figure 7 shows the yield region for different Bingham numbers.
Similar to the previous studies, the yield region is closely related to the change of the apparent viscosity
and the yield surface moves towards the wall and the inlet when the Bingham number increases.
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Figure 7. Distribution of the yield surfaces for different Bingham numbers and Re = 1.18× 10−4. The
shaded regions are unyielded.

Figure 8 shows the velocity and the viscosity profiles along the Y-axis for different values of m,
which indicates the intensity of the shear dependent viscosity. Since in this paper we are assuming that
the fluid behaves as a shear-thinning fluid, then the value of m is kept below zero. As observed in
Figure 8, the plastic viscosity rises with the increase of the absolute value of m; on the other hand, the
apparent viscosity is negatively proportional to the absolute value of m. Meanwhile, the gradient of
the apparent viscosity becomes less as m decreases but the maximum value of the apparent viscosity
is hardly affected by m. As the absolute value of m decrease a lower velocity near the pipe center is
obtained, resulting in a larger plug flow.
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4.3. Flow in a Channel with a Crevice

In this section, we study the flow in a channel with a crevice. The height of the inlet section
is chosen as the reference length. Figure 9 shows the velocity fields, streamlines, the shear rate,
plastic viscosity and the apparent viscosity distribution when Re = 7.56 × 10−5 and Bn = 40.8(
Re∗ = 3.89× 10−5, B = 7.8

)
. For the flow in the channel with a crevice, the velocity distribution in

the main channel is similar to that in the straight channel, where a plug flow is observed near the
center of the channel. In the crevice, the velocity and the shear rate remain nearly zero, resulting in
a high viscosity and with little or no yielded region. It can also be seen that some of the fluid flows
into the crevice; however, it is difficult for the fluid in the deep portion of the crevice to move due to
the existence of the yield stress. By looking at the streamlines inside the crevice, we can see that the
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incoming flow forms a free shear layer near the interface of the main channel and the crevice and the
small disturbances grow into vorticial structures that propagate inside the crevice. Furthermore, near
the crevice, the flow in the main channel is disturbed a little, resulting in a reduction of the plastic and
the apparent viscosity in that region.
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Figure 9. The velocity, streamlines, shear rate, plastic viscosity and plastic viscosity fields in the channel
with a crevice with an inlet Reynolds number of 7.56× 10−5 and Bn = 40.8.

The velocity and the viscosity profiles along the line A-A are shown in Figure 10. It can be seen
that the velocity is nearly zero in the crevice and near the center of the main channel the velocity has a
constant value. In the main channel, the higher Reynolds number leads to higher maximum velocity
and smaller plug region, which indicates that the unyielded region can be suppressed by increasing
the inlet Reynolds number (usually the inlet velocity); in the crevice, the fluid begins to move as the
Reynolds number increases, albeit at low velocity. Along line A-A, the viscosity fluctuates greatly; this
could be due to the flow disturbance caused by the presence of the crevice. Interestingly, when the
Reynolds number reaches 0.01, the plastic viscosity inside the crevice drops a little and then begins to
rise to reach the maximum value, which is in accordance with shape of the vorticial structures observed
in the streamlines in the crevice. Figures 11 and 12 show the viscosity profiles in the Y-axis at different
X positions, from which we can see that the distribution is no longer consistent with the profiles of the
straight channel because of the crevice; the maximum value of the viscosity is no longer in the right
of the center of the channel and differs with X positions. The profiles at symmetrical positions along
the crevice, such as X = 3.0 and X = 4.3, present similar patterns, see the distributions in Figures 9
and 13. The profiles for the yield region with different Reynolds numbers are shown in Figure 13. It
can be seen that the crevice does not play a favorable role for yield stress fluid; as the Reynolds number
increases to 0.01, even though more fluid has yielded at the top of the crevice, most of the fluid in the
crevice remain stagnant.
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Figures 14–17 show the effect of the Bingham number. As the Bingham number increases, the
velocity decreases, while the viscosity rises, which results in larger unyielded region. In addition, the
viscosity becomes more non-linear as the Bingham number increases. The profiles for the yield region
are plotted in Figure 17, which has a similar shape to that in Figure 13. Therefore, with higher Reynolds
number and lower Bingham number, the size of unyielded plug is reduced.
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4.4. Flow in a Pipe with a Contraction

Finally, we consider the flow of a yield stress fluid in a pipe with a contraction. The inlet
radius is selected as the reference length. Figure 18 shows the profiles for the velocity, shear rate,
plastic viscosity and apparent viscosity when the inlet Reynolds number is 1.18× 10−4 and Bn = 163(
Re∗ = 3.89× 10−5, B = 31

)
. It is observed that the velocity rises rapidly to several times its value in

the contraction, which leads to a higher shear rate and lower viscosity. The shear rate is affected by
both the magnitude of the velocity and the shape of the pipe: at the corner M and N where the pipe is
suddenly contracted, a minimum shear rate is observed and a higher level of the shear rate is observed
at the walls of the contraction and near the two ends of the contracted segment; therefore, the viscosity
is higher near the corners and the centerline away from the contraction, forming three unyielded
regions in this geometry.Energies 2019, 12, x FOR PEER REVIEW 15 of 21 
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Figure 18. Velocity, shear rate, plastic viscosity and apparent viscosity fields in the pipe with a
contraction when the inlet Reynolds number is 1.18× 10−4 and Bn = 163.

Figure 19 shows the velocity and the viscosity profiles along line B-B for different Reynolds
numbers. It can be seen that in the narrow section of the pipe there is a significant increase in the
velocity, resulting in smaller plug flow; when the Reynolds number increases, the variation of the
velocity profile in the contraction is not as sensitive as that in the regular section of the pipe. The
viscosity increases along the radial direction but unlike the straight channel, the maximum value does
not occur at the centerline; the viscosity also decreases after reaching a maximum, which indicates that
the effect of the inlet and outlet of the contraction. To investigate this effect, the viscosity profiles along
the radial direction at different X positions are plotted in Figures 20 and 21. It can be seen that the
maximum apparent viscosity appears at the position near the center line away from the contraction
and the stagnant zones at the corners. A change in the geometry would change the streamlines
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and lead to a higher shear rate, as a result, the viscosity decreases upstream and downstream of
the contraction. Furthermore, for a yield-stress fluid, the high Reynolds number can help the fluid
approach a lower viscosity.

From the yield regions shown in Figure 22, which is strongly related to the viscosity, we can see
that the unyielded regions are roughly symmetric with respect to the contraction. The size of the plug
flow continues to reduce while the Reynolds number keeps increasing.

The effect of the Bingham number is shown in Figures 23–26 With smaller Bingham numbers, it is
easier for the fluid to flow; this results in a lower apparent viscosity and a more parabolic velocity
profile. And as the Bingham number approaches smaller values, the unyielded region is observed
only near the corners. Alexandrou et al. (2001) [45] showed similar results in the entry-expansion flow,
where the geometry studied in their work is similar to the third case in our study. When designing
a transport system, for example, a proper Bingham number (flow condition) should be considered
in order to achieve an acceptable maximum unyielded region which is considered unfavorable in
engineering applications. Furthermore, as the Reynolds number increases, the flow may become
unstable after the channel contraction; this has been observed for the Casson, the Power-Law and the
Quemada fluid models. The instability behavior depends on the specific parameters involved in each
model’s constitutive equation [46].
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5. Conclusions

In this paper, we have numerically studied the flow of dense suspension exhibiting yield-stress
and shear-thinning effects. The rheological characteristics of such complex fluids need to be understood
in engineering process. The dense suspension is modeled as a Herschel-Bulkley fluid and three
benchmark geometries are investigated: a straight channel, a channel with a crevice and a pipe with a
contraction. According to the numerical simulations, the following conclusions can be drawn:

1. Three representative regularization methods are used to look at the convergence properties on the
determination of the yield surface; these methods are (1) the Simple model; (2) the Papanastasiou
model and (3) the Bercovier and Engelman model. The yield surface could be described reasonably
with a proper choice of the regularization parameter, ε, depending on the regularization method
and the flow conditions. However, the maximum value of ε required to represent the yield
surface is much lower for the Simple model than for the Papanastasiou and the Bercovier and
Engelman models.

2. In the straight channel, for flows with low Reynolds number and high Bingham number, a
plug region near the center line where the stress is below the yield stress will form. For
shear-thinning fluids, the viscosity parameter n has a similar influence on the velocity profiles as
the Bingham number.

3. In the case of the channel with a crevice, even though some vorticial structures seem to propagate
inside the crevice due to the free shear layer near the interface of the main channel and the crevice,
the fluid in the deeper portion of the crevice still has high apparent viscosity because of the
existence of the yield stress, forming an unyielded region. Furthermore, near the crevice the
flow near the interface of the main channel and the crevice is disturbed a little; this results in a
reduction of the plastic viscosity and the apparent viscosity.

4. For the pipe with a contraction, near the neck, the unyielded region reduces significantly due to
the enhanced flow disturbance; while the shear rate is nearly zero at the bottom corner of the
contraction segment, resulting in a very small yielded region.

5. For the Bingham numbers considered in this work, further increasing the Reynolds number leads
to the disappearance of the yield region. The yield phenomenon can still be observed if both
the Reynolds number and the Bingham number are increased; this is an important issue and a
problem more demanding in computational time; we plan to study this in the near future.

Author Contributions: M.-G.L. developed the framework of the paper and did the numerical simulations. M.M.
and W.-T.W. derived the equations. M.-G.L., M.M., F.F. and W.-T.W. prepared the manuscript. All authors have
read and agreed to the published version of the manuscript.
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Nomenclature

b body force vector (N)
B ratio of the yield stress to the viscous stress
Bn Bingham number
A1 Related to the symmetric part of velocity gradient (1/s)
div divergence operator
grad gradient operator
H reference length (m)

m material parameter (m = n− 1)
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n material parameter
p pressure (Pa)
Re∗ Generalized Reynolds number
Re generalized Reynolds number
t time
T stress tensor (Pa)
Ty yield stress (Pa)
Tv viscous stress (Pa)
v velocity vector (m/s)
V dimensionless velocity vector
X, Y dimensionless Cartesian coordinates
x position vector (m)
X dimensionless position vector
Greek symbols
ρ density of fluid (kg/m3)
η dynamic viscosity (Pa·s)
ηp plastic viscosity (Pa·s)
ε regularization parameter
.
γ shear rate (1/s)
τ dimensionless time
τy yield stress (Pa)
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