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Abstract: Digital rock physics is an often-mentioned approach to better understand and model
transport processes occurring in tight nanoporous media including the organic and inorganic
matrix of shale. Workflows integrating nanometer-scale image data and pore-scale simulations are
relatively undeveloped, however. In this paper, a workflow is demonstrated progressing from sample
acquisition and preparation, to image acquisition by Scanning Transmission Electron Microscopy
(STEM) tomography, to volumetric reconstruction to pore-space discretization to numerical simulation
of pore-scale transport. Key aspects of the workflow include (i) STEM tomography in high angle
annular dark field (HAADF) mode to image three-dimensional pore networks in µm-sized samples
with nanometer resolution and (ii) lattice Boltzmann method (LBM) simulations to describe gas
flow in slip, transitional, and Knudsen diffusion regimes. It is shown that STEM tomography with
nanoscale resolution yields excellent representation of the size and connectivity of organic nanopore
networks. In turn, pore-scale simulation on such networks contributes to understanding of transport
and storage properties of nanoporous shale. Interestingly, flow occurs primarily along pore networks
with pore dimensions on the order of tens of nanometers. Smaller pores do not form percolating
pathways in the sample volume imaged. Apparent gas permeability in the range of 10−19 to 10−16 m2

is computed.
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1. Introduction

Transport through shale occurs within fracture and pore volumes with dimensions that cascade
downward to the nanometer. Because pores are diminutive features, they are challenging to observe
in detail. Likewise, measurement and interpretation of important storage and transport properties
is frustrated by the significant structural and compositional heterogeneity, the multiscale pore and
fracture network sizes, and shale permeability in the range of nanoDarcy to microDarcy. Digital Rock
Physics (DRP) is a multidisciplinary solution to these problems that encompasses advanced electron
microscopy and fluid mechanics to understand how pore-scale microstructure and fluid mechanics
interplay to determine the transport properties of impermeable rocks such as shale [1–3].

Electron microscopy techniques have been favored for imaging because they offer the significant
magnification and image contrast necessary to resolve details of the fabric of shale [4–14].
A representative sampling of the literature shows efforts to characterize pore geometry [4], to identify
the operative length scales of storage and transport properties [9–12], to correlate Scanning Electron
Microscope (SEM) images with transmission X-ray microscope (TXM) images to obtain enhanced
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image contrast (i.e., super resolution) [13], and to explore the creation of porous and fracture structures
resulting from thermal maturation of shale [5,14].

Recently, Scanning Transmission Electron Microscopy (STEM) has been used to resolve
three-dimensional (3D) geometric details of the pore network structure of organic matter and
surrounding minerals of shale with nm resolution [15]. The combination of Focused Ion Beam
SEM (FIB-SEM) lamella preparation and STEM imaging appears to be a key approach for visualizing
connected pore networks and interfaces at high resolution [9,15].

High-resolution imaging of shale samples has inspired efforts to model transport processes
directly based upon image data. Such efforts are advancing rapidly but are still relatively immature.
One approach follows the microcontinuum framework whereby unresolved volumes are modeled as a
continuum that obeys Darcy’s law and transport in resolved pores is modeled as Stokes flow [16,17].
Various challenges include computational efficiency and incorporation of nonzero slip phenomena
along pore walls [17]. On the other hand, lattice Boltzmann method (LBM) simulations are directly
applicable to 3D pore-scale volumes obtained using STEM. The LBM simulation framework has been
extended beyond Darcy flow to include shale transport processes and sorption [18–20]. Deviations
from Darcy’s law generally arise when the collisions of molecules with pore walls increase in frequency
relative to intermolecular collisions. The extent of deviations is quantified using the Knudsen number
(Kn) that is the ratio of the molecular mean free path to the characteristic pore dimension. Gas flow in
nanoporous media is typically characterized in four regimes using Knudsen number [21]: continuum
flow (Kn < 0.001) where Darcy’s law is applicable, slip flow (0.001 < Kn < 0.1) where Klinkenberg
corrections are applied, transitional flow (0.1 < Kn < 10), and Knudsen diffusion (Kn > 10).

Upon this backdrop of direct simulation using image data, and the relative immaturity of such
efforts, the objective of this paper is to demonstrate a flexible method for conducting transport
simulations on STEM images of real nanoporous shale matrix. We emphasize the development of
imaging capabilities appropriate to 3D volumes of nanoporous media and the importation of such
images of pore space into LBM simulators. Accordingly, this study addresses fundamental scientific
questions arising about the transport of fluids in nanoporous shale including the following.

• How are the structural features of shale fabric characterized at the scale of nanometers to microns
and how do these attributes influence transport through shale?

• How are experimental data and simulation methods combined to provide petrophysical information?
• How are robust predictive models developed for highly complex, heterogeneous, multiscale

geological systems?

This paper proceeds with a brief description of the workflow with each element of the workflow
then presented and discussed in relative detail. We devote special attention to the connection of
experimental images with models to create a numerical representation of fluid transport in shale.
Specifically, we study transport through the smallest connected pore spaces that can be imaged in the
organic matrix. Discussion and conclusions complete the paper.

2. Methods

As a complement to current petrophysical characterization of unconventional rocks, we suggest
a digital rock physics workflow in Figure 1 that integrates fine-scale 3D tomographic imaging,
pore-space reconstruction, and LBM simulation. Now, transport simulations are limited to single-phase
permeability, but more complex simulations are envisioned in the future. The workflow includes
core sample collection, preparation of a thin sample of shale material referred to as a lamella,
STEM tomography of the lamella, image processing and pore space reconstruction of the tomographic
volume, exclusion of unconnected porosity, construction of a computational mesh based on the
connected STEM porosity, application of slip boundary conditions, and flow simulation.
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Figure 1. Workflow from sample acquisition to preparation to STEM tomography to transport simulation.

The first stages in the workflow rely substantially upon imaging and image processing. A key early
step is preparation of a roughly 100 nm thick lamella of shale, achieved by FIB-SEM ion milling. Because
pore sizes in shale are on the order of nm, the imaging technique needs to have similar resolution.
While FIB-SEM has been used in a number of studies for pore-space characterization [4,5,7,13], Scanning
Transmission Electron Microscopy (STEM) provides superior spatial resolution. Because 3D realizations
of pore space are needed for transport calculations, STEM tomography is used to obtain a volumetric
representation of the sample pore network. STEM tomography is conceptually similar to X-ray CT
techniques and amenable to pore space reconstruction and statistical analysis of the pore size, shape,
and frequency. The pore network is processed to remove unconnected pores that do not contribute to
transport but would result in longer computational times. LBM simulations incorporating a combined
half-way bounce-back and discrete Maxwellian diffusion boundary treatment in three dimensions are
used to simulate gas flow in the shale sample [20]. Apparent gas permeability is calculated based on
Darcy’s law using simulation results including Klinkenberg-type effects.

While sample preparation and imaging are time consuming (multiple days), we believe that
such characterization via digital rock physics is overall time efficient. Thus, it is a complement to
conventional petrophysical measurements. Moreover, once the pore space images are obtained, they are
amenable to a number of simulation types in addition to LBM, such as molecular dynamics.

3. STEM Tomographic Imaging

A clay-rich, siliceous, and mature shale sample from the Barnett formation (8635 ft) was selected for
this study. The Barnett is one of the most prolific shale plays and is of intense interest. The sample was
characterized using X-ray diffraction as containing substantial clay and organic matter (26 wt% illite;
10 wt% mixed illite/smectite; 13 wt% TOC) as well as siliceous material (42 wt% quartz; 4.1 wt% feldspar),
while remaining very carbonate poor.

A subsample was cut parallel to bedding, was polished, and was mounted for electron microscopy.
STEM is based on the transmission of a beam of electrons through relatively thin samples. Roughly
100 nm thick sections of material (i.e., lamellae) were needed to produce volumetric projections with
nanometer resolution. Shale lamella preparation was achieved by FIB-SEM serial cross-sectioning
and imaging. A FEI Helios Nanolab 600i was used to mill into samples with nm precision, with a
gallium ion (Ga+) Focused Ion Beam (FIB) (ion milling voltage: 5–30 kV). These settings did not cause
excessive heating or damage to the shale sample. A trench was milled on each side of the rectangular
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material that became a lamella. A U-shaped cut was then made to free the sample. Cross-sections were
extracted by an omniprobe micromanipulator needle, mounted on a TEM grid, and thinned down
to electron transparency. While milling, Scanning Electron (SE) imaging was used for monitoring
and imaging.

The STEM High-Angle Annular Dark-Field (HAADF) imaging mode was found to highlight
composition with suitable contrast, and was therefore preferred for mineral segmentation of
heterogeneous shales. We acquired STEM tomograms at high magnification of regions of interest
inside the lamella. The tilt series were collected by rotating the thin section to ±60◦ from the horizontal.
Each image in the tilt series was focused manually because autofocus was not sufficient.

The volumetric sampling at each angle was 2.5 µm × 2.5 µm × 100 nm and the individual voxel
resolution was 1.24 × 1.24 × 1.5 nm. Alignment, image processing, 3D reconstruction and segmentation
were needed to extract quantitative information from image datasets. Stage shifts and tilt series
misalignments were corrected using Inspect3D (Version 3.0, ThermoFisher Scientific, Waltham, MA,
USA). A stack of parallel slices was then reconstructed by Weighted Back Projection (WBP) using
TomoJ (Version 2.6, plug-in for ImageJ, public domain). The image stack was then segmented on the
machine learning-based pixel classification software Ilastik (Version 1.3.3, open source), in order to
extract the pore network volume. Visualization and pore scale analysis were performed using Avizo
(Version 9.7.0, ThermoFisher Scientific, Waltham, MA, USA), with the methodology described in Frouté
and Kovscek [15]. In anticipation of flow simulations using LBM, each two-dimensional image is
converted to a binary matrix with ones and zeros representing pore and solid phases, respectively.
The computation domain is constructed by stacking these binary matrices.

4. Lattice Boltzmann Method

Due to the dominance of nm-sized pore structures, flows occurring in the shale matrix mainly
fall within slip flow or transitional flow regimes where the continuum assumption may not be valid.
LBM is suitable for simulating flow in mesoscopic systems [20,22,23] and is used to investigate the
transport of methane in a complex nano-scale pore network.

4.1. Governing Equations

The lattice Boltzmann method solves the lattice Boltzmann equation given by [24]

fα(x + ceαδt, t + δt) − fα(x, t) = Ωα( f (x, t)), (1)

where α is the index of the discrete velocity, fα(x, t) is the particle distribution function at position x
and time t. We employ the three-dimensional, nineteen-velocity (D3Q19) model where each node
delivers particles in a total of nineteen directions as shown in Figure 2. These nineteen directions
comprise the node itself (the zero vector), six towards the centroid of each face of the cube (Figure 2),
and the remaining twelve are directed towards the midpoint of each edge. The multiple relaxation
time (MRT) collision operator is used, as [25]

Ωα = −
∑
β

(M−1SM)αβ

(
fβ − f eq

β

)
, (2)

where M is a transformation matrix projecting the distribution functions onto a momentum space. S is
the diagonal collision matrix given by

S = diag(τρ, τe, τε, τ j, τq, τ j, τq, τ j, τq, τs, τπ, τs, τπ, τs, τs, τs, τm, τm, τm)
−1, (3)

where τ denotes relaxation time and the subscripts refer to the moment: τρ, τ j are related to conserved
quantities, mass and momentum. τe, τε, τq and τs are related to non-conserved moments (i.e., internal
energy, internal energy square, energy flux and stress tensor, respectively). Finally, τm and τπ are related
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to the cubic and fourth-order polynomials of the momentum. The MRT collision operator enables
relaxation of each momentum in accordance with the corresponding physical process. In particular,
τρ = τ j = 1.0, τe = 1.19, τε = τπ = 1.4 and τm = 1.98 [26]. τq is related to slip velocity and is
discussed later. τs is related to fluid viscosity and is given by [27,28]

τs =
1
2
+

√
6
π

NKn

1 + 2Kn
, (4)

where N is the lattice number along the characteristic length and is given by N = H/δx. The particle
distribution function at equilibrium is [29]

f eq
α = wαρ

1 +
eα · u

c2
s

+
(eα · u)

2

2c4
s

−
u2

2c2
s

, (5)

where c2
s is the square lattice speed of sound given by c2

s = 1
3 . The lattice weights, wα, are given by

w0 = 12
36 , w1∼6 = 2

36 , and w7∼18 = 1
36 . The macroscopic fluid density and velocity are calculated as

ρ =
∑
α

fα(x, t), (6)

and
u =

1
ρ

∑
α

fα(x, t)eα. (7)
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4.2. Regularization

The discretization scheme is equivalent to projection of the particle distribution function onto a
subspace spanned by the leading N Hermite orthonormal basis, denoted byHN [30,31]. The equilibrium
distribution function, f eq

α , is properly projected onto H2 because it maintains second-order terms in its
Hermite expansion. However, fα may not be projected onto H2 due to higher order terms. Therefore,
a regularization procedure is used to address this shortcoming [31,32]. The distribution function is
expressed as

fα = f eq
α + f ′α, (8)

where f ′α is the non-equilibrium component of the distribution. The projection of f ′α onto the
second-order Hermite expansion is given by

f̃i = wα

 1
c2

s
H

(2)(eα/cs)
∑
β

f ′βeβeβ

, (9)
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whereH (2) is the second-order Hermite polynomial, given by

H
(2)
αβ

(e) = eαeβ − δαβ, (10)

where δαβ is the Kronecker delta. Replacing f ′α with f̃α and substitution of Equations (2) and (8) into (1) yields

fα(x + ceαδt, t + δt) = f eq
α + f̃α −

∑
β

(M−1SM)αβ

(
fβ − f eq

β

)
. (11)

4.3. Boundary Conditions

Constant pressure conditions are imposed at the inlet and outlet faces [33,34]. On solid boundaries,
we extend the boundary treatment proposed by Wang and Aryana [20] to three dimensions to capture
the slip velocity. The second order slip boundary condition is expressed as

us = C1Kn
∂u
∂n
|w + C2K2

n
∂2u
∂n2 |w, (12)

where C1 and C2 are the slip coefficients, n is the wall normal vector, and the subscript w denotes a
quantity at the wall. A combination of the discrete Maxwellian and half-way bounce-back boundary
condition was used, given by

fα = r f DM
α + (1− r) f BB

α , (13)

where r is the portion of discrete Maxwellian part in the combination, f DM
i is the distribution function

calculated by discrete Maxwellian diffusion, and f BB
i is the distribution function calculated by the

half-way bounce-back scheme. The value of r is given by

r =
2C1√
6
π + C1

, (14)

where C1 = 0.6 [20]. The bounce-back scheme is

f BB
α = fσ, (15)

where fσ is the distribution function in the opposite direction to fα. The Maxwellian diffusion, f DM
α ,

is calculated as
f DM
α = K f eq

α , (16)

where

K =

∑
ξ′α·n<0 |ξ′ · n| fα∑
ξ′α·n>0 |ξ′ · n| fα

. (17)

In Equation (17), ξ′i = ei − uw, where n is the unit normal vector to the boundary, and uw is the
wall velocity. The parameter τq in Equation (3) is given by

τq =
1
2
+

3 + π(2τs − 1)2C2

8(2τs − 1)
(18)

with C2 = 0.9 [20].

4.4. Local Knudsen Number

As shown in Equation (4), τs is dependent on local N and Kn, that are related to local characteristic
lengths. For the nodes on the medial axis, H is evaluated by doubling the distance between the node
and the boundary. For all other nodes, H is equal to their distance from the nearest medial axis node.
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5. Results

The LBM implementation described above is verified by comparing results with solutions form
the Linearized Boltzmann Equation (LBE) and Discrete Simulation Monte Carlo (DSMC) from the
literature (see [20] for details). Our workflow from STEM imaging to LBM transport simulations to
macroscopic quantities of interest is demonstrated using the clay-rich, mature Barnett shale sample.

5.1. STEM Tomography

A three-dimensional reconstruction by STEM tomography of the Barnett lamella finds the following
volume fractions: mineral matrix (87.8%), organic matter (11%) and porosity (1.2%). A representation
of the extracted pore network shows that pores down to a few nanometers are well resolved and that
nm-sized flow pathways exist across the thin section. In shale systems, pores are commonly associated
with organic matter, the clay-rich mineral matrix, or cracks and fractures. Organic pores typically
dominate in number and make important contributions to the storage capacity and transport properties
as they trap adsorbed gas and free gas. An analysis of the pore space shows that the STEM-based
porosity is entirely associated with the organic phase. The surrounding organic matter displays a
spongy texture, consistent with gas-window thermal maturity. Additional pore-space analysis of this
sample by FIB-SEM imaging and STEM tomography is given in Frouté and Kovscek [15].

Within the reconstructed lamella, we select a sub-volume to create a computational mesh
suitable for simulation. The following selection criteria were applied: (1) the sub-volume occupies a
central position close to eucentric height on the lamella, therefore remaining in objective focus during
tomography and providing the most accurate 3D reconstruction, (2) the sub-volume is located in a region
with excellent STEM contrast, therefore limiting pore voxel misclassification during segmentation,
(3) the sub-volume comprises no more than 1 million cells, (4) the sub-volume is located in an area
of relatively large porosity and pore connectivity suitable for transport simulation. The resulting
sub-volume comprises roughly 1 million voxels (voxel size: 1.24 × 1.24 × 1.5 nm). We extract the
porosity that is connected across the x-dimension (Figure 3a).
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Flow through the lamella occurs primarily along pore channels with dimensions on the order of
tens of nanometers. Smaller pores of a few nanometers do not form percolating pathways across the
x-dimension and are not shown in this representation. Figure 3b shows the four pathways where flow
occurs through the lamella. According to the nomenclature present in the literature [4,9], pores in this
sub-volume are classified as intra-organic (pores hosted within the organic matter) and inter-organic
(pores at the interface between organic matter and minerals). These organic pores are induced by the
thermal maturation of kerogen and create oil-wet flow paths for hydrocarbons through the organic
phase. The nature of the pore space (i.e., an oil-wet, hydrocarbon-filled system of interconnected
organic pores permeating through the organic phase) therefore provides a representative image-based
computational domain to simulate hydrocarbon transport. We expect LBM simulations to offer an
insight into methane flow through the distinct organic nanopore channels.

We now subdivide the pore volume into individual pores (Figure 3c). The reconstructed pores
display an elongated tubular shape, some tortuosity, and a strong anisotropy. In shale systems,
interstitial patches of organic matter often align with bedding planes and with the geometry and
orientation of enclosing minerals. It is therefore common for organic pores themselves to align with the
surrounding mineral geometry. Work by Minler et al. suggests that the size and shape of organic pores
depend on the kerogen content and the geometry of enclosing minerals [12]. Multiple imaging studies
also report examples of intra-organic porosity being anisotropic and bearing elongated, eccentric
shapes, as well as inter-organic porosity resembling curved lamellae conforming to the shape and
orientation of neighboring minerals [9,11]. The preferred orientation and elongated structure of
the organic nanoporosity reported in this work is therefore consistent with other examples of shale
microstructures imaged at nanometer resolution [9,11,12].

The equivalent diameter, defined as the diameter of a sphere of the same volume, is often
used to describe nanopores. Given that most of the reconstructed pores are not spherical and have
tubular geometries, we used Feret diameters to provide a better representation of shape attributes.
The Feret diameter is a one-dimensional measurement that estimates the dimension of an object in
a given direction. For tubular pores, we assume that the maximum of the Feret diameters is a good
representation of pore length. The minimum of the Feret diameters is a good representation of pore
width. The distribution of pore widths and lengths is shown in Figure 4. Pore dimensions are on the
order of tens of nanometers, with the distribution of pore widths centered around 20 nm, and pore
lengths up to roughly 100 nm.
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5.2. Construction of the Computational Mesh

Each image in the reconstructed tomographic stack is binarized, with ones and zeros representing
pore and solid phases, respectively. The resulting images are combined to create a 3D computational
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domain of 79 × 82 × 194 cells (length × width × height). The remaining disconnected pores
are removed from the computational domain to improve computational efficiency. These pores
are identified by their constant pressure, which remains equal to the initial pressure condition in a
preliminary simulation run.

5.3. LBM Gas Flow Simulations

We calculate the permeability of the sample by simulating gas flow in the shale matrix using LBM
as described above. A constant pressure condition is applied at the inlet and outlet faces. We consider
four cases with the reference Knudsen number, K̃n, defined as the ratio of the molecular mean free path
over the mean value of characteristic length, given by 0.045, 0.223, 1.117, and 5.583. The distribution of
the characteristic length in the domain is presented in Figure 5 with a mean of 6.5 nm.

Figure 6 shows the distribution of density and flow streamlines inside the sample in the case of
K̃n = 0.045. In the LBM framework, pressure is related to density in a linear fashion given by p = c2

sρ.
As such, Figure 6 shows density differences, as a surrogate for pressure distribution, that develop in the
domain once the steady state flow condition is reached. The maximum density in Figure 6 is 5 lattice
units corresponding to 20 MPa. The maximum density difference in the domain is 5.0× 10−7 lattice
units corresponding to 2 Pa. Streamlines show the tortuous pathways that connect the inlet to the outlet.
Figure 7 compares normalized velocity maps of two slices at K̃n = 0.045 (Figure 7a,c) and K̃n = 5.583
(Figure 7b,d). As highlighted by boxes in Figure 7, compared to the case of K̃n = 0.045, variations of
normalized velocity across pores are less significant in the case of K̃n = 5.583. This indicates that the
relative magnitude of slip velocity, defined as the ratio of velocity near the wall over that in the middle
of the flow pathway, is larger at a greater K̃n number.

The apparent gas permeability is calculated as [22,23]:

kg =
2µLqopo

p2
i − p2

o
, (19)

where µ is dynamic viscosity of gas, L is the length of the domain in the mean flow direction, qo is the
average velocity at the outlet, and pi and po are the inlet and outlet pressures, respectively. As seen in
Figure 8 where results are plotted against the reciprocal mean pressure, 1/p, apparent gas permeability
increases as the mean pressure decreases; apparent permeability may be described using a quadratic
polynomial in reciprocal mean pressure [20]. A smaller mean pressure leads to a larger K̃n number
and an enhanced flow. This is consistent with observations shown in Figure 7.
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6. Discussion

Importantly, sufficient numerical tools exist to estimate the permeability of nanoporous media
given proper imaging of nanoporosity and the differentiation of connected and unconnected porosity.
The use of electron microscopy techniques for direct pore-scale investigation has become common
practice recently and succeeds in addressing issues of resolution, particularly for heterogeneous porous
media with nm-sized pores such as shale. STEM microscopes have emerged as powerful tools uniquely
capable of probing nanometric pore features in 2D and 3D. Thereby, they aid greatly in making sense
of the contribution of nanoporosity towards macroscopic petrophysical attributes.

Despite state-of-the-art imaging capabilities, STEM tomography has a few limitations.
High-resolution invariably limits the field of view studied, particularly in the depth of the sample.
This makes the extraction of representative networks challenging and increases the need for upscaling.
Additionally, ion and electron beams may cause excessive heating or damage to the shale sample
rendering changes to the shale fabric. This can often be avoided by lowering the electron beam current
or using cryogenic electron microscopy methods [35–37]. Because electron microscopes operate under
vacuum, they also prevent measurements with pore pressures and overburden conditions that would
be truly representative of reservoir conditions. In this study, we strive to maintain the integrity of the
sample with low-voltage beam settings, to reconstruct the nanoporous network as reliably as possible
from high-quality images, and to apply a rigorous image processing and reconstruction workflow.
We capture volumetric representations of pore networks associated with the organic phase forming
flow paths of a few tens of nanometer in width across the shale sample.

A sensitivity study conducted by measuring pixel misclassifications over repeated segmentations
shows little uncertainty in the resulting porosity and pore structure [15]. Despite its relatively large
porosity (6.5%), the sub-volume selected for simulation is representative of the geometry of the
connected pathways found across the lamella, with pore dimensions on the order of tens of nanometers.
Given the volumetric sampling and voxel size, we estimate that STEM observations are representative
of pore widths between 5 and 50 nm. The lower resolution limit (about 5 nm) and the constraint on the
size of the computational volume (1 million cells) are limitations to be explored in future work.

The validity of pore-scale simulations based on digital rock reconstructions is conditioned by the
pertinence of the imaging scale chosen and of the physics included in the simulation. The nature of the
pore space extracted by STEM tomography (i.e., an oil-wet network of interconnected organic pores
permeating through the organic phase) provides a representative system to simulate hydrocarbon
transport. The complex pore network is dominated by pore channels of tens of nanometer in diameter
that represent a valid volumetric domain for the study of methane transport in slip flow and transitional
flow regimes. Our study uniquely integrates fine-scale 3D STEM tomographic imaging, pore-space
reconstruction, and numerical simulation tools using the LBM method to describe gas flow in slip,
transitional, and Knudsen diffusion regimes.

In the simulation of the transport of methane, we utilize a combined Maxwellian diffusive reflection
and half-way bounce-back to recover the second-order slip boundary condition. This boundary
treatment is developed to deal with complex geometries due to its efficient local computation of
distribution functions at nodes near boundaries. Moreover, this scheme captures slip velocities in
slip flow and transitional flow regimes that dominate gas transport in unconventional reservoirs.
Simulation results suggest that the apparent gas permeability depends on the mean pressure of the
sample in a nonlinear fashion. This observation may help develop reliable formulations for matrix
permeability in shale systems at the field-scale.

For gas flow at relatively large Kn numbers, the confined environment may lead to remarkable
interactions between molecules and walls. As a result, the thermodynamic properties of gas deviate
from that at bulk condition. Moreover, the fluid density exhibits non-uniform distribution: density near
the wall is greater than that in the middle of the flow channel [38–40]. This adsorption effect may make
a substantial contribution to the overall transport in pores in the organic matrix. In the future, the LBM
model shall be extended by accounting for interactions between molecules, and between molecules
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and boundaries under nanoconfinement. The model framework will also be extended to larger
computational volumes by taking advantage of parallelized LBM calculations. Larger domains allow
for the incorporation of greater details of heterogeneity of pore size, shape, and mineral composition
important to upscaling efforts.

7. Conclusions

We demonstrated a digital rock workflow combining 3D Scanning Transmission Electron
Microscopy (STEM) tomography with numerical simulation methods to study methane transport
through the nanoporous matrix of shale with permeability in the range of tens of nD. The workflow
proceeds from sample preparation, to image acquisition by STEM tomography, to volumetric
reconstruction to pore-space discretization to numerical simulation of pore-scale transport.
STEM tomography images offer unprecedented insights into the structure and geometry of complex
nano-scale porosity within a Barnett shale thin section. LBM provides a tool to transform spatial
data into information relevant to transport of gases and liquids. We selected a sub-volume to create
a computational mesh suitable for simulation, comprised of roughly 1 million voxels (sub-volume:
79 × 82 × 194 nm, voxel size: 1.24 × 1.24 × 1.5 nm). Elongated pore channels with dimensions on the
order of tens of nanometers form connected pathways across the organic phase. LBM simulations
offer an insight into the pressure distribution and velocity profiles through the distinct pore channels.
Using LBM, an apparent gas permeability in the range of 10−19 to 10−16 m2 (0.1 to 100 µD) is computed
for the selected sub-volume. All in all, the workflow incorporating three-dimensional measurements
on the nm scale with numerical simulations of flow through the pore network images provides further
insight into fluid transport within shale. Importantly, the workflow is extendable to larger images and
a larger range of pore spaces.
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