

Article

A-Site Cation Engineering for Efficient Blue-emissive Perovskite Light-emitting Diodes

Jong Hyun Park ¹, Chung Hyeon Jang ¹, Eui Dae Jung ¹, Seungjin Lee ^{2,*}, Myoung Hoon Song ^{1,*} and Bo Ram Lee ^{3,*}

- ¹ School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919, Korea; kookkno1@unist.ac.kr (J.H.P.); karals@unist.ac.kr (C.H.J.); jed9318@unist.ac.kr (E.D.J.)
- ² Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- ³ Department of Physics, Pukyong National University, Busan 48513, Korea
- * Correspondence: seungjin.lee@utoronto.ca (S.L.); mhsong@unist.ac.kr (M.H.S.); brlee@pknu.ac.kr (B.R.L.); Tel.: +82-52-217-2316 (M.H.S.); +82-51-629-5562 (B.R.L.)

Received: 25 November 2020; Accepted: 15 December 2020; Published: date

Figure S1. Top-view SEM images of quasi-2D perovskite films with (**a**) FA, (**b**) MA, and (c) Cs cations.

MA

Cs

Figure S2. Photos of PeLEDs lighting at constant current density of 5.2 mA/cm².