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Abstract: As the need for clean energy increases, massive distributed energy resources are deployed,
strengthening the interdependence of multi-carrier energy systems. This has raised concerns on the
electricity-heat system’s co-operation for lower operation costs, higher energy efficiency, and higher
flexibility. This paper discusses the co-operation of integrated electricity–heat system. In the proposed
model, network constraints in both systems are considered to guarantee system operations’ security:
the branch flow model is utilized to describe the electricity network, while a convexified model
considering variable mass flow and temperature dynamics is adopted to describe the heat network.
Additionally, novel models for heat pumps and the stratified water tank are proposed to represent
the physical system more accurately. Finally, to preserve the information privacy of separate systems,
a distributed algorithm is proposed based on the alternating direction method of multipliers (ADMM).
Numerical studies show that the co-operation could provide a more economical and reliable solution
than the decoupled operation of the heat network and electricity network. Moreover, the ADMM-based
algorithm could derive solutions very close to the optimum provided by centralized optimization.

Keywords: integrated energy system; power distribution network; district heating network; ADMM

1. Introduction

It is a non-stoppable trend that civilization would gradually transit to a greener and more
sustainable society. This increasing need has driven the rapid installation of renewable energy
integrated in power systems. Taking distributed photovoltaic power generation in China as an
example, its newly installed capacity has reached 12.2 GW, a year-on-year increase of 41.3% [1], in 2019.
To enhance renewable energy integration, the power system faces multiple challenges [2]. Moreover,
the mismatching of demands and supplies in local energy systems is getting worse, which might harm
the security of electricity system operation in the future. People have taken measures to enhance
system flexibility, such as deploying battery storage systems and demand management. As a result,
the increase in the expense of electricity system operation and planning is inevitable. For instance,
even battery cost has rapidly decreased for decades, the unsubsidized levelized cost of battery storage
in commercial and industrial is still up to $432–590 per MWh [3].

Apart from planning and managing the electricity system solely, integrating multi-energy systems
provides a new solution to harnessing heterogeneous energy resources efficiently. To our knowledge,
storage of thermal energy is more applicable while the delivery of electricity is of higher efficiency.
For northern China, a large amount of thermal generation units produce electricity as well as heat in cold
winters. Furthermore, as electricity substitution takes place in many places in China, electricity-driven

Energies 2020, 13, 6729; doi:10.3390/en13246729 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-0596-0815
https://orcid.org/0000-0002-1896-1008
http://dx.doi.org/10.3390/en13246729
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/24/6729?type=check_update&version=2


Energies 2020, 13, 6729 2 of 23

heat sources like heat pumps and electric boilers are becoming more common in district energy systems.
These units provide a linkage between the thermal network to the electricity, which inspires the
coordinated operation of integrated energy systems.

Multi-energy devices such as heat pumps, electric boilers, and heat storage tanks could improve
operational flexibility, which could significantly reduce operating costs as well as facilitate renewable
energy accommodation [4]. Operational characteristics of heat pumps have been introduced in [5,6].
The ratio of heat production and heat pumps’ power consumption is defined as the coefficient of
performance (COP). A constant COP model is commonly seen in the modeling of heat pumps. In fact,
it is not constant. In recent works like [7], the COP of heat pumps can also be modeled by piecewise
linear approximation. There is a variety of types of heat storage devices. For example, stratified water
tank as heat storage is reviewed in detail in [8] and incorporated into the system model in [9]. Another
popular technique is the phase change material (PCM), which tends to be a potential substitute for
traditional heaters for heating and cooling of buildings [10].

Integrated models for the electricity network and thermal network have been proposed
and adopted for joint operation and analysis of the integrated energy system. In fact, the topic
of combined heat and power dispatch has been studied for decades. In [11], this pioneering work
proposes an economic dispatch algorithm for the combined heat and power system with co-generation
units. In [12], residential energy management method of the thermal–electrical system was studied.
Note that the existed studies only focus on the optimal dispatch of heterogeneous energy resources,
but neglect the network limitations.

The electricity network and thermal network are mostly coupled at the distribution level. As a
result, researchers generally focus on modeling the power distribution network (PDN) and the
district heating network (DHN). Optimal power flow (OPF) is generally nonconvex and NP-hard,
and optimization and several relaxation techniques have been developed to model the optimal power
flows in PDN. DC power flow approximation [13] is well adopted for a long time, since it is a
linearization that is easy to solve. However, for modeling the distribution network system, DC OPF
techniques fail to process accuracy. Therefore, techniques for AC OPF [13–16] have been proposed.
The branch flow model [16] uses second-order conic relaxation to approximate the accurate OPF
solution and works in high efficiency and accuracy for radial networks. For DHN, systematic modeling
of DHN is proposed in [17], considering the hydraulic and thermal dynamic process of the thermal
network. Furthermore, some modifications are made in [18,19], where temperature dynamics are
incorporated, exploiting the capabilities of storage in pipelines as well as buildings.

Nevertheless, in DHN modeling, the nonconvexity and nonlinearity of thermal flow make the
network constrained dispatching problems challenging. Solutions could be summarized into two
groups: heuristic algorithms and model assumptions. Heuristic algorithms solve the operation model
by iteratively optimizing subproblems. In [7], a two-stage algorithm is proposed to deal with the
bilinear terms in DHN, providing results close to optimal solutions. In [18], an iterative algorithm
that relies on nonlinear programming solvers (e.g., “BARON”) is proposed. However, the iterative
algorithms should be designed to promote efficiency and possibly fail to converge to the optimal
solution. Model assumption approaches give reasonable assumptions to make the network model easy
to solve. For instance, in [20], the DHN model is simplified as a variable-flow-variable-temperature
(CFVT) model by fixing the hydraulic process (constant mass flow rate and predefined flow directions),
converting the original problem into a linear one. However, this simplification provides limited
flexibility, since the temperature only varies in a small range (e.g., 50–70 ◦C in the supply network),
while the flows in the pipelines could change the directions. Additionally, heat storage could not be
incorporated in these models, because the flow direction variation at the storage node is not considered.
Recently, with the development of convexification techniques, more accurate and computationally
efficient solutions for DHN modeling could be achieved. In [21], McCormick Envelope is adopted
to convexify the bilinear terms in the DHN model. An inspiring variable-flow-variable-temperature
(VFVT) model for DHN is proposed in [22], combining rational assumptions on DHN and second-order
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conic relaxation techniques. In our work, we combine the latest techniques on modeling PDN and DHN
to provide a more accurate solution for network-constrained optimal operation.

In practice, the electricity network and the thermal network are separately planned and operated
by independent utilities. However, most of the aforementioned studies are based on the assumptions
that there would be an integrated utility as an independent system operator (ISO) monitoring the two
systems with full information. This has raised another concern about information security. In most
works on the integrated system operation, a single decision-maker solves the optimization model in a
centralized manner. In reality, however, system operators of PDN and DHN generally belong to two or
more different utilities. Due to the privacy awareness and interest conflicts, the information gathering
procedure from these utilities might be quite tricky. This invisible barrier would probably cause the
unwillingness of co-operation between PDN and DHN.

Distributed optimization techniques come up as a set of tools to support decentralized decision
making. Researchers have developed various distributed algorithms to solve centralized problems in a
decentralized manner. For example, a consensus-based approach was applied to decentralized
energy management [23] and peer-to-peer (P2P) energy trading [24]. ADMM is another type
of distributed optimization technique widely used with faster convergence and flexible forms.
In [25], an ADMM-based algorithm is utilized to achieve the self-healing scheme in smart grids.
In [26], a distributed transaction network is developed, considering P2P trading and network
congestion. These distributed optimization techniques solve centralized problems in a decentralized
manner, which reduces the information to expose and make a tradeoff between the loss of accuracy
and computation efficiency.

In this paper, we address the problem of multi-period co-operation of PDN and DHN considering
network constraints. The main contributions of this paper lie in the following:

• The nonlinear characteristics of the energy conversion units are addressed. For modeling heat
pumps, the relationship of heat production and power consumption is expressed by a quadratic
function and transformed to conic constraints by the second-order conic relaxation. Additionally,
a new expression of stratified heat storage water tank is proposed to be incorporated in the
proposed network model.

• A network constrained optimal operation model for the integrated power and heat system is then
proposed based on mixed-integer second-order conic programming (MISOCP). For the operation
of PDN, ACOPF is modeled and described by the branch flow model. For the operation of DHN,
a convex description of the thermal network based on conic relaxation is applied, in which water
flow could be adjusted in different time slots while considering temperature dynamics.

• For a decentralized operation between thermal network and electricity network without a
centralized operator, an ADMM based approach is proposed to reconstruct the centralized
co-operation model into separated network models run by independent heat system operator
(HSO) and distribution system operator (DSO). In the proposed structure for decentralized
optimization, HSO and DSO can independently operate DHN and PDN with limited information
exchange. As shown by the numerical study, a near-optimal solution could be found through
iterations, which is very close to the centralized optimization result.

The rest of this paper is organized as follows. Preliminaries and notations of the integrated energy
system are introduced in Section 2. The proposed co-operation model is described in detail in Section 3.
In Section 4, the convexification method of DHN is introduced. Additionally, the distributed algorithm
for the co-operation model based on ADMM is proposed. Case studies are presented in Section 5.
Section 6 goes into a more in-depth discussion about the rationality and effectiveness of the proposed
model. Finally, the conclusion is given in Section 7 by highlighting the essential findings of our work.
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2. Preliminaries and Notations

In this work, we concentrate on the optimal operation of integrated electricity and heat systems
considering network constraints.

2.1. Integrated Electricity and Heat System

The details of the integrated system would be discussed in this subsection. As is mentioned in this
paper, the integrated system consists of two sub-network system: the PDN and DHN. The paradigm
of the system is illustrated in Figure 1.
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In the PDN, the electricity is supplied from the main grid and distributed generation, such as
fuel-fired CHPs and renewable power plants. In the DHN, heat demand is supplied by heat
pumps and CHPs. Storage systems and flexible demands are considered as flexible resources for the
integrated system.

CHP units act as the source of both electricity and heat system. There are mainly two types of
CHP, i.e., back-pressure CHP units and condensing CHP units [4]. The back-pressure CHP units
are most widely used to deliver power and heat, in which all input steam is utilized to supply heat
after exhaustion. Besides, back-pressure CHPs usually have a smaller capacity and are less flexible,
since the heat–electricity ratio is fixed. In our paper, the subject of our research is the local integrated
electricity–heat system, where back-pressure CHP units are commonly used.

Heat pumps play an increasing role in the heating sector [6]. A heat pump acts as electricity
demand in the PDN system, while a heat source in the DHN. Electricity is utilized for heat pumps to
transfer the heat from a colder space to warmer one by a vapor compression cycle. The heat could be
taken from sources like air, ground heat, and water, etc.

Renewable power plants, such as PVs and wind turbines, could generate electricity power at a
very low marginal price. In the PDN, distributed PV stations and rooftop PV units are commonly used
in the distribution power system communities. Thus, later in our model, only PV units are considered.

A stratified thermal storage water tank is typical to heat storage [9], which is widely used in
Europe practically. In this type of water tank, hot water is withdrawn (or injected) from the top of the
tank, while the cold water would be injected (or withdrawn) into the bottom of the tank to keep the
volume constant. Physically, the hotter water is with lower density and thus naturally stays in the
upper part of the tank, and the colder water would stay in the lower part of the tank. Thus, if well
controlled, the water tank would be stratified and able to store thermal energy. However, due to
the heat conduction on the water interface with different temperatures, there would be a third layer,
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i.e., the thermocline layer, between the hot-water and the cold-water layers. In the thermocline layer,
the temperature changes quickly. As time goes, this layer would gradually become thicker, degrading
the tank’s valid heat capacity. Figure 2 shows the structure of this type of water tank and its connection
with DHN.
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Figure 2. Structure of a stratified water tank.

The modeling of DHN and PDN involves plenty of variables and parameters. For clarity,
the following subsection would introduce the basic background knowledge for these networks and the
important notations utilized in the problem formulation.

2.2. Notations of District Heating Network

In the subsection, the main notations of the adopted DHN model would be introduced.
The modeling of DHN is based on the description in [20]. The pipeline structure of the DHN
is presented in Figure 3. The DHN consists of two sub-systems: the supply sub-system and the return
sub-system. Warm water flows through the supply sub-system from source nodes to demand nodes
for delivering heat to end-users. In contrast, the used cool water returns from demand nodes and flows
back to source nodes through the return sub-system.
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Mass flow rate is used to describe the mass of water passing through a pipe per unit of time.
At each node, the injected mass flow rate m j,t is defined. Note that the nodal mass flow rate m j,t
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is positive for source nodes, while negative for demand nodes. TS
j,t and TR

j,t represent the supply
and return temperature at node j.

The network connects all nodes through pipes. In these pipes, water is pushed forward because
of the pressure difference between source and demand nodes. φ j,t is defined as the nodal pressure.
As for the pipe from i to j, the mass flow rate in this pipe is denoted by mi j,t. Note that the direction of
water flow in the pipe is not fixed due to the variation of demand and source profiles. Without loss
of generality, yi j,t is introduced to define the direction of water flow. yi j,t = 1 means the water flow
from node i to node j (i.e., the predefined direction), while yi j,t = 0 denotes the opposite situation.
In the supply sub-system, temperatures at the inlet and outlet ends of the pipe i j are denoted by TS,i

i j,t

and TS,o
i j,t , respectively, while TR,i

i j,t and TR,o
i j,t are counterparts for the corresponding pipe in the return

sub-system. Finally, water flows from several pipes would mix into one node, as shown by node j in
Figure 3. Thus, TSm

j,t and TRm
j,t are introduced to represent the mixing temperatures at node j for supply

and return sub-systems, respectively.

2.3. Notations of Power Distribution Network

In our study, PDN operations are modeled as an AC-OPF problem by branch flow model [16].
Pmn,t and Qmn,t denote active and reactive power flows along the distribution line mn with the resistance
rmn and the reactance xmn. The squared current magnitude of this line mn at time t is denoted by `mn,t.
The squared voltage magnitude of bus m at time t is denoted by vm,t. pnet

m,t and qnet
m,t represent the net

active and reactive power injected into bus m at time t.

3. Problem Formulation

In this section, the centralized co-operation model of the DHN-PDN system is proposed.
This scheme assumes an independent operator monitoring and managing the integrated system.
All information needed would be gathered and sent to the ISO. The objective of this model would
benefit the whole system considering both sides of the costs and revenues, while it meets the operational
constraints of both PDN and DHN.

3.1. Objective

The goal of the optimal operation model of this integrated system is to minimize the total operation
cost in both power and heat systems. In the PDN, the operation cost consists of power generation
costs from renewable power plants and CHPs. While in the DHN, the operation cost consists of
heat generation cost from CHPs and thermal storage devices. Finally, the revenue from flexible heat
demands is also considered in this objective. The objective function is presented in Equation (1).

min COP =
∑

t

(
λGridpGrid

t +
∑

r∈GPV
CE,PV

r pPV
r,t +

∑
r∈GCHP

(
CE,CHP

r pCHP
r,t + CH,CHP

r hCHP
r,t

)
+

∑
r∈GHS

CHS
r

(
hHS+

r,t + hHS−
r,t

))
(1)

where λGrid denotes the grid supply electricity price. CE,PV
r is the unit cost of PV unit, which could

be rather a small value or 0. CE,CHP
r and CH,CHP

r are unit cost of CHP unit for generating electricity
and heat. CHS

r denotes the operation cost of thermal storage tank.

3.2. Constraints

3.2.1. Component Constraints

• Combined Heat and Power

As in [4], the power production of back-pressure CHP depends on its heat production.
Thus, this dependence is modeled by linear constraints (2). The complete constraints of CHP are shown
in Equations (2)–(4).

pCHP
r,t = ηrhCHP

r,t (2)
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pCHP
r
≤ pCHP

r,t ≤ pCHP
r (3)

hCHP
r ≤ hCHP

r,t ≤ h
CHP
r (4)

• Heat pumps

To quantify the utilization efficiency of the heat pump, COP is defined as the ratio of heat
production to electricity consumption. Previous models treat the COP of heat pumps as a constant
value. For example, COP = 4 means that 1 unit of electricity could generate 4 units of heat. In fact,
as the heat demand increases, the COP would decline. This means the economic efficiency of heat
pumps is decreasing as their demand grows.

However, some experimental results indicate that the COP is not constant, thus requiring more
precise models for heat pumps. In fact, the COP would decrease as heat production increases [5].
This relationship could be modeled by the quadratic function, as shown in Equation (5).

pHP
r,t = ArhHP

r,t
2 + BrhHP

r,t + Cr (5)

The above Equation can be convexified by relaxing the equality into second-order conic constraints
Equation (6). Then, boundary constraints for heat pumps are given in Equations (7) and (8).

‖
hHP

r,t − pHP
r,t + dr

arhHP
r,t + br

‖ ≤ pHP
r,t + hHP

r,t + cr (6)

hHP
r ≤ hHP

r,t ≤ h
HP
r (7)

pHP
r
≤ pHP

r,t ≤ pHP
r (8)

where ar =
√

2Ar, br = Br/ar, cr = Cr +
1−br

2

2 , and dr = −Cr +
1+br

2

2 .
According to Equation (5), COP could be expressed as the Equation (9), where A, B, and C are

unknown parameters. By proper fitting techniques for the parameters in Equation (6), we could acquire
a more accurate expression of heat pumps. For instance, the experimental data from [6] are then used to
fit these unknown parameters of heat pumps, as shown in Figure 4, which would definitely significant
difference in optimal operation results. For example, in the constant COP model, a heat pump with
COP = 4 needs 150 kWh of power consumption to produce 600 kWh heat, while in the variable COP
model, 252.9 kWh of electricity is acquired at COP = 2.37.

COP =
hHP

pHP =
hHP

AhHP2 + BhHP + C
(9)
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• PV units

PV units are one of the most popular renewable power plants in PDN. The constraint on PV’s
output is simple, as shown in (10). At each time slot, the capability of PV’s output could be denoted by
pHP

r,t . However, due to the limitation of network constraints and the balancing of the demand and supply,
the operator sometimes needs to curtail the output of PV to pHP

r,t , in order of reliable and economical
operation for the PDN.

0 ≤ pHP
r,t ≤ pHP

r,t (10)

• Heat Storage

As mentioned above, hot and cool water could be stored simultaneously in a stratified thermal
storage water tank. However, the heat loss between two layers of water could not be neglected.
Equations (11)–(14) are constraints for heat storage operation, where ηHS,l denotes the loss in the
thermocline layer, while ηHS denotes the efficiency of charging and discharging in the water tank.
To incorporate the storage model into the network model, zHS

r indicating the state of charging
and discharging is introduced.

EHS
r,t+1 = ηHS,lEHS

r,t +
hHS+

r,t

ηHS − η
HShHS−

r,t (11)

0 ≤ hHS+
r,t ≤ zHS

r h
HS
r , 0 ≤ hHS−

r,t ≤

(
1− zHS

r

)
h

HS
r (12)

0 ≤ EHS
r,t ≤ E

HS
r (13)

EHS
r,1 = EHS

r,T = EHS
r0 (14)

3.2.2. Operation Constraints of DHN Model

Constraints Equations (15)–(37) describe the operation of DHN. Equations (15) and (16) illustrate the
relationship of the net heat injection at each node with the nodal status (i.e., the temperature difference
and the mass flow rate) in DHN. cw is the constant of heat storage in the water (cw = 4.2 kJ/(kg·K)),
and ∆T j,t is the temperature difference between supply end and return end at node j at time t.

hnet
j,t = cwm j,t∆T j,t, ∀ j ∈ H (15)

∆T j,t = TS
j,t − TR

j,t, ∀ j ∈ H (16)

where hnet
j,t =

∑
r∈HCHP

j
hCHP

r,t +
∑

r∈HPV
j

hPV
r,t +

∑
r∈HHP

j
hHP

r,t for source nodes, hnet
j,t = −

∑
r∈HD

j
hd

r,t for

demand nodes, and hnet
j,t =

∑
r∈HHS

j

(
hHS−

r,t − hHS+
r,t

)
for storage nodes.

The dynamic of DHN operations can be modeled in two processes: the hydraulic process and the
thermal dynamic process. First, the water flow in heat networks should satisfy the following hydraulic
constraints. Here, Equation (17) shows the conservation of water flow in the network. At each node,
all inflow mass flow rates should always equal to all outflow rates. mi j,t is the mass flow rate along the
pipe i j, while m j,t represents the injected mass flow rate at node j. Equations (18) and (19) limit the
pressure loss in pipes, where φ j,t is the water pressure at node j and κi j,t is the pressure loss along pipe
i j. Equations (20) and (21) are bounds for the hydraulic variables.

−

∑
i∈A j

mi j,t +
∑
k∈C j

m jk,t = m j,t, ∀ j ∈ H (17)

φi,t −φ j,t ≥ κi j,t + M
(
1− yi j,t

)
,∀ j ∈ D, ∀i ∈ A j (18)
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−φi,t + φ j,t ≥ κi j,t −Myi j,t,∀ j ∈ D, ∀i ∈ A j (19)

mi j,t ≥ 0,κi j,t ≥ 0, ∀ j ∈ H (20)

φ
j
≤ φ j,t ≤ φ j, ∀ j ∈ H (21)

κi j,t = ζi j,tm2
i j,t (22)

Temperature dynamics constraints of DHN operations are presented in Equations (23)–(37).
Equations (23) and (24) describe the mixing temperature at node j. Here, we assume that all flows
are thoroughly mixed at one node before flowing out. Thus, the mixing temperature TSm

j,t at supply

sub-system in node j is dominated by all inflows weighted by their mass flow rates. TS,o
i j,t is the

temperature at the outlet of the pipe i j in the supply network, TS
j,t is the nodal temperature at node j in

the supply network.

∑
i∈A j

TS,o
i j,tmi j,tyi j,t +

∑
k∈C j

TS,i
jk,tm jk,t

(
y jk,t − 1

)
+ TS

j,tm
S
j,t = TSm

j,t

 ∑
i∈A j

mi j,tyi j,t +
∑

k∈C j

m jk,t
(
y jk,t − 1

)
+ mS

j,t

,∀ j ∈ H (23)

∑
i∈A j

TR,i
i j,tmi j,t

(
yi j,t − 1

)
+

∑
k∈C j

TR,o
jk,tm jk,ty jk,t + TR

j,tm
R
j,t = TRm

j,t

 ∑
i∈A j

mi j,t
(
yi j,t − 1

)
+

∑
k∈C j

m jk,ty jk,t + mR
j,t

,∀ j ∈ H (24)

Note that, as for source nodes, the flow direction is from the return pipe network to the supply
pipe network, while load nodes are in the opposite situation. Therefore, the mass flow of the source
node is treated as the inflow in the supply network, while the mass flow of the load node is treated as
the inflow in the return network, which is expressed in Equations (25) and (26). mS

j,t and mR
j,t are the

nodal mass flow rates injected into the demand node and source node, respectively.

mS
j,t = 0, ∀ j ∈ HD; mS

j,t = m j,t, ∀ j ∈ HS; (25)

mR
j,t = 0, ∀ j ∈ HS, mR

j,t = m j,t, ∀ j ∈ HD
∪H

T (26)

Then, the nodal mixing temperature will dominate the temperatures of all outflows from this
node. Whether in either supply or return network, the temperature of the pipeline inflow is dominated
by the mixing temperature of its starting node. This principle is expressed in Equations (27) and (28),
where Equation (28) denotes the reverse flow situation. When it comes to nodal flows, for source nodes,
the nodal return flow is an outflow, while for demand nodes, the nodal supply flow is an outflow.
Therefore, as in Equations (29) and (30), respectively, the mixed temperature in the return network
dominates nodal return temperature at source nodes, while the mixed temperature in the supply
network dominates nodal supply temperature at demand nodes. Similarly, Equation (31) denotes the
temperature domination rules in nodes with storage. For nodes with heat storage, the node becomes a
source node when heat storage is in discharging mode, while a demand node when in charging mode.

TS,i
i j,tyi j,t = TSm

i,t yi j,t, TR,i
i j,tyi j,t = TRm

j,t yi j,t, ∀i ∈ H , ∀ j ∈ C j (27)

TS,o
jk,t

(
1− y jk,t

)
= TSm

k,t

(
1− yik,t

)
, TR,o

jk,t

(
1− y jk,t

)
= TRm

j,t

(
1− y jk,t

)
, ∀ j ∈ H , ∀k ∈ C j (28)

TR
j,t = TRm

j,t , ∀ j ∈ HS (29)

TS
j,t = TSm

j,t , ∀ j ∈ HD (30)

TS
j,tz

HS
j,t = TSm

j,t zHS
j,t , TR

j,t

(
1− zHS

j,t

)
= TRm

j,t

(
1− zHS

j,t

)
, ∀ j ∈ HT (31)
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Last but not least, the temperature loss in the pipelines depends on the ambient temperature Ta
t ,

the pipe mass flow rate mi j,t, the heat conductance εi j and the pipe length Li j, which is modeled in
Equations (32) and (33).

TS,o
i j,t =

(
TS,i

i j,t − Ta
t

)
e
−

εi jLi j
Cwmij,t + Ta

t , ∀i ∈ H , ∀ j ∈ Ci (32)

TR,o
i j,t =

(
TR,i

i j,t − Ta
t

)
e
−

εi jLi j
Cwmij,t + Ta

t , ∀i ∈ H , ∀ j ∈ Ai (33)

Finally, constraints Equations (34)–(37) set upper and lower bounds of temperatures from all
nodes, pipes, and mixing points. Thus, DHN can operate in a feasible region.

TS
≤ TS

j,t ≤ T
S
, TS
≤ TSm

j,t ≤ T
S
, ∀ j ∈ H (34)

TS
≤ TS,i

i j,t ≤ T
S
, TS
≤ TS,o

i j,t ≤ T
S
, ∀ j ∈ D, ∀i ∈ A j (35)

TR
≤ TR

j,t ≤ T
R

, TR
≤ TRm

j,t ≤ T
R

, ∀ j ∈ H (36)

TR
≤ TR,i

i j,t ≤ T
R

, TR
≤ TR,o

i j,t ≤ T
R

, ∀ j ∈ H , ∀i ∈ A j (37)

3.2.3. Operation Constraints of PDN Model

The PDN is a radial network that could be precisely modeled by the branch flow model [16].
All operation constraints for PDN are presented in Equations (38)–(43). Equations (38) and (39) are
nodal active and reactive power balance constrains, respectively.

pnet
n,t =

∑
b∈Cn

Pnb,t −
∑

m∈An

(Pmn,t − rmn`mn,t),∀n ∈ P (38)

qnet
n,t =

∑
b∈Cn

Qnb,t −
∑

m∈An

(Qmn,t − xmn`mn,t),∀n ∈ P (39)

where other than the root bus, the net active power is given as pnet
n,t =

∑
l∈PCHP

n
pCHP

l,t +
∑

l∈PPV
n

pPV
l,t −∑

l∈PHP
n

pHP
l,t − pd

n,t and the net reactive power is given as qnet
n,t =

∑
l∈PCHP

n
qCHP

l,t − qd
n,t. And pnet

1,t =

pGrid
t , qnet

1,t = qGrid
t for root node.

Equation (40) shows the relationship of voltages in two connected buses. Second-order conic
constraints Equation (41) convexify the nonlinear power flow Equation. Equations (42) and (43) are
feasible bounds of squared current and voltage magnitude.

vn,t = vm,t − 2(rmnPmn,t + xmnQmn,t) +
(
r2

mn + x2
mn

)
`mn,t,∀n ∈ P (40)

‖
2Pmn,t

2Qmn,t

`mn,t − vm,t

‖2 ≤ `mn,t + vm,t,∀n ∈ P,∀m ∈ An (41)

vm ≤ vm,t ≤ vm,∀m ∈ P (42)

`mn ≤ `mn,t ≤ `mn,∀n ∈ P,∀m ∈ An (43)

0 ≤ pPV
l,t ≤ pPV

l,t (44)
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4. Solution Technology

4.1. Convexification of Our Proposed Operation Model

The proposed model in Section 2 is highly nonlinear if mass flow rates and temperature profiles
are both treated as variables. In [22], a convexification method is proposed to address this challenge.
In this section, this method would be introduced to help convexify the nonlinear operation model into
a mixed-integer second-order conic programming (MISOCP).

• Heat and its Balance

Heat nodal balance constraints Equation (15) are bilinear if both the temperature difference and the
nodal mass flow rate are seen as variables. In practice, the temperature difference ∆T j,t could be fixed
as a constant, such as 40 ◦C at demand nodes and 41–43 ◦C for source nodes, depending on the network
insulation level. As a result, Equation (15) is linearized for all nodes in DHN.

• Pressure Loss

The pressure loss along pipes satisfies the constraint Equation (22), which could be easily
transferred to the SOC constraint by relaxing the equality and transfer the expression to Equation (45).
Then, it could be written in the standard form of SOC constraint in Equation (46).

κi j,t ≥ ζi j,tm2
i j,t (45)

‖
2
√
ζi j,tmi j,t
κi j,t − 1

‖ ≤ κi j,t + 1,∀ j ∈ D, ∀i ∈ A j (46)

• Heat Loss

Theoretically, in Equations (47) and (48), the heat loss along a pipe could be expressed as the
product of the heat capacity of water cw, the absolute value of mass flow rate Mi j,t, and the absolute
temperature loss ∆TS

ij,t along the pipe.

εS
ij,t = cwMi j,t∆TS

ij,t, ∀ j ∈ H , ∀i ∈ A j (47)

εR
ij,t = cwMi j,t∆TR

ij,t, ∀ j ∈ H , ∀i ∈ A j (48)

Due to the reverse water flow in the heat network, a set of restrictions are introduced in
Equations (49)–(54) of limiting ancillary variables Mi j,t, ∆TS

ij,t, and ∆TR
ij,t to represent the absolute value.

mi j,t +
(
yi j,t − 1

)
M ≤Mi j,t ≤ mi j,t +

(
1− yi j,t

)
M (49)

−mi j,t − yi j,tM ≤Mi j,t ≤ −mi j,t + yi j,tM (50)

TS,i
i j,t − TS,o

i j,t +
(
yi j,t − 1

)
M ≤ ∆TS

ij,t ≤ TS,i
i j,t − TS,o

i j,t +
(
1− yi j,t

)
M (51)

− TS,i
i j,t + TS,o

i j,t − yi j,tM ≤ ∆TS
ij,t ≤ −TS,i

i j,t + TS,o
i j,t + yi j,tM (52)

TR,i
i j,t − TR,o

i j,t +
(
yi j,t − 1

)
M ≤ ∆TR

ij,t ≤ TR,i
i j,t − TR,o

i j,t +
(
1− yi j,t

)
M (53)

− TR,i
i j,t + TR,o

i j,t − yi j,tM ≤ ∆TR
ij,t ≤ −TR,i

i j,t + TR,o
i j,t + yi j,tM (54)

Note that the temperature loss could be calculated from Equations (32) and (33). The nonlinear
exponential function in Equations (32) and (33) can be linearized as Equations (55) and (56). Finally,
the heat loss could be simplified as a constant if the inlet pipe temperature is substituted by a reference
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temperature. Usually, the inlet temperature would vary in a small range. If this reference temperature
is carefully chosen, the heat loss can be simplified without losing much accuracy. Later in Section 4,
we would go into more detail to verify the conclusion made here by numerical studies.

εS
ij,t = εi jL

(
yi j,tT

S,i
i j,t +

(
1− yi j,t

)
TS,o

i j,t − Ta
)

≈εi jL
(
TSre f

− Ta
)
= εS

ij,t

(55)

εR
ij,t ≈ εi jL

(
TRre f

− Ta
)
= εR

ij,t (56)

Thus, the heat loss Equation could be simplified into the following bilinear constraints
Equations (57) and (58). Further, the second-order constraints after relaxing these Equations are
shown in Equations (59) and (60).

cwMi j,t∆TS
ij,t = εS

ij,t, ∀ j ∈ H , ∀i ∈ A j (57)

cwMi j,t∆TR
ij,t = εR

ij,t, ∀ j ∈ H , ∀i ∈ C j (58)

‖

cw∆TS
ij,t −Mi j,t

2
√
εS

ij,t
‖ ≤ cw∆TS

ij,t + Mi j,t : ωS,T
ij,t ,ωS,m

ij,t , δS
ij,t, ∀ j ∈ H , ∀i ∈ A j (59)

‖

cw∆TR
ij,t −Mi j,t

2
√
εR

ij,t
‖ ≤ cw∆TR

ij,t + Mi j,t : ωR,T
ij,t ,ωR,m

ij,t , δR
ij,t, ∀ j ∈ H , ∀i ∈ C j (60)

• Temperature Mixing

The most complicated constraints in DHN operations are those related to temperature mixing,
where plenty of bilinear terms are introduced, which is of great difficulty to model. To simplify this
complicated constraint, we assume that the nodal mixing temperature would be dominated by the
inlet temperature with the largest mass flow rate [22]. In the supply network, the mixing temperature
might be dominated by the outlet temperature of a certain pipe carrying the water flow into this node.
Otherwise, the mixing temperature could be dominated by the nodal temperature for some source
nodes. Similarly, in the return network, the dominating flow might flow from pipes or the nodal flows
at load nodes. Here, z jt, z+i j,t, z−jk,t are binary variables indicating three situations mentioned above for
node j in the supply network, respectively. z jt = 1 means the nodal flow is dominating. As for the
pipe flows, z+i j,t = 1 means the flow in pipe i j is largest inflow of node j, while z−jk,t = 1 indicates the
largest inflow of node j is the flow in pipe jk. Note that according to the predefined direction, the flow
in pipe i j would leave node j unless the flow is reverse (y jk,t = 0). In the return network, z′ jt, z′+i j,t, z′−jk,t
are also defined. Additionally, the maximal mass flow rates dominating the node in supply and return
networks are defined as mS

j,t and mR
j,t.

mi j,t ≤ mS
j,t ≤ mi j,t +

(
1− z+i j,t

)
M (61)

−m jk,t ≤ mS
j,t ≤ −m jk,t +

(
1− z−jk,t

)
M (62)

m j,t ≤ mS
j,t ≤ m j,t +

(
1− z jt

)
M (63)∑

j

z+i j,t +
∑

k

z−jk,t + z jt = 1 (64)

z−i j,t ≤ 1− yi j,t (65)
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z+jk,t ≤ yi j,t (66)

− ∆TS
jk,t +

(
y jk,t + z−jk,t − 2

)
M ≤ TSm

j,t − TSm
k,t ≤ −∆TS

jk,t +
(
2− y jk,t − z−jk,t

)
M (67)

∆TS
ij,t +

(
z+i j,t − yi j,t − 1

)
M ≤ TSm

i,t − TSm
j,t ≤ ∆TS

ij,t +
(
1− z+i j,t + yi j,t

)
M (68)

TS
j,t +

(
z jt − 1

)
M ≤ TSm

j,t ≤ TS
j,t +

(
1− z jt

)
M (69)

Mixing temperature constraints could be simplified as the above constraints Equations (61)–(69).
Equations (61)–(63) ensure that the maximal mass flow rates are not always smaller than all inflows.
Equations (64)–(66) guarantee that the selected flow is the largest inflow. Once the dominating flow is
selected, if it is a pipe flow, Equations (67) and (68) ensure the mixed temperature equals its outlet
temperature. If it is a nodal flow, Equations (69) ensures the nodal supply temperature coincides with
the mixing nodal temperature. All identical principles are also applied to the return network. For the
sake of simplicity, mixing temperature constraints in the return network are not presented here.

4.2. ADMM-Based Decentralized Operation

In practice, HSO and DSO usually do not belong to the same utility. The co-operation of
DHN and PDN might be impossible to implement due to the requirement of preserving the privacy
information of both HSO and DSO. With the development of distributed computing techniques,
the above co-operation problem can be solved separately by DSO and HSO. More importantly,
only very limited and non-sensitive information is shared between DHN and PDN. ADMM might be
the most popular one of distributed optimization techniques, which is thus also applied in our work.
Our proposed co-operation model is summarized as follows.

min COP = CPDS + CDHS (70)

DHN−Hydraulic Cons : (15) − (21), (46) (71)

DHN− TempDynamicsCons : (27) − (31), 34− 37, (49) − (54), (59) − (69) (72)

PDN Cons : (38) − (44) (73)

ComponentCons : (2) − (4), (6) − (8), (10) − (14) (74)

where CPDS =
∑

t

(∑
r∈GCHP CE,CHP

r pCHP
r,t +

∑
r∈GPV CE,PV

r pPV
r,t

)
and CDHS =∑

t

(∑
r∈GCHP CH,CHP

r hCHP
r,t +

∑
r∈GTS CTS

r

(
hTS+

r,t + hTS−
r,t

)
−

∑
r∈D UD

r hFD
r,t

)
.

To apply ADMM, the above co-operation problem is first separated into two sub-problems locally
optimized by DSO and HSO. Note that (2) and (6) are coupling constraints to combine these two
sub-problems. Nevertheless, the standard ADMM requires the coupling constraints to be affine.
While in our model, energy conversion constraints (6) for heat pumps is conic, making the standard
ADMM non-applicable. To address this issue, ancillary variables p̃HP

r,t are introduced as local copies for
electricity consumption of heat pumps as in Figure 5.

pHP
r,t = p̃HP

r,t : λHP
r,t (75)

pCHP
r,t = ηrhHP

r,t : λCHP
r,t (76)
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s. t. DHN Cons, Component Cons  (80)

Sub-Q3 updates dual variables given the latest coupling variables. This updating rule can be 
calculated by the authorized third party. 

𝜆,௧
ு(ାଵ)

= 𝜆,௧
ு()

+ 𝜌൫𝑝,௧
ு(ାଵ)

− 𝜂ℎ,௧
ு(ାଵ)

൯ (81)

𝜆,௧
ு(ାଵ)

= 𝜆,௧
ு()

+ 𝜌൫𝑝,௧
ு(ାଵ)

− 𝑝,௧
ு(ାଵ)

൯ (82)

Figure 5. Illustrated example of how to apply the standard ADMM.

The ADMM-based decentralized algorithm to solve our proposed model is presented as follows.
After writing the augmented Lagrangian function, the overall optimization problem could be divided
into three sub-problems, which can be solved separately and iteratively. First, we define local variable
sets XE =

[
pCHP, pHP, pPV, pGrid, ΨPDN

]
for PDS and XH =

[
hCHP, hHP, hHS+, hHS−, EHS, p̃HP, ΨDHN

]
for

DHS. ΨPDN and ΨDHN are variables related to PDN and DHN, respectively. Note that all local variables
are initialized with a value at the first iteration. For the iteration k + 1, three following sub-problems
would be solved sequentially.

Sub-Q1 is the PDN operation sub-problem solved by the DSO. It would update primal variables
of PDN given the latest coupling variables from HSO.

min


CPDS

(
XE

)
+

∑
t

∑
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λ
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)
+

ρ
2 ‖p
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2
)

+
∑
t

∑
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2
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 (77)

s.t. PDN Cons (78)

Sub-Q2 is the DHN operation sub-problem solved by the HSO. It would update primal variables
of DHN given the latest coupling variables from DSO.

min
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(
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)
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∑
t

∑
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 (79)

s.t. DHN Cons, Component Cons (80)

Sub-Q3 updates dual variables given the latest coupling variables. This updating rule can be
calculated by the authorized third party.

λ
CHP(k+1)
r,t = λ

CHP(k)
r,t + ρ

(
pCHP(k+1)

r,t − ηrh
CHP(k+1)
r,t

)
(81)

λ
HP(k+1)
r,t = λ

HP(k)
r,t + ρ

(
pHP(k+1)

r,t − p̃HP(k+1)
r,t

)
(82)

Finally, after rounds of iteration, the solution would coverage to a consensus point, where both
systems find the optimal solution for the integrated system.
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5. Simulation and Results

5.1. System Configuration

To verify the contributions of our work, an integrated electricity and heat system is studied.
This test system includes an IEEE standard PDN test system of 33 buses and a district heating system
of 32 nodes and 32 pipes. The topology of this test system is illustrated in Figure 6. There are multiple
energy sources in this integrated system, including two PV units, three back-pressure CHPs, three heat
pumps, and three district stratified water tanks. All characteristics of the integrated system could be
found in the Supplementary Materials. The test system is in a domestic community. The electricity
demand has two peaks per day, while the heat demand has only one peak at night. Note that the
power generation profiles of some intermittent resources like PVs are inconsistent with the electricity
demand profile in this community. This would lead to significant needs for flexible resources to
facilitate local energy consumption and improve utility efficiency. In this section, we carry out several
tests to illustrate our proposed co-operation model’s validity and effectiveness.
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with higher operation cost are ramped down to leave room for the cheaper renewable generation. 
Additionally, heat pumps increase the power consumption to help the local consumption, 
transmitting this clean electricity power into the heating system. Note that the increase of heat pump 
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5.2. Optimal Results of DHN-PDN Co-Operation

The proposed model’s optimal operation results are presented in Figures 7 and 8, with the daily
operation cost for the integrated energy system is RMB 94826. The operation results in the PDN are
illustrated in Figure 7. As we can see, at peak hours of PV production, the electricity demand is in
the valley, causing a significant imbalance of local generation and consumption. Compared to PVs,
CHPs with higher operation cost are ramped down to leave room for the cheaper renewable generation.
Additionally, heat pumps increase the power consumption to help the local consumption, transmitting
this clean electricity power into the heating system. Note that the increase of heat pump consumption
would cause a declination of the COP. Thus, the co-operation makes a tradeoff between higher COP
and larger renewable energy consumption. Note that the hyphens in front of the numbers on the axes
in the following figures represent minus signs, which are created by OriginLab 2019b.
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Figure 8. Heat output of local sources.

The operation result of heat production and storage is illustrated in Figure 8, where “H_TSc”
and “H_TSd” denote the sum-up heat storage. As we know, back-pressure CHPs in our test system
have a linear relationship between power production and heat production. Thus, in peak hours of
renewable energy generation, the ramping down of CHPs would cause the reduction of heat production
at the same time, while heat pumps consume more power, causing an increase in heat production.
Then, the heat surplus or deficit in the whole day is balanced by heat storage systems. In a word,
the optimization model would figure out an optimal portfolio of flexible resources, where the heating
system consumes a portion of the renewable output through the coupling.

It is known that COP drops as the power consumption deviates from the nominal value. However,
at peak hours of PV generation, renewable plants usually generate electricity at a low marginal cost.
As a result, operation optimization should make a tradeoff between the lower efficiency and the
maximal consumption of cheaper energy. Figure 9 shows the optimal operation results for heat pump
“HP3” and changes of COP during the operation day. The operation of HP3 tries to consume more
power in the daytime, while at another time when PVs are off, heat pumps would return to the optimal
operating point with relatively high efficiency.
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5.3. Comparison of Different Operation Models

To investigate the benefits of co-operation for DHN-PDN, a group of comparison is carried
out. In the decoupled operation (DO) case, the power system and heat system are run by their
operators separately, where the power consumption price of heat pumps are fixed and predefined
(set to 0.5 RMB/kWh). Additionally, four scenarios of different PV output profiles are applied to analyze
the benefit of co-operating DHN and PDN.

• Case I: Proposed Co-Operation of PDN and DHN (CO)
• Case II: Decoupled Operation of PDN and DHN (DO)

In Figure 10, the operation results in the DO case are presented. Due to the independence of the
operation of two systems, the DHN operation neglects the situation in PDN, resulting in the decreasing
output of heat pumps at the peak hours of PV. CO increases the energy utilization in the local system.
In PDN, the grid supply electricity is about 149.1 MWh per day in DO, 23% larger than 121.4 MWh
in CO.
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Table 1 presents the comparison of operation costs and renewable energy consumption in two
different cases. In this table, we define the cost reduction (CR) ratio as the relative difference in the total
operation costs in two cases. It is evident that the total operation cost is lower in Case I compared to
Case II by 2.3% to 4.4% according to different scenarios. The reason is: when the systems are operated
separately in Case II, the operation cost of DHN decreases, since the flexibility in the DHN is not
utilized to facilitate renewable energy utilization in the PDN. However, as a result, due to the lack of
flexibility in the PDN, the decoupled operation case is unable to make the best use of local renewable
resources, causing the expense of PDN to rise, which ends up a higher total operation cost for the
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integrated system. Nevertheless, co-operation as shown in Case I would utilize the flexibility of both
systems to consume as much renewable energy output as possible, because these resources are of the
lowest marginal costs compared to other resources like gas turbines, which results in a reduction in
total operation cost.

Table 1. Comparison of Operation Costs in Different Cases.

Scenario

Case II: CO Case II: DO
CR

RatioTotal Cost
(kRMB/d)

Cost (kRMB/d)

PDN DHN Total

S1 102.96 85.597 19.824 105.42 2.30%
S2 94.826 78.418 19.824 98.242 3.60%
S3 94.755 78.413 19.824 98.237 3.70%
S4 92.900 77.171 19.824 96.995 4.40%

The decentralized co-optimization through ADMM is studied in this part. In this case, the SOs
separately operate two energy systems but negotiate and update the scheduling iteratively. In Figure 11,
we could see that the optimization gap drops quickly in the first several iterations. There would be
a minimal gap (≤0.1%) after 50 iterations, and the obtained solution would be very similar to the
centralized one. As the algorithm iterates, both systems reach a consensus, where the solution converges.
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Decentralized operation case would highly preserve the privacy information for local operators.
Taking our proposed model as an example, coupling variables in the decentralized optimization
case are pCHP

r,t , pHP
r,t , hCHP

r,t and p̃HP
r,t , which are only public information shared by each other. For DSO

and HSO, they do not need to share network parameters of two systems during the optimization
process. While in the case of centralized optimization, all information should be accessible to two
independent system operators of the integrated system.

6. Discussion

From the case study, it is evident that the proposed co-operation model and the ADMM-based
decentralized algorithm could facilitate local energy accommodation and increase the total revenue of
the local energy system. However, to efficiently solve the network constrained operation problem,
several simplifications have been made. In this section, we would make a deeper discussion on the
rationality of the assumptions and figure out the effectiveness of the proposed model.

6.1. Rationality of Assumptions in the Network Model

As is shown in Section 3, some assumptions are made to reformulate the operation model as a
MISOCP form. To verify the rationality of these assumptions made in our proposed operation model,
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we compare this model with the CFVT model proposed in [20]. The CFVT model is widely used in
the industry and can be taken as the benchmark. Figure 12 illustrates the relative gap between the
result from the CFVT model and the proposed model at each pipe at each time slot. We can see that the
gap is no greater than 2.5% in any situation. The result shows that the difference in DHN dynamics
between the two models is very tiny.
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In our model, more accurate expressions are proposed for modeling both DHN and PDN,
where both of them involve conic constraints. Additionally, the energy conversion characteristic of
heat pumps is modeled by quadratic functions and then convexified through the SOC relaxation.
One important problem is the exactness of these conic constraints. The exactness of conic constraints
in the AC power flow model can be ensured in the PDN [16]. However, in the DHN, the exactness
of conic constraints is not guaranteed, which might cause the obtained solution physically infeasible.
To address this challenge, penalty terms to guarantee the exactness are added to the objective.

6.2. Exactness of MISOCP in Proposed Model

Table 2 shows the impacts of penalty terms on the exactness of all types of conic constraints.
The exactness of our proposed heat pump model is always satisfied no matter there are penalty terms
or not. This is because minimizing the power consumption expense has been incorporated in the
objective of the proposed model. However, the exactness of pressure loss constraints and heat loss
constraints could only be achieved by introducing a small penalty coefficient.

Table 2. Exactness of SOC constraints in our proposed model.

Case
Maximal Gap

Pressure Loss Heat Loss Heat Pump COP

with penalty (ε = 0.01) 0.0063 0.0016 2.69 × 10−7

w/o penalty 7964.8 53.88 1.30 × 10−6

7. Conclusions

This paper proposes a co-operation model for integrated power and heat systems considering
network constraints and the distributed algorithm based on ADMM for the decentralized optimization
for PDN and DHN. In the co-operation model, a convex approximation for the PDN as well as DHN is
applied. Additionally, a novel quadratic heat pump model and the heat storage model are proposed
to illustrate the physical properties more accurately. Last but not least, a decentralized optimization
algorithm based on ADMM is proposed.
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From the numerical results based on a PDN33-DHN32 system, the following conclusions can be
summarized:

• The proposed model could generate solutions with high accuracy and optimality. On one hand,
precise models for both electricity and thermal networks are adopted. Particularly, the VFVT
DHN model provides more flexibility than models with the mass flows fixed without loss of
accuracy. On the other hand, improved descriptions on heat pumps with variable COP as well
as the stratified water tank for heat storage are included and reformulated to integrate with the
network model, making the proposed model closer to the actual situation.

• Flexibility of the electricity distribution system could be enhanced through the co-operation of
integrated energy system. As a result, the co-operation model of an integrated system could
facilitate local energy accommodation and reduce the total operation cost. Compared to the
DO, CO’s total operation cost is lower by 2.3% to 4.4% under different scenarios. Additionally,
results show that the grid supply electricity is about 149.1MWh per day in DO, 23% larger than
121.4 MWh in CO.

• Decentralized optimization based on ADMM could provide a near-optimal solution but with
little sharing of private information. With the distributed techniques, the co-operation could be
achieved in a decentralized way with little loss of efficiency. Due to the nonconvexity of MISOCP,
there would be a rather small gap (≤0.1%) between the decentralized case with the centralized
one. Nevertheless, the operation costs in both cases are significantly decreased compared to the
decoupled operation of DHN and PDN.

For future work, market mechanisms for the integrated electricity–heat system have drawn
great attention. We are interested in exploring efficient market mechanisms and market participants’
behaviors in the local energy system considering PDN-DHN constraints.

Supplementary Materials: The data of the test system used in the case study is available online at https:
//www.dropbox.com/sh/yv1m70cilid9p23/AAB8iQXi6YR0rpCHFLzGZTz5a?dl=0/.
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Nomenclature

i, j Indices of sending and receiving buses of the PDN
m, n Indices of sending and receiving nodes of the DHN
r, s Indices of all Heat and Power market participants (Generation/Demands)
k Index for times of iteration
t Indices of time periods
P Set of buses in the PDN
H Set of buses in the DHN
H

S Sets of source nodes in the DHN
H

D Sets of demand nodes in the DHN
H

T Sets of storage nodes in the DHN
I Set of heat pump systems
T Set of time periods
Ai/Ci Sets of Ancestor/Child nodes of node i
cw Specific heat capacity of water
pd

n,t/qd
n,t Static active and reactive demand at bus n at time t

https://www.dropbox.com/sh/yv1m70cilid9p23/AAB8iQXi6YR0rpCHFLzGZTz5a?dl=0/
https://www.dropbox.com/sh/yv1m70cilid9p23/AAB8iQXi6YR0rpCHFLzGZTz5a?dl=0/
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Ξ(r) Sets of buses in PDN with heat pump system r located
Θ(r) Sets of nodes in DHN with heat pump system r located
αr, βr,θr Energy conversion parameters of heat pump in HP system r
pHS

r Power consumption/output capacity of heat pump system r

h
HS
r heat production capacity of heat pump r

h
ST
s Maximal charging/discharging heat of thermal storage s

E
ST
s Storage tank capacity (in heat) of thermal storage s

∆T j Temperature difference between supply and return network of DHN at node j

TS/T
S Upper and lower bounds of temperature in supply network of DHN

TR/T
R Upper and lower bounds of temperature in supply network of DHN

εi j Heat conductance of pipeline from node i to node j
vm Upper bound of squared voltage at bus m
`mn Upper bound of squared current from bus m to n
ξr Heat loss in the storage tank r
ηST Charging/discharging efficiency of thermal storage
m̃S

ij,t Predicted injection mass flow rate from node i to node j in supply network

m̃R
ij,t Predicted injection mass flow rate from node i to node j in return network

m̃S
j,t/m̃R

j,t Predicted injection/outlet mass flow rate at node j

rmn/xmn Resistance/reactance from bus m to n
λ

h,grid
t Price for grid supply heat at time t
ζi j,t Coefficient of pressure-mass flow formula in heat pipe (i, j)
εS

ij,t/ε
R
ij,t Heat loss in heat pipe (i, j) of supply/return network at time t

aHS
r,t Offer price of heat pump system r at time t in Electricity Market

bHS
r,t Bid price of heat pump system r at time t in Electricity Market

cHS
r,t Offer price of heat pump system r at time t in Heat Market

hHP
r,t Heat output of heat pump r at time t

pHP
r,t Power consumption of heat pump r at time t

hST+
r,t Discharging heat rate of storage r at time t

hST−
r,t Charging heat rate of storage r at time t

hST,l
r,t Heat loss of storage r at time t

EST
r,t Stored thermal energy of storage in system r at time t

EST,l
r,t Accumulated heat loss of storage in system r at time t
νL

r,t/ν
H
r,t Binary variables for storage in system r at time t indicating loss

hg
s,t Heat supply from traditional generator at time t

hd
s,t Flexible demand s at time t

mi j,t Mass flow rate from node i to j at time t
m j,t Mass flow rate injected to node j at time t
φ j,t Water Pressure at node j
κi j,t Pressure loss along the pipe from node i to j at time t
TS

j,t Temperature at node j in the supply network

TR
j,t Temperature at node j in the return network

TSm
j,t Mixed temperature at node j in the supply network

TRm
j,t Mixed temperature at node j in the return network

TSi
i j,t Temperature at the inlet port of pipe from node i to j at time t in the supply network

TSo
ij,t Temperature at the outlet port of pipe from node i to j at time t in the supply network

TRi
i j,t Temperature at the inlet port of pipe from node i to j at time t in the return network

TRo
ij,t Temperature at the outlet port of pipe from node i to j at time t in the return network

∆TS
ij,t Temperature loss along the pipe in the supply network from node i to j at time t

∆TR
ij,t Temperature loss along the pipe in the return network from node i to j at time t
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Ξ(r) Sets of buses in PDN with heat pump system r located

pg/d
s,t Active power generation/demand s at time t

ΦH
t Primal objective of heating market

qg/d
s,t Reactive power generation/demand s at time t

Pmn,t Active power flow in the branch from bus m to n at time t
Qmn,t Reactive power flow in the branch from bus m to n at time t
vm,t Squared voltage at bus m at time t
`mn,t Squared current from bus m to n at time t
λCHP

rt Dual variable
λHP

rt Dual variable
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