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Abstract: This study investigated the technological developments in the shale petroleum industry
by analyzing patent data using a network of technological indices. The technological developments
were promoted by the beginning of the shale industry, and after the first five years, it showed a more
complex development pattern with the convergence of critical technologies. This paper described
progress in the shale petroleum technologies as changes in relatedness networks of technological
components. The relatedness represents degree of convergence between technological components,
and betweenness centrality of network represents priority of technological components. In the
results, the progress of the critical technologies such as directional drilling, increasing permeability,
and smart systems, were actively carried out from 2012 to 2016. Especially, unconverged technology of
increasing permeability and the converged technology of directional drilling and smart system has
been intensively developed. Some technological components of the critical technologies are more
significant in the form of converged technology.
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1. Introduction

Unconventional petroleum has gathered great interest in recent times, especially with growing
concerns over the depletion of conventional petroleum sources. In a few countries, unconventional
petroleum is already being produced economically along with a steady growth in the industry.

In the US, unconventional petroleum, such as shale oil and tight gas, has seen an increase in
production amounts as energy resources. In 2008, shale gas and tight oil constituted as much as 16
and 12% of production of natural gas and crude oil in the US, respectively. In 2018, these production
amounts reached 70 and 60%, respectively [1]. This economical production of shale petroleum
(shale gas and tight oil) can be considered as an achievement of technological advancement in shale
petroleum. Despite the economic benefit of shale petroleum, the environmental problem is the most
important factor that could pose a threat to shale petroleum production. According to Cooper et al. [2],
shale petroleum causes greenhouse gas (GHG) emissions, water overuse, and local issues around the
production site.

According to Holditch [3], the mechanisms for producing unconventional petroleum versus
conventional petroleum are distinguishable in two ways. First, increasing the permeability of underground
formation is a critical mechanism to produce unconventional petroleum such as shale gas and tight oil,
which typically are un-permeable formations that contain petroleum.Second, reducing the viscosity of
hydrocarbons is a critical mechanism to produce unconventional petroleum such as heavy oil and oil
shale. Permeable underground formations contain excessively viscous petroleum, making it difficult
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for this petroleum to flow into an apparatus or equipment. Therefore, producing unconventional
petroleum of a high viscosity requires a method that makes petroleum flowable by using thermal energy
and other methods. For example, steam-assisted gravity drainage (SAGD) supplies thermal energy to
petroleum, such as bitumen or heavy oil, by injecting it with high temperature steam [4]. Furthermore,
producing unconventional petroleum in tight formation requires a method that makes the formation
permeable by connecting the production well with the reservoir. For example, shale gas and tight oil
have been economically produced by adopting horizontal drilling and hydraulic fracturing [5].

Geny [5] suggested that the factors responsible for the successful and economical production
of shale petroleum are the advanced technologies of hydraulic fracturing and horizontal drilling,
and the combination of the two technologies. Construction of horizontal wells began in 2003 in the US.
The industrial growth of shale petroleum started approximately 4 years since the start of construction.
Furthermore, this technological development, which initiated the industrial growth of shale petroleum,
has contributed toward associated results such as diversification in the operation strategies of energy
companies [6], and regional growth in income and employment [7].

According to previous studies [8–15], production technologies of shale petroleum have grown
since production began. Kim and Lee [8] argued that productivity grew by 1.9%, while cumulative
production of shale gas doubled from 2008 to 2016. However, the prices of natural gas and crude oil
declined in late 2008, and the price of crude oil declined in late 2014. Moreover, the price of natural gas
has settled down under 4 dollars per million British thermal unit [16,17]. Due to the decline in the prices
of natural gas and crude oil, questions regarding the economic feasibility of producing shale petroleum
have cropped up. Even with the decline in the prices of natural gas and crude oil, the productivity
gain by developing technologies seemed stagnant until 2013 [9]. In addition, during the period with
low commodity prices, some producers tried to gain productivity by changing the proportion of oil
(or gas) in the production portfolio [10], or cutting the service costs [11]. Analyzing data from North
Dakota’s Bakken shale formation, Covert [12] argued that shale petroleum producers have slowly and
insufficiently improved their production skills until 2011. Nevertheless, the shale petroleum industry
has continued to increase its annual production. Moreover, some factors, such as improvements in
the decline curves and increase in the lateral length of the wellbore, indicate that the development of
production technologies has affected productivity from 2013 to 2016. The optimization of the production
of a well could be conducted after its completion by refracturing the reservoir [14]. West [15] reviewed
the improvement in productivity and the issues in production technologies by analyzing the topics of
technical papers on shale petroleum from 2018 to 2019. The study found promising technologies such as
enhanced recovery, digitalization of instruments, machine learning, advanced modeling, and method
or apparatus for solving parent-child issues.

Furthermore, recent research [18–22] showed the various ways of technological development in
the shale industry. Davarpanah [18] tested and suggested rheologically effective formate fluids for
shale formation by composition. Davarpanah and Mirshekari [19] suggested enhancing gas recovery
for shale formations based on a model with improved prediction accuracy on diffusivity in carbon
dioxide and methane akinetic absorption. Hu et al. [20] empirically showed improved oil-recovery
enhancement for tight reservoirs from an optimized injection method of foam and brine components.
Hu et al. [21] also showed a trade-off between carbon dioxide-injection and oil-recovery for enhancing
recovery. Jin and Davarpanah [22] suggested water treatment techniques that reduced water use by at
least 70% for the enhanced oil-recovery method.

Owing to the arguments calling for productivity gains in the shale petroleum industry, research on
the technological development of shale gas has been of interest and has been carried out primarily
via patent analysis. International Science and Economic Development Canada (ISED) [23] called for
the need for a technological field of shale petroleum production and for a major developer in the
technological field. The author summarized that major petroleum companies in the US specialize mainly
in technologies such as well casing drilling, fracturing formation, drilling formation, data detection,
and determining data. Wei et al. [24] observed that US petroleum companies hold the majority of
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the technologies, such as equipment and device for drilling, extraction exploration, feed purification,
and technology for digital simulation. Kim and Lee [25] argued that the critical technological aspects of
the shale petroleum industry, such as obtaining resources, investigation, and data processing, have been
actively developed from 2010 to 2016.

This study describes the development of technologies of directional drilling (DD) and increasing
permeability (IP), which are core technologies of the shale industry, in terms of convergence with smart
systems (SS). This is considering that the shale industry’s technological developments were focused
on productivity improvement. This study found the following: First, the intensity of technological
development, measured by the incidence of patents, increased significantly from 2012 to 2016. This point
is concordant with the results of Sandrea [9] who observed that there was progress in the productivity
of shale petroleum technology. Second, since 2012, a high proportion of technological developments
of DD have been developed in the form of convergence with SS. Third, IP technology had a low
tendency to converge with DD and SS, but both the number of patents developed and the complexity
of the technology were the highest. Furthermore, “reinforcing fractures by using prop” appeared to
be the most critical field of IP technologies since 2012. This result is consistent with the results of
Shah et al. [14] who also found that productivity improvement was achieved through reinforcing in
the shale industry.

2. Data and Methodology

This study investigated the development of technologies of shale petroleum by analyzing patent
data. This study utilized patent data related to production technologies of shale petroleum, such as
IP, DD, and SS, from 1997 to 2016. For its analysis, this study calculated the association strength and
betweenness centrality by utilizing the most finely distinguished scope (full digit) of technological index
(TI) of patent, such as international patent classification (IPC) and cooperative patent classification (CPC).

The analysis of this study has some features. This study focuses only on a portion of technologies
of the shale petroleum industry from the data collection stage, focusing on only 26 of the approximately
3900 technology indices. Thus, there are limitations to presenting comparative analysis of various
technologies, and to presenting new technologies in an exploratory manner. Still, this study has
some advantages. It focuses on the critical technologies of the shale petroleum industry and has
the advantage of using association strength, instead of cosine similarity, as the similarity measure.
According to Eck and Waltman [26], association strength is an unbiased measure compared to other
similarity measures, such as cosine similarity. This is because association strength is not substantially
correlated to the occurrence of input data. However, cosine similarity is positively correlated to the
occurrence of input data. That is, a frequently occurring TI tends to have higher similarity than a
less frequently occurring TI. Lastly, this study distinguishes and presents the results by technological
domains, and suggests the results in a numerical and visualized form.

2.1. Data

We retrieved patent data from the Korea intellectual property right information service (KIPRIS),
an online patent database system of the Korea intellectual property organization (KIPO) [27].
The retrieved data set includes patents for the technologies of American shale petroleum. The retrieval
process was as follows: First, we built a searching query by focusing on three critical technologies
of unconventional petroleum, namely “directional drilling,” “stimulating production by increasing
permeability,” and “smart system for control, surveying, or testing.” This is because, as described in
Section 1, DD and the stimulation technologies of unconventional petroleum have taken the critical role
of production and initiated the industrial growth of unconventional petroleum in the US. Furthermore,
SS are required to facilitate productive operation, advance the apparatus or method of DD, and increase
permeability [28]. Second, we focused on the patents applied to the US patent office. This is because
only the US has advanced in the growth of an unconventional petroleum (shale gas and tight oil)
industry since 2007.
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To collect patent data, we built a searching query that comprised the TIs of three technological
domains: directional drilling (DD), stimulating production by increasing permeability (IP), and smart
systems for control, surveying, or testing (SS). The TIs pertaining to the three technological domains
are shown in Table 1. In Table 1, the abbreviations “DD,” “IP,” and “SS” indicate TIs “E21B 43/,”
“E21B 7/,” and “E21B 44/.” For example, TI IP26 indicates E21B 43/26. The descriptions of TIs are
provided in Table 1.

Table 1. Description of technological indices (TIs) by technological domains [29].

Technological Domains Technological Index

Directional drilling (DD: E24B)

DD04 Directional drilling
DD043 Directional drilling with underwater environment
DD046 Horizontal drilling
DD06 Deflecting direction of borehole
DD061 Tools such as shaft, advancing relative to the guide

DD062 Tools such as shaft, rotating inside a non-rotating guide and
traveling with shaft

DD064 Tools adapted with drill bits
DD065 Tools using fluid jets
DD067 Tools locking sections of a pipe or the guide for a shaft
DD068 Drilling by using down-hole drilling motor
DD10 Correction of deflected borehole

Stimulating production by
increasing permeability (IP)

IP26 Forming crevices or fractures
IP2605 Forming crevices or fractures by using gas or liquefied gas
IP2607 Surface equipment for fracturing operation

IP261 Separated process of completion (1) cementing, plugging,
or consolidating, and (2) fracturing or forming formation

IP263 Forming crevices or fractures by using explosives
IP2635 Forming crevices or fractures by using nuclear energy
IP267 Reinforcing fractures by using prop
IP27 Forming crevices or fractures by using eroding chemicals (acids)

Smart system for control,
surveying, or testing (SS)

SS00 Automatic control system for drilling
SS005 Underground automatic control system
SS02 Automatic control of the tool feed
SS04 Tool feed’s automatic control responding to the torque of the drive

SS06 Tool feed’s automatic control responding to the flow or pressure of
the motive fluid of the drive

SS08 Tool feed’s automatic control responding to the amplitude of the
movement of the percussion tool

SS10 Arrangements of the automatic control stopping process when the
tool is lifted from the working face

Convergence of DD and IP (CDI) Includes technological indices from both DD and IP simultaneously

Convergence of DD and SS (CDS) Includes technological indices from both DD and SS simultaneously

Convergence of IP and SS (CIS) Includes technological indices from both IP and SS simultaneously

As shown in Table 1, this study classifies the retrieved patents into six kinds of technologies
such as DD, technologies that stimulate production by IP, SS technologies, and three kinds of
converged technologies, such as convergence of DD and IP (CDI), convergence of DD and SS (CDS),
and convergence of IP and SS (CIS) that involve the TIs within DD, IP, and SS, respectively.

Through the searching query, we found 12,964 applied patents from 1960 to 2019. However,
this study focused only on the 6421 granted patents, which were applied from 1997 to 2016, as shown in
Figure 1. In Figure 1, the blue line represents the number of applied patents, the orange line represents
the number of granted patents, and the gray dash represents the granted ratio. The granted patent
count is ordered by the application date.
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Figure 1. Annual patent count for the whole dataset—1967 to 2019 [27].

In Figure 1, the trend of the blue line increases twice around 1997 and 2007. The supposed
reasons that affect the trend are that the spot prices of natural gas were listed in Henry hub in January
1997, and the shale petroleum industry started commercial production in early 2007. In addition,
the applied patent counts, the granted patent counts, and the granted ratio have rapidly decreased
since 2017. The reason for the sharp decline in observations (blue and orange lines) is considered as an
incomplete aggregation of the database. Thus, this study excludes the observations applied since 2017.
Moreover, the reason for this study to use observation as an input of analysis is that the occurrence
of technology is recognized only when the patent data occurred consecutively over at least 5 years.
Thus, the discontinued observations are excluded.

2.2. Methodology

This study utilizes association strength as the technological relatedness measure between TIs of
patent [30], and betweenness centrality as a priority measure of TI [31]. The calculation process of
betweenness centrality was performed by using the software package “networkX” [32].

2.2.1. Technological Relatedness: Association Strength

In this study, we calculated the association strength similarity. The calculation processes of the
two measures were undertaken by following the formulas provided below [30].

Equations (1)–(5) show the calculation process of association strength similarity.

ctii j =
∑m

p=1
tipitipj, f or i , j, (1)

In Equation (1), ctii j is the number of co-occurrence of TIs i and j. tipi and tipj are terms for counting
the number of TIs in the patent. tip· is one (tip· = 1) when the TIs i or j exist in patent p, and tip· is zero(
tip· = 0

)
when either TIs do not exist in patent p. Thus, ctii j becomes one when both tipi and tipj are

one. m is number of total patents for a five-year research period.

stii =
∑m

j=1, j,i
ctii j , (2)

sti j =
∑n

i=1, j,i
ctii j , (3)

T =
∑n

i=1

∑n

j=1
ctii j , (4)
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In Equations (2) and (3), stii or j is the total co-occurred number of TIs i or j for a five-year research
period. T is sum of total co-occurred number of whole TIs.

SCi j =

ctii j
T

stii
T

sti j
T

, (5)

In Equation (5), SCi j is the similarity measure between TIs i and j, which occur over a 5-year
research period.

2.2.2. Betweenness Centrality

This study uses betweenness centrality to determine the comparative importance of TIs in the
graph of shale petroleum technologies [31].

CB(k) =
∑

v , k , w
k, v, w ∈ K

σvw(k)
σvw

, (6)

In Equation (6), CB(k) is the betweenness centrality of TI k. k is an element of K, a set of whole TIs.
Each TI is a node in the graph, which comprises TIs and their similarities. σvw denotes the number of
shortest paths from nodes v and w. σvw(k) denotes number of shortest paths through node k.

3. Results

3.1. Development of Unconventional Petroleum

Section 3 focuses on describing the technological development and convergence of the
unconventional petroleum technologies. First, we can easily identify differences in the extent of
technological development of unconventional petroleum by validating the annual patent counts of
each technological domain. Figure 2 presents information concerning the granted patent counts of
three technological domains and their converged technologies, and the weight of converged technology
of DD, IP, and SS.

In Figure 2A, the orange, gray, and yellow lines represent the annual counts of granted patent,
including the TIs of DD, IP, and SS with their converged technologies. Broadly, the granted patent
counts of the three technological domains increased from 1997 to 2014. In particular, from 2009 to 2014,
patents related with IP (gray line) rapidly expanded from 170 to 464 patents per annum. From 2011
to 2014, patents related to DD (orange line) rapidly expanded from 99 to 186 patents per annum,
and patents related with SS (yellow line) rapidly expanded from 62 to 186 patents per annum.

Figure 2B shows the weight of converged technology of the three technological domains (DD,
IP, and SS). Interestingly, the weight of converged technology of IP (gray line) shows a very low level of
weight in converged technology. While the weight of converged technologies of DD and SS (orange and
gray lines, respectively) have fluctuated around 0.2 from 1990s to 2000s, they have increased from
0.2 to 0.4 since 2011.

Figure 2C shows the annual counts of granted patents in converged technologies. The convergence
of DD and SS (orange line) always shows higher annual counts than others and have expanded from
2011 to 2014. The convergence of IP and SS (gray line) showed a zero count before 2009, and then
showed 11 patents per annum at its peak point in 2014. The convergence of DD and IP (yellow line)
also showed a zero count before 2004; it expanded from 2 patents per annum in 2011 to 14 patents per
annum in 2016.

Figure 2D shows the trend in the annual count of granted patents for DD, IP, and SS, which is very
similar to the orange, gray, and yellow lines of Figure 2A. This is because the weights of the converged
technologies are quite stable for the research period, as shown in Figure 2B.
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In summary, the intensity of technological development has increased in the last 20 years.
Moreover, in the past 10 years, converged technologies such as CDS, CIS, and CDI have been
developed. Technologies related to DD and SS show a lower extent of technological development with
a relatively higher weight of converged technology than IP. Technology related to IP shows a higher
intensity of technological development with a lower weight of converged technology. Only two patent
technological domains, those of CDS and CDI, rebounded in their annual count of granted patents in
2016. In the next subsections, this study presents technological development from the network aspect
of technological relatedness.

3.2. Network of Shale Petroleum Technologies

This subsection attempts to describe the technological development of shale petroleum by presenting
network properties and visualizing the networks of technological relatedness. The network properties
show the development of the patent set from the aspect of a network of technological relatedness.
Table 2 presents the network properties of patent technological relatedness in 5-year periods.

Table 2. Network properties of shale petroleum technologies’ patents.

Properties
Period

1997–2001 2002–2006 2007–2011 2012–2016

Patent count 453 786 1721 3254
Number of nodes 649 995 1930 3877
Number of edges 6197 10,001 24,781 64,598

Ratio between edges and nodes 9.55 10.05 12.84 16.66

Table 2 describes the network development for different research periods. The patent counts grew
by 94% on average in each period, while the number of nodes grew by 83%, the number of edges
by 123%, and the ratio between edges and nodes by 21%. As described in the previous subsection,
the values of Table 2 also show that the intensity of development in shale gas technology has increased.
In addition, the number of nodes, which means the number of TIs, has also increased. Meanwhile,
the connection between nodes has increased more rapidly. The increased edges and nodes in these
networks could mean that these patents contain more combinations of TIs than before. The increased
combination of TIs means an increased combination of new technological components, and thus,
the emergence of a new technology is expected.

Figure 3 shows networks of technological relatedness to help understand the growth of the
networks. The visualized networks show only the network of technological relatedness in the first and
last periods. The intermediate process is omitted because the networks show a steadily increasing trend
during the research period. Figure 3A,B show the visualized networks of technological relatedness
from 1997 to 2001 and from 2012 to 2016, respectively. Figure 3 was drawn using Gephi, a visualization
network software [33].

Figure 3 shows networks of technological relatedness of shale petroleum technologies from 1997 to
2001 (Figure 3A) and from 2012 to 2016 (Figure 3B). In Figure 3, the letters in orange, red, and blue
represent the TIs of IP, DD, and SS.

When Figure 3A is compared to Figure 3B, the latter has a more compact shape than the former.
This difference in the visualized results is due to the quantitative difference in patent count, the number
of nodes and edges between the two patent groups as shown in Table 2, and the difference in ratio
between the number of edges and nodes. In addition, the distance between the TIs of DD and SS have
become closer. The TIs of IP are still separated from other TIs. This point seems to be influenced by the
high number of patents of CDS, as shown in Figure 2C. These differences in the distance between TIs
can be described by the association strength similarity of TI, which represents technological relatedness.
The technological relatedness between technological domains is presented in Table 3.
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Table 3. Technological relatedness between technological domains.

Measure Technological Domains Period

1997–2001 2002–2006 2007–2011 2012–2016

Association strength between the
center nodes of technological domains

DD and SS (DD04 and SS00) 2.82 × 10−2 3.16 × 10−2 3.41 × 10−2 2.90 × 10−2

IP and SS (IP26 and SS00) - - 1.72 × 10−3 2.34 × 10−3

DD and IP (DD04 and IP26) - 1.20 × 10−3 1.05 × 10−3 2.67 × 10−3

Number of combinations of
technological indices between

technological domains

DD and SS 19 18 28 43
IP and SS - - 2 5
DD and IP - 3 6 13

Sum of association strength of
each combination

DD and SS 2.83 × 10−1 2.85 × 10−1 2.93 × 10−1 3.79 × 10−1

IP and SS - - 2.31 × 10−3 6.35 × 10−3

DD and IP - 4.59 × 10−3 1.29 × 10−2 1.86 × 10−2

Table 3 presents the association strength between the center nodes of the technological domains,
the number of edges between technological domains, and the sum of association strength similarity of
edges between technological domains.

Lines 1–3 in Table 3 show association strength, which represents the weight of the edge between
the center nodes of technological domains such as DD, IP, and SS. These association strength similarities
show the relatedness between the technological domains. In addition, the higher the association
strength, the closer the distance between the converged technologies in the network of TIs. In lines 4–6
of Table 3, the number of combinations of TIs between technological domains represents the number of
ways technologies converge. Thus, the convergence of DD and SS represents CDS, the convergence
of IP and SS represents CIS, and the convergence of DD and IP represents CDI. In the lines 7–9 of
Table 3, the sum of association strength in each combination between the TIs shows the changes in the
aggregate quantitative relatedness between technologies.

In the case of CDS, the association strength similarity between DD (DD04) and SS (SS00) has
increased by 2.80% for approximately 20 years. The number of combinations also increased by
approximately two times over the same period. Moreover, the sum of the association strength increased
by 33.82% over the same period. These changes in values are in concordance with the results from
Figure 3. These changes show that the convergence in technology is conducted in a more detailed way.
Thus, it implies an improvement in the level of technological development.

In the case of CIS, the association strength similarity between IP (IP26) and SS (SS00) occurred for
the last two periods. Compared to the initial state, the association strength from 2012 to 2016 increased
by 35.61%. The sum of association strength increased by 175.33%. The number of combinations has
more than doubled. However, the number of edges was the lowest compared to the other converged
technologies. Furthermore, compared to other technologies, CIS occurred recently and has not grown
yet. In Table 4, while the granted patent counts of CIS increased, the ratio between the edges and nodes
of CIS decreased compared to the initial state in the period from 2012 to 2016. Information pertaining
to granted patent counts and other network properties by technological domains are summarized
in Table 4.

In the case of CDI, the association strength between DD (DD04) and IP (IP26) occurred for the last
three periods. Compared to the initial state, the association strength increased by 121.53%, while the
sum of association strength increased by 305.76%. Interestingly, the number of edges increased two
times for each of these periods. These results show that CDI has developed in a manner that has
increased the various ways in which technology converges. In particular, the newly emerged ways of
technological convergence seem to increase the technological relatedness between DD and IP. In Table 4,
the granted patent count for CDI is six to ten times bigger in the period 2012 to 2016 compared to the
previous periods. Furthermore, the ratio between edges and nodes increased two times in the period
2012 to 2016 compared to the previous periods.
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Table 4. Network properties by technological domains.

Technological Domain Property Period

1997–2001 2002–2006 2007–2011 2012–2016

Directional drilling (DD)

Patent count 212 243 396 585
Number of nodes 271 345 532 899
Number of edges 1902 2285 4946 10,811

Ratio between edges and nodes 7.02 6.62 9.30 12.03

Increasing permeability (IP)

Patent count 111 371 931 1856
Number of nodes 245 560 1196 2662
Number of edges 2118 5831 15,658 42,416

Ratio between edges and nodes 8.64 10.41 13.09 15.93

Smart system (SS)

Patent count 103 131 294 534
Number of nodes 242 273 547 1017
Number of edges 1494 1480 3891 11,021

Ratio between edges and nodes 6.17 5.42 7.11 10.84

Convergence of DD and SS (CDS)

Patent count 27 38 91 219
Number of nodes 107 106 145 358
Number of edges 1032 775 1048 4640

Ratio between edges and nodes 9.64 7.31 7.23 12.96

Convergence of IP and SS (CIS)

Patent count - - 4 27
Number of nodes - - 31 94
Number of edges - - 222 609

Ratio between edges and nodes - - 7.16 6.48

Convergence of DD and IP (CDI)

Patent count - 3 5 33
Number of nodes - 15 15 133
Number of edges - 57 62 1324

Ratio between edges and nodes - 3.80 4.13 9.95

Furthermore, Table 4 shows that IP (15.93) is the highest for the ratio between edges and nodes by
technology area, followed by CDS (12.96), DD (12.03), SS (10.84), CDI (9.95), and CIS (6.48). Interestingly,
although the IP has converged less with DD and SS, the technological development of IP shows that
the combination of technology elements has progressed in a more complex pattern (high connectivity).

As described before, not only have shale petroleum technologies developed, the relationships
between technologies have also changed. Next, this study attempts to determine the priorities of
technological components, which are assumed to have changed with the development of technology,
by presenting the betweenness centrality of TI.

3.3. Priority of Technological Components

In this section, the betweenness centrality is presented to validate the priority of technological
components by technological domains. Table 5 presents the betweenness centrality of 10 TIs from the
top for the four periods between 1997 and 2016.

Table 5. Betweenness centrality of technological indices (TIs) by period.

Order

Period

1997–2001 2002–2006 2007–2011 2012–2016

TI Betweenness Centrality TI Betweenness Centrality TI Betweenness Centrality TI Betweenness Centrality

1 SS00 0.45 DD04 0.38 SS00 0.60 SS00 0.43
2 DD061 0.18 SS00 0.33 IP267 0.32 IP267 0.24
3 DD046 0.11 DD061 0.27 DD04 0.16 DD04 0.17
4 IP267 0.11 IP267 0.23 DD046 0.07 DD06 0.11
5 DD04 0.09 DD046 0.19 DD06 0.05 SS02 0.02
6 SS005 0.06 SS06 0.05 IP27 0.04 IP263 0.02
7 DD068 0.06 DD068 0.04 DD068 0.03 DD068 0.01
8 DD06 0.05 DD06 0.03 IP263 0.02 DD046 0.01
9 IP263 0.03 IP27 0.01 DD061 0.01 DD064 3 × 10−3

10 SS02 0.02 SS02 0.01 SS02 0.01 SS005 2 × 10−3
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In Table 5, SS00 (automatic control system for drilling) is always ranked at the top. This result
implicates that the technological development of the shale petroleum industry has focused on the smart
system, which also has a high weight of convergence with DD for Figure 1. IP267 (reinforcing fractures
by using prop) has been ranked the second highest from 2007 to 2016. This result is in concordance
with the results of Shah et al. [14] Furthermore, DD04 (directional drilling), DD046 (horizontal drilling),
DD06 (deflecting direction of borehole), and DD061 (tools such as shaft rotating inside a non-rotating
guiding traveling) have been ranked between second and fifth. Interestingly, DD046 was ranked
eighth in the last period, while DD06 was still ranked fourth. This result may implicate that the
optimization of the production process seems to be more dependent on the technologies related to
deflecting the direction of borehole than horizontal drilling, which is a recent technological development.
SS005 (underground automatic control system), SS06 (tool feeds’ automatic control, which responds to
the flow or pressure of the motive fluid of drive), SS02 (automatic control of the tool feed), and DD068
(drilling by using down-hole drilling motor) have been frequently ranked between sixth and tenth.
These TIs have a common point, that is, they can be applied to underground drilling systems. Lastly,
IP263 (fracturing by using explosive) has seen an increase in its betweenness centrality rank since 2007.
These increases in rank may indicate that the diversification of fracturing method has gathered interest
since the year the industry came into existence.

To describe the primary focus of technological domains in the recent period, this study presents the
betweenness centrality of TI by six technological domains from 2012 to 2016 in Table 6. Results bearing
values less than 0.001 are omitted. As shown, there is a big difference in the betweenness centralities
of DD06 and DD046. The betweenness centrality of DD06 is approximately seven times bigger than
that of DD046. Thus, the unconverged DD technologies have focused recently on the deflecting
direction technologies. The unconverged technology of IP mainly focuses on IP267, reinforcing
fractures (refracturing), in the recent period. In the case of the unconverged technologies of SS, SS00 is
approximately 11 times bigger than SS02, which is ranked the second highest. The detailed component
of the technology is not important for the development of the unconverged technology of SS. In the
case of CDS, the betweenness centralities of the top two TIs are relatively bigger than that of the
others. The top two Tis do not relate to the detailed function of the technologies. This shows that
although the technological development of CDS is undertaken with a higher intensity than that of
other converged technologies, the form of technological development is less related to the details of
the technological component. CIS has only one TI, which shows that CIS has not grown yet. In the
case of CDI, the betweenness centrality of Tis is quite similar. Interestingly, a more general level of
TI has the lowest ranking value. Thus, it can be presumed that although CDI has a low intensity of
technological development, these developments have shown relatively specific functions. In addition,
converged technologies, such as CIS and CDI, show lower levels in the variety of priory technological
components that pose high betweenness centrality.

Table 6. Betweenness centrality by technological domains—2012 to 2016.

Technological Domain Order TI Betweenness Centrality Technological Domain Order TI Betweenness Centrality

Directional drilling (DD)

1 DD04 0.7043

Convergence of DD and SS

1 SS00 0.616545
2 DD06 0.527745 2 DD04 0.27495
3 DD046 0.074425 3 DD06 0.105687
4 DD068 0.039533 4 DD067 0.04935
5 DD061 0.024794 5 SS005 0.017216
6 DD064 0.017748 6 DD046 0.011913

7 DD068 0.003399
8 SS02 0.00288

Increasing permeability (IP) 1 IP267 0.250449 Convergence of IP and SS 1 SS00 0.122022 IP263 0.026008

Smart system (SS)

1 SS00 0.900833
Convergence of DD and IP

1 DD046 0.057483
2 SS02 0.083788 2 DD06 0.042737
3 SS005 0.016659 3 DD04 0.026139
4 SS04 0.012174
5 SS06 0.002649
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Interestingly, some technology components such as DD046, DD067, and SS005 were relatively high
within the converged technological domain compared to the order of priority within the unconverged
technological domain. DD046 shows a lower priority than DD04 and DD06 within DD in Table 6.
Meanwhile, DD046 shows the highest priority within CDI in Table 6. DD067 is not shown within DD,
but DD067 shows the fourth priority within CDS in Table 6. SS005 shows lower priority than SS00 and
SS02 within SS, but SS005 shows a higher priority than SS02 within CDS in Table 6. Thus, DD046 is an
important component in the form of CDI technology. Furthermore, when DD046 is developed in the
form of CDI, it is considered more important as a technological component. Moreover, DD067 and
SS005 are considered as important technological components in the form of CDS technology.

4. Conclusions

This study attempted to shed light on technological development of the US shale petroleum
industry. Here, this study focused on developments and convergences of critical technologies such
as directional drilling, increasing permeability, and smart system. To analyze the technological
progress, this study measured association strength as relatedness of technological components,
described technologies as network of technological components, and measured betweenness centrality
as priority of technological components. The results can be stylized as follows: First, the technological
developments have been intensively conducted since 2012. Second, the development of DD technologies
has been closely related to SS from 2012 to 2016. Except for CDS, the development of converged
technologies is lower, considering their intensity and variety, compared to unconverged technologies.
Third, the IP technologies are less converged with the other technological domains of direction
drilling and smart system. However, IP technologies have intensively developed with higher
complexity, more components, and number of inventions than other technological domains. Fourth,
some technologies are more significant in the form of converged technology. Horizontal drilling
(DD046) is significant in the form of CDI. Tools locking sections of underground apparatus (DD067)
and underground automatic control systems (SS005) are significant in the form of CDS.

This study has limitations as its focus is restricted to only some technologies of the shale petroleum
industry. However, this study suggests specific information for the respective technologies by using
the most specific level of data (full digit of TI). Thus, further investigation is required that analyzes
other key technologies of the shale petroleum industry by using the most specific level of data.
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Abbreviations
The following abbreviations and symbols used in this manuscript:

CDI Convergence of directional drilling and stimulating production by increasing permeability
CDS Convergence of directional drilling and smart system for controlling, surveying, or testing
CIS Convergence of increasing permeability and smart system for controlling, surveying, or testing
CPC Cooperative patent classification
DD Directional drilling, technological index which begins with “E21B 7/”.

Ex) E21B 7/04, E21B 7/04, E21B 7/046, E21B 7/06, E21B 7/061, E21B 7/062, E21B 7/064,
E21B 7/065, E21B 7/067, E21B 7/068, E21B 7/10

IP Stimulating production by increasing permeability, technological index which begins with “E21B 43/”.
Ex) E21B 43/26, E21B 43/2605, E21B 43/2607, E21B 43/261, E21B 43/263, E21B 43/2635,
E21B 43/267, E21B 43/27

IPC International patent classification
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ISED International Science and Economic Development Canada
KIPO Korea intellectual property organization
KIPRIS Korea intellectual property right information service
SS Smart system for controlling, surveying, or testing, a technological index which begins with “E21B 44.”

Ex) E21B 44/00, E21B 44/005, E21B 44/02, E21B 44/04, E21B 44/06, E21B 44/08, E21B 44/10
TI Technological index
US United States
Symbols:
ctii j Number of co-occurrence of technological index i and j
i, j Technological index in a patent p
m, n Number of patents for some five-year research period
tipi, tipj Term for counting the number of technological indices in a patent
p One out of many patents for some research period
stii, sti j Total co-occurred number of technological index i or j for some research period
T Sum of total co-occurred number of whole technological index
SCi j Similarity measure between technical indices i and j
CB(k) Betweenness centrality of technological index
σvw(k) Number of shortest paths through node k
σvw Number of shortest paths from nodes v and w
K Set of whole technological indices
k, v, m Technological index consisting of a node of association similarity (technological relatedness) network
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