Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller
Abstract
:1. Introduction
- -
- Using interstage—cooling the compressor reduces the compression work. To compress air in the compressor, about 60% of the power generated by the turbine is used.
- -
- Using a split combustion chamber on the main part and afterburner provides an increase in expansion work and gas temperature after the turbine.
- -
- Injecting water before and after compressed air in compressor gas turbine. Data in article [6] shows that using the method of injecting water before and after compress air has an influence on fluctuation intensity between total pressure and total temperature ratio.
- -
- Regeneration—using exhaust gases from the turbine for heating in the heat exchanger. After heating, process air is directed to the combustion chamber.
- -
- Steam injection into the combustion chamber STIG turbine Steam Injection Gas Turbine. Injection steam causes an increase in the flue gas stream, which leads to an increase in power generation.
- -
- Construction of a HAT Humidified Air Turbine is based on a combination of the concept of regenerative air heating before the combustion and water injection to air after the compressor. Water injection into the air before the regenerative heat exchanger causes a decrease in temperature compressed medium and leads to increases in heat regeneration efficiency [7].
- -
- Wet compression technique—the advantage of the method is the ability to inject enough water to evaporate, and cooling the air is conducted in stable conditions. In this process, we obtained independence from the temperature and humidity of the air, causing a reduction of energy use for the compressor.
- -
- The integration of gas turbine with Rankine Cycles (RCs) or the organic Rankine cycles (ORCs). Exhaust gases from the gas turbines have very high energy generation potential. They can be used for increasing the temperature of air and fuel before the combustion chamber or for producing steam in a heat recovery boiler [7].
- -
- Transformation of the exhaust gases enthalpy to a new synthetic fuel. This method of waste-heat recovery is called thermochemical recuperation (TCR). TCR can influence energy efficiency of gas turbines and different devices using fossil fuels. This method can be implemented for steam methane and ethanol reforming. The idea of TCR method is to use waste heat from flue gas for producing a new fuel used in gas turbine [8,9].
2. Analysis and Modelling
2.1. Adsorption Chillers
2.2. Gas and Steam Cycle
2.3. Type of Chiller
2.4. COP Values
3. Summary and Final Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
AC | Adsorption Chiller |
FIS | Fuzzy Inference System |
CC | Cooling Capacity |
CCHP | Combined Cooling, Heating and Power |
COP | Coefficient of performance |
SCP | Specific Cooling Power |
HVAC | Heating, Ventilation, Air Conditioning |
References
- Information Agency Newseria. Available online: https://biznes.newseria.pl/biuro-prasowe/ochrona_srodowiska/wzrost-rynku-hvac-spowolni,b922159909 (accessed on 27 November 2019).
- Goraco, Coraz Cieplej. Klimatyzacja Pozera Energie. Available online: https://wysokienapiecie.pl/10243-klimatyzacja-potrzebuje-coraz-wiecej-energii/ (accessed on 20 November 2019).
- The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning; Report of the International Energy Agency; International Energy Agency: Paris, France, May 2018.
- Bunczyk, A.; Bogusławski, P. Energetyka Cieplna w Liczbach—2017; Urzad Regulacji Energetyki: Warszawa, Poland, 2017. [Google Scholar]
- Burkhard, S.; Kalf, R.; Land, A.; Mutka, K.; Papillon, P.; Stryi-Hipp, G.; Weiss, W. Common Vision for the Renewable Heating & Cooling sector in Europe, European Technology Platform on Renewable Heating and Cooling; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Lian, A.; Zheng, Q.; Jiang, Y.; Lin, X.; Zhang, H. Sensitivity of air/mist non-equilibrium phase transition cooling to transient characteristics in a compressor of gas turbine. Int. J. Heat Mass Transf. 2019, 137, 882–894. [Google Scholar] [CrossRef]
- Skorek, J.; Kalina, J. Gazowe Układy Kogeneracyjne; Wydawnictwa Naukowo Techniczne: Warszawa, Poland, 2005. [Google Scholar]
- Pashchenko, D. Energy optimization analysis of a thermochemical exhaust gas recuperation system of a gas turbine unit. Energy Convers. Manag. 2018, 171, 917–924. [Google Scholar] [CrossRef]
- Pashchenko, D. First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming. Energy 2018, 143, 478–487. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Stefański, S.; Krzywański, J.; Grabowska, K. Using the adsorption chillers for utilisation of waste heat from rotary kilns. In Proceedings of the Experimental Fluid Mechanics, Mikulov, Czech Republic, 21–24 November 2017. [Google Scholar]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Stefański, S.; Siwek, T.; Surowiec, T.; Wójcik, T.M. Potential uses of small cogeneration systems in prosumer systems. IOP Conf. Ser. 2019, 214, 012134. [Google Scholar] [CrossRef]
- Mitra, S.; Kumar, P.; Srinivasan, K.; Dutta, P. Development and performance studies of an air cooled two-stage multi-bed silica gel + water adsorption system. Int. J. Refrig. 2016, 67, 174–189. [Google Scholar] [CrossRef]
- Stefanski, S.; Mika, Ł.; Sztekler, K.; Kalawa, W.; Lis, Ł.; Nowak, W. Adsorption bed configurations for adsorption cooling application. In Proceedings of the Energy and Fuels, Krakow, Poland, 21–23 September 2018. [Google Scholar]
- Askari, I.B.; Calise, F.; Vicidomini, M. Design and Comparative Techno-Economic Analysis of Two Solar Polygeneration Systems Applied for Electricity, Cooling and Fresh Water Production. Energies 2019, 12, 4401. [Google Scholar] [CrossRef] [Green Version]
- Krzywanski, J. A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods. Energies 2019, 12, 4441. [Google Scholar] [CrossRef] [Green Version]
- Chorowski, M.; Rogala, Z.; Czupryński, P. Experimental Study of Performance Improvement of 3-Bed and 2-Evaporator Adsorption Chiller by Control Optimization. Energies 2019, 12, 3943. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zheng, L.; Piontek, U. Installation and Operation of a Solar Cooling and Heating System Incorporated with Air-Source Heat Pumps. Energies 2019, 12, 996. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, K.; Sosnowski, M.; Krzywanski, J.; Sztekler, K.; Kalawa, W.; Zywlka, A.; Nowak, W. Analysis of heat transfer in a coated bed of an adsorption chiller. MATEC Web Conf. 2018, 240. [Google Scholar] [CrossRef] [Green Version]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Stefanski, S.; Mika, Ł; Siwek, T.; Krzywanski, J.; Sosnowski, M.; Grabowska, K.; Alharbi, A.A. Experimental study of two-bed adsorption chiller with desalination. In Proceedings of the Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wrocław, Poland, 23–28 June 2019. [Google Scholar]
- Aep Saepul Uyun, A.; Miyazaki, T.; Ueda, Y.; Akisawa, A. Experimental Investigation of a Three-Bed Adsorption Refrigeration Chiller Employing an Advanced Mass Recovery Cycle. Energies 2009, 2, 531–544. [Google Scholar] [CrossRef] [Green Version]
- More Efficient Material Developed for Adsorption Chillers. Available online: https://www.refrigerationandaircon.co.za/index.php/features/air-conditioning/329-more-efficient-material-developed-for-adsorption-chillers (accessed on 6 December 2019).
- Sah, R.P.; Choudhury, B.; Das, R.K. A review on adsorption cooling systems with silica gel and carbon as adsorbents. Renew. Sustain. Energy Rev. 2015, 45, 123–134. [Google Scholar] [CrossRef]
- Shmroukh, A.N.; Ali, A.H.H.; Ookawara, S. Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact. Renew. Sustain. Energy Rev. 2015, 50, 445–456. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Herman, F.; Pyrka, P.; Sosnowski, M.; Prauzner, T.; Nowak, W. Optimization of a threebed adsorption chiller by genetic algorithms and neural networks. Energy Convers. Manag. 2017, 153, 313–322. [Google Scholar] [CrossRef]
- Khan, M.Z.I.; Alam, K.C.A.; Saha, B.B.; Akisawa, A.; Kashiwagi, T. Study on a re-heat two-stage adsorption chiller–The influence of thermal capacitance ratio, overall thermal conductance ratio and adsorbent mass on system performance. Appl. Therm. Eng. 2007, 27, 1677–1685. [Google Scholar] [CrossRef]
- Siemens Gas Turbines. Available online: https://new.siemens.com/global/en/products/energy/power-generation/gas-turbines/sgt5-4000f.html (accessed on 27 November 2019).
- Elektrociepłownia Zeran. Available online: https://termika.pgnig.pl/elektrocieplownia-zeran (accessed on 27 November 2019).
- What Is IPSEpro? Available online: http://simtechnology.com/CMS/index.php/ipsepro (accessed on 27 November 2019).
- New Energy Transfer Supplies Polish Sorption Technology to Saudi Arabia. Available online: http://newenergytransfer.com/ (accessed on 20 November 2019).
- Chorowski, M. Trigeneracja—Zalety i ograniczenia. Nowa Energ. 2014, 4, 46–51. [Google Scholar]
- Ziębik, A.; Szega, M. Adaptation of 200 MW energy units for heat production—The effective way of producing system heat and cooling agents. Energetyka 2017, 8, 380–386. [Google Scholar]
- Bamisile, O.; Huang, Q.; Anane, P.O.; Dagbasi, M. Performance analyses of a renewable energy powered system for trigeneration. Sustainability 2019, 11, 6006. [Google Scholar] [CrossRef] [Green Version]
Electric power output | 292 MW |
Exhaust mass flow | 692 kg/s |
Exhaust temperature | 577 °C |
Electric power output | 383.7 MWe |
Thermal power output | 343.93 MWt |
Useful heat Qun | 251.44 MWt |
Electrical efficiency | 51.7% |
Heat-to-power ratio | 1.14 |
Fresh steam pressure | 160 bar |
Fresh steam temperature | 540 °C |
Steam mass flow | 70 kg/s |
Superheated steam temperature | 565 °C |
Feed water temperature—summer mode | 75 °C |
Return water temperature—summer mode | 45 °C |
Cogeneration water mass flow rate | 2000 kg/s |
Model ADC | Source of Heat for Regeneration | ||
---|---|---|---|
Cooling capacity | 1.070 kW | Temperature range | 60–84 °C |
Refrigerant | Water | Chilled water | |
Dimensions | Temperature range | 16–11 °C | |
Width | 3500 mm | Cooling water | |
Length | 4500 mm | Temperature range 3–38 °C | |
Height | 5000 mm | ||
Weight | 20,000 kg |
Parameter | Symbol | Value | Unit |
---|---|---|---|
CHP electric power | Nen | 383.7 | MW |
Factor of chemical energy utilisation in CHP system | EUFt | 85.7 | % |
Factor of chemical energy utilisation in polygeneration system [12] | EUFt | 75.6 | % |
Heat flux fed to the adsorption chiller | QN | 188 | MW |
Cooling capacity | Qch | 113 | MW |
Temperature drop of district water in the chiller | ΔTz | 7 | °C |
District water temperature at feed side—summer mode | - | 75 | °C |
District water temperature at return side—summer mode | - | 66.2 | °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sztekler, K.; Kalawa, W.; Mika, L.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Nowak, W.; Siwek, T.; Bieniek, A. Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller. Energies 2020, 13, 515. https://doi.org/10.3390/en13030515
Sztekler K, Kalawa W, Mika L, Krzywanski J, Grabowska K, Sosnowski M, Nowak W, Siwek T, Bieniek A. Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller. Energies. 2020; 13(3):515. https://doi.org/10.3390/en13030515
Chicago/Turabian StyleSztekler, Karol, Wojciech Kalawa, Lukasz Mika, Jaroslaw Krzywanski, Karolina Grabowska, Marcin Sosnowski, Wojciech Nowak, Tomasz Siwek, and Artur Bieniek. 2020. "Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller" Energies 13, no. 3: 515. https://doi.org/10.3390/en13030515
APA StyleSztekler, K., Kalawa, W., Mika, L., Krzywanski, J., Grabowska, K., Sosnowski, M., Nowak, W., Siwek, T., & Bieniek, A. (2020). Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller. Energies, 13(3), 515. https://doi.org/10.3390/en13030515