Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Body-Fitted Structured Grid
2.2. Moving the Mesh
2.3. Scroll Geometry and Simulation Setup
3. Results
3.1. Mesh Results
3.2. CFD Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations and Nomenclature
Symbols | |
x | nodal position |
blending factor | |
Subscript and Superscript | |
i | ith time step |
final | final position of the grid node |
Acronyms | |
AG | Actual Grid |
CFD | Computational Fluid Dynamics |
NG | Next Grid |
ORC | Organic Rankine Cycle |
PDM | Positive Displacement Machine |
WOM | Whole ORC Model |
References
- Landelle, A.; Tauveron, N.; Haberschill, P.; Revellin, R.; Colasson, S. Organic Rankine cycle design and performance comparison based on experimental database. Appl. Energy 2017, 204, 1172–1187. [Google Scholar] [CrossRef]
- Emhardt, S.; Tian, G.; Chew, J. A review of scroll expander geometries and their performance. Appl. Ther. Eng. 2018, 141, 1020–1034. [Google Scholar] [CrossRef]
- Seher, D.; Lengenfelder, T.; Gerhardt, J.; Eisenmenger, N.; Hackner, M.; Krinn, I. Waste heat recovery for commercial vehicles with a Rankine process. In Proceedings of the 21st Aachen Colloquium on Automobile and Engine Technology, Aachen, Germany, 8–10 October 2012; pp. 7–9. [Google Scholar]
- Lemort, V.; Legros, A. 12—Positive displacement expanders for Organic Rankine Cycle systems. In Organic Rankine Cycle (ORC) Power Systems; Macchi, E., Astolfi, M., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 361–396. [Google Scholar] [CrossRef]
- Wang, H.; Peterson, R.B.; Herron, T. Experimental performance of a compliant scroll expander for an organic Rankine cycle. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 863–872. [Google Scholar] [CrossRef]
- Álvarez-Alvarado, J.M.; Ríos-Moreno, G.J.; Ventura-Ramos, E.; Ronquillo-Lomelí, G.; Trejo-Perea, M. Experimental Study of a 1-kW Organic Rankine Cycle Using R245fa Working Fluid and a Scroll Expander: A Case Study. IEEE Access 2019, 7, 154515–154523. [Google Scholar] [CrossRef]
- Declaye, S.; Quoilin, S.; Guillaume, L.; Lemort, V. Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 2013, 55, 173–183. [Google Scholar] [CrossRef]
- Lemort, V.; Quoilin, S.; Cuevas, C.; Lebrun, J. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Appl. Ther. Eng. 2009, 29, 3094–3102. [Google Scholar] [CrossRef] [Green Version]
- Ali Tarique, M.; Dincer, I.; Zamfirescu, C. Experimental investigation of a scroll expander for an organic Rankine cycle. Int. J. Energy Res. 2014, 38, 1825–1834. [Google Scholar] [CrossRef]
- Creux, L. Rotary Engine. U.S. Patent No. 801,182, 15 April 1905. [Google Scholar]
- Guttinger, H. Displacement machine for Compressible Media. U.S. Patent No. 3,989,422, 29 January 1976. [Google Scholar]
- Young, N.; McCullough, J. Scroll Type Positive Fluid Displacement Apparatus. U.S. Patent No. 3,884,599, 20 May 1975. [Google Scholar]
- Montelius, C. Rotary Compressor or Motor. US Patent No. 2,324,168, 13 July 1943. [Google Scholar]
- Shaffer, B.R.; Groll, E.A. Variable wall thickness scroll geometry modeling with use of a control volume approach. Int. J. Refrig. 2013, 36, 1809–1820. [Google Scholar] [CrossRef]
- Peng, B.; Lemort, V.; Legros, A.; Hongsheng, Z.; Haifeng, G. Variable thickness scroll compressor performance analysis—Part I: Geometric and thermodynamic modeling. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2017, 231, 633–640. [Google Scholar] [CrossRef]
- Peng, B.; Zhao, S.; Li, Y. Thermodynamic Model and Experimental Study of Oil-free Scroll Compressor. J. Phys. Conf. Ser. 2017, 916, 012048. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Halm, N.P.; Groll, E.A.; Braun, J.E. Mathematical modeling of scroll compressors—part I: compression process modeling. Int. J. Refrig. 2002, 25, 731–750. [Google Scholar] [CrossRef]
- Bell, I.H.; Groll, E.A.; Braun, J.E.; Horton, W.T.; Lemort, V. Comprehensive analytic solutions for the geometry of symmetric constant-wall-thickness scroll machines. Int. J. Refrig. 2014, 45, 223–242. [Google Scholar] [CrossRef]
- Bell, I.H. Theoretical and Experimental Analysis of Liquid Flooded Compression in Scroll Compressors. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2011. [Google Scholar]
- Ma, Z.; Bao, H.; Roskilly, A.P. Dynamic modelling and experimental validation of scroll expander for small scale power generation system. Appl. Energy 2017, 186, 262–281. [Google Scholar] [CrossRef]
- Bell, I.H.; Ziviani, D.; Lemort, V.; Bradshaw, C.R.; Mathison, M.; Horton, W.T.; Braun, J.E.; Groll, E.A. PDSim: A general quasi-steady modeling approach for positive displacement compressors and expanders. Int. J. Refrig. 2020, 110, 310–322. [Google Scholar] [CrossRef]
- Ziviani, D.; Bell, I.H.; Zhang, X.; Lemort, V.; Paepe, M.D.; Braun, J.E.; Groll, E.A. PDSim: Demonstrating the capabilities of an open-source simulation framework for positive displacement compressors and expanders. Int. J. Refrig. 2020, 110, 323–339. [Google Scholar] [CrossRef]
- Mendoza, L.; Lemofouet, S.; Schiffmann, J. Testing and modelling of a novel oil-free co-rotating scroll machine with water injection. Appl. Energy 2017, 185, 201–213. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; De Pascale, A.; Melino, F.; Ottaviano, S.; Peretto, A.; Torricelli, N. Performance prediction of a reciprocating piston expander with semi-empirical models. Energy Procedia 2019, 158, 1737–1743. [Google Scholar] [CrossRef]
- Giuffrida, A. Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles. Appl. Energy 2017, 193, 356–368. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; De Pascale, A.; Melino, F.; Ottaviano, S.; Peretto, A.; Torricelli, N. Application and comparison of semi-empirical models for performance prediction of a kW-size reciprocating piston expander. Appl. Energy 2019, 249, 143–156. [Google Scholar] [CrossRef]
- Fanelli, E.; Pinto, G.; Cornacchia, G.; Braccio, G. Parameters identification for scroll expander semi-empirical model by using genetic algorithm. Energy Procedia 2018, 148, 736–743. [Google Scholar] [CrossRef]
- Gao, H.; Ding, H.; Jiang, Y. 3D Transient CFD Simulation of Scroll Compressors with the Tip Seal. IOP Conf. Ser. Mater. Sci. Eng. 2015, 90, 012034. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Song, Y.; Li, Q.; Zhang, D. Novel structured dynamic mesh generation for CFD analysis of scroll compressors. Proc. Inst. Mech. Eng. Part A J. Power Energy 2015, 229, 1007–1018. [Google Scholar] [CrossRef]
- Suman, A.; Randi, S.; Casari, N.; Pinelli, M.; Nespoli, L. Experimental and Numerical Characterization of an Oil-Free Scroll Expander. Energy Procedia 2017, 129, 403–410. [Google Scholar] [CrossRef]
- Sun, S.; Wu, K.; Guo, P.; Yan, J. Analysis of the three-dimensional transient flow in a scroll refrigeration compressor. Appl. Ther. Eng. 2017, 127, 1086–1094. [Google Scholar] [CrossRef]
- Song, P.; Zhuge, W.; Zhang, Y.; Zhang, L.; Duan, H. Unsteady Leakage Flow Through Axial Clearance of an ORC Scroll Expander. Energy Procedia 2017, 129, 355–362. [Google Scholar] [CrossRef]
- Picavet, A.; Genevois, D. Three-Dimensional Navier-Stokes Simulations of Working of Scroll Compressors. In Proceedings of the 24th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, 9–12 July 2018. [Google Scholar]
- Casari, N.; Suman, A.; Ziviani, D.; Van Den Broek, M.; De Paepe, M.; Pinelli, M. Computational Models for the Analysis of positive displacement machines: Real Gas and Dynamic Mesh. Energy Procedia 2017, 129, 411–418. [Google Scholar] [CrossRef]
- Rane, S. Grid Generation and CFD Analysis of Variable Geometry Screw Machines. Ph.D. Thesis, City University London, London, UK, 2015. [Google Scholar]
- Rane, S.; Kovacevic, A. Algebraic generation of single domain computational grid for twin screw machines. Part I. Implementation. Adv. Eng. Softw. 2017, 107, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Kovacevic, A.; Stosic, N.; Smith, I. Screw Compressors: Three Dimensional Computational Fluid Dynamics and Solid Fluid Interaction; Springer Science & Business Media: Berlin, Germany, 2007; Volume 46. [Google Scholar]
- Kovacevic, A.; Rane, S. Algebraic generation of single domain computational grid for twin screw machines Part II–Validation. Adv. Eng. Softw. 2017, 109, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Basha, N.; Rane, S.; Kovacevic, A. Multiphase Flow Analysis in an Oil-injected Twin Screw Compressor. In Proceedings of the 3rd World Congress on Momentum, Heat and Mass Transfer (MHMT’18), Budapest, Hungary, 12–14 April 2018. [Google Scholar]
- Casari, N.; Fadiga, E.; Pinelli, M.; Suman, A.; Kovacevic, A.; Rane, S.; Ziviani, D. Numerical investigation of oil injection in a Roots blower operated as expander. IOP Conf. Ser. Mater. Sci. Eng. 2019, 604, 012075. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Sun, S.; Kovacevic, A.; Li, Q.; Bruecker, C. Transient flow analysis in a Roots blower: Experimental and numerical investigations. Mech. Syst. Signal Process. 2019, 134, 106305. [Google Scholar] [CrossRef]
- Ding, H.; Jiang, Y. CFD Simulation of An Oil Flooded Scroll Compressor Using VOF Approach. In Proceedings of the 23th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, 11–14 July 2016. [Google Scholar]
- Hesse, J.; Spille-Kohoff, A.; Andres, R.; Hetze, F. CFD simulation of scroll compressors with axial and radial clearances and thermal deformation. In 18 Internationales Stuttgarter Symposium; Bargende, M., Reuss, H.C., Wiedemann, J., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; pp. 123–137. [Google Scholar]
- Randi, S.; Casari, N.; Pinelli, M.; Suman, A.; Ziviani, D. WOM: Whole ORC Model. In Proceedings of the 24th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, 9–12 July 2018. [Google Scholar]
- Spekreijse, S. Elliptic Grid Generation Based on Laplace Equations and Algebraic Transformations. J. Comput. Phys. 1995, 118, 38–61. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; Casari, N.; De Pascale, A.; Melino, F.; Ottaviano, S.; Pinelli, M.; Spina, P.; Suman, A. Experimental analysis of a micro-ORC driven by piston expander for low-grade heat recovery. Appl. Ther. Eng. 2019, 148, 1278–1291. [Google Scholar] [CrossRef]
- Morini, M.; Pavan, C.; Pinelli, M.; Romito, E.; Suman, A. Analysis of a scroll machine for micro ORC applications by means of a RE/CFD methodology. Appl. Ther. Eng. 2015, 80, 132–140. [Google Scholar] [CrossRef]
- Menter, F.R.; Esch, T. Elements of Industrial Heat Transfer Prediction. In Proceedings of the 16th Brazilian Congress of Mechanical Engineering (COBEM), Uberlândia, Brazil, 26–30 November 2001. [Google Scholar]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Tillner-Roth, R.; Baehr, H.D. An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa. J. Phys. Chem. Ref. Data 1994, 23, 657–729. [Google Scholar] [CrossRef] [Green Version]
- Fadiga, E.; Casari, N.; Suman, A.; Pinelli, M. CoolFOAM: The CoolProp wrapper for OpenFOAM. Comput. Phys. Commun. 2019, 107047. [Google Scholar] [CrossRef]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [Green Version]
- Mathias, J.A.; Johnston, J.R.; Cao, J.; Priedeman, D.K.; Christensen, R.N. Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of, an organic Rankine cycle. J. Energy Resour. Technol. 2009, 131, 012201. [Google Scholar] [CrossRef]
Position | Gap Size (m) |
---|---|
0 (inlet chambers close) | 20 |
90 | 36 |
180 | 94 |
270 | 36 |
Position | Max. Skewness | Max. Non-Orthogonality | Avg. Non-Orthogonality | Max. Aspect Ratio |
---|---|---|---|---|
0 | 2.28 | 78.23 | 8.04 | 863.25 |
90 | 2.39 | 60.96 | 7.41 | 528.44 |
180 | 2.45 | 50.30 | 7.61 | 219.34 |
270 | 2.58 | 50.99 | 7.90 | 200.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadiga, E.; Casari, N.; Suman, A.; Pinelli, M. Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment. Energies 2020, 13, 666. https://doi.org/10.3390/en13030666
Fadiga E, Casari N, Suman A, Pinelli M. Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment. Energies. 2020; 13(3):666. https://doi.org/10.3390/en13030666
Chicago/Turabian StyleFadiga, Ettore, Nicola Casari, Alessio Suman, and Michele Pinelli. 2020. "Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment" Energies 13, no. 3: 666. https://doi.org/10.3390/en13030666
APA StyleFadiga, E., Casari, N., Suman, A., & Pinelli, M. (2020). Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment. Energies, 13(3), 666. https://doi.org/10.3390/en13030666