Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm
Abstract
:1. Introduction
2. Forecasting Models, Data Processing, and Evaluation Metrics
2.1. Forecasting Models
2.2. Data Processing (Sliding Window)
Algorithm 1 sliding window |
Procedure Variables (X, V, t) i = 0, n = 0; # number of windows = n K = []; # K is the set of windows extracted While i + V ≤ length (X) do #V is the length of the sliding window K[n] = X [i…. (i + V – 1)}; i = i + t; n = n + 1; end While return F end Procedure |
2.3. Evaluation Metrics
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- UNCCS. Climate action and support trends, United Nations. Clim. Chang. Secr. 2019, 7. [Google Scholar]
- Zang, H.; Cheng, L.; Ding, T.; Cheung, K.W.; Liang, Z.; Wei, Z.; Sun, G. Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network. IET Gener. Transm. Distrib. 2018, 12, 4557–4567. [Google Scholar] [CrossRef]
- Alrashidi, M.; Alrashidi, M.; Pipattanasomporn, M.; Rahman, S. Short-Term PV Output Forecasts with Support Vector Regression Optimized by Cuckoo Search and Differential Evolution Algorithms. In Proceedings of the 2018 IEEE International Smart Cities Conference, Kansas City, MO, USA, 16–19 September 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Abuella, M.; Chowdhury, B. Solar power probabilistic forecasting by using multiple linear regression analysis. In Proceedings of the IEEE Southeastcon, Fort Lauderdale, FL, USA, 9–12 April 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Chugh, A.; Chaudhary, P.; Rizwan, M. Fuzzy logic approach for short term solar energy forecasting. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, D.; Kleissl, J.; Gueymard, C.A.; Pedro, H.T.C.; Coimbra, C.F.M. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Sol. Energy 2018, 168, 60–101. [Google Scholar] [CrossRef]
- Sun, Y.; Venugopal, V.; Brandt, A.R. Short-term solar power forecast with deep learning: Exploring optimal input and output configuration. Sol. Energy 2019, 188, 730–741. [Google Scholar] [CrossRef]
- Ryu, A.; Ito, M.; Ishii, H.; Hayashi, Y. Preliminary Analysis of Short-term Solar Irradiance Forecasting by using Total-sky Imager and Convolutional Neural Network. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 20–23 March 2019; pp. 627–631. [Google Scholar] [CrossRef]
- Ghimire, S.; Deo, R.C.; Raj, N.; Mi, J. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl. Energy 2019, 253, 113541. [Google Scholar] [CrossRef]
- Dong, N.; Chang, J.-F.; Wu, A.-G.; Gao, Z.-K. A novel convolutional neural network framework based solar irradiance prediction method. Int. J. Electr. Power Energy Syst. 2020, 114, 105411. [Google Scholar] [CrossRef]
- Agüera-Pérez, A.; Palomares-Salas, J.C.; de la Rosa, J.J.G.; Florencias-Oliveros, O. Weather forecasts for microgrid energy management: Review, discussion and recommendations. Appl. Energy 2018, 228, 265–278. [Google Scholar] [CrossRef]
- Alvarado-Barrios, L.; del Nozal, Á.R.; Valerino, J.B.; Vera, I.G.; Martínez-Ramos, J.L. Stochastic unit commitment in microgrids: Influence of the load forecasting error and the availability of energy storage. Renew. Energy 2020, 146, 2060–2069. [Google Scholar] [CrossRef]
- Alamo, D.H.; Medina, R.N.; Ruano, S.D.; García, S.S.; Moustris, K.P.; Kavadias, K.K.; Zafirakis, D.; Tzanes, G.; Zafeiraki, E.; Kaldellis, J.K.; et al. An Advanced Forecasting System for the Optimum Energy Management of Island Microgrids. Energy Procedia. 2019, 159, 111–116. [Google Scholar] [CrossRef]
- Luukkonen, P.; Bateman, P.; Hiscock, J.; Poissant, Y.; Dignard-Bailey, L. International Energy Agency Co-Operative Programme on Photovoltaic Power Systems. 2013. Available online: http://www.cansia.ca/sites/default/files/201306_cansia_2012_pvps_country_report_long.pdf (accessed on 29 October 2019).
- Paulescu, M.; Paulescu, E.; Gravila, P.; Badescu, V. Weather Modeling and Forecasting of PV Systems Operation. Green Energy Technol. 2013, 325–345. [Google Scholar] [CrossRef]
- Lorenz, E.; Remund, J.; Müller, S.C.; Traunmüller, W.; Steinmaurer, G.; Pozo, D.; Ruiz-Arias, J.A.; Fanego, V.L.; Ramirez, L.; Romeo, M.G.; et al. Benchmarking of Different Approaches to Forecast Solar Irradiance. Eur. Photovolt. Sol. Energy Conf 2009, 4199–4208. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Cambridge, UK, 2006. [Google Scholar] [CrossRef] [Green Version]
- Bisong, E. Convolutional Neural Networks (CNN). In Building Machine Learning Deep Learning Models Google on Cloud Platform; Apress: Berkeley, CA, USA, 2019; pp. 423–441. [Google Scholar] [CrossRef]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genet. Program. Evolvable Mach. 2018, 2018 19, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv arXiv:1412.6980, 2014.
- Mathur, P.; Ayyar, M.P.; Shah, R.R.; Sharma, S.G. Exploring classification of histological disease biomarkers from renal biopsy images. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 81–90. [Google Scholar] [CrossRef]
- Hu, P.; Tong, J.; Wang, J.; Yang, Y.; de Oliveira Turci, L. A hybrid model based on CNN and Bi-LSTM for urban water demand prediction. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation, Wellington, New Zealand, 10–13 June 2019; pp. 1088–1094. [Google Scholar] [CrossRef]
- Fu, Q.; Niu, D.; Zang, Z.; Huang, J.; Diao, L. Multi-stations ’ Weather Prediction Based on Hybrid Model Using 1D CNN and Bi-LSTM. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 3771–3775. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Advances in Neural Information Processing Systems; Cornell: New York, NY, USA, 2015; pp. 802–810. [Google Scholar]
- Atique, S.; Noureen, S.; Roy, V.; Subburaj, V.; Bayne, S.; MacFie, J. Forecasting of total daily solar energy generation using ARIMA: A case study. In Proceedings of the 2019 IEEE 9th annual computing and communication workshop and conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 114–119. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Younes, M.K.; Kim, J. Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea. Symmetry 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Ghofrani, M.; Suherli, A. Time Series and Renewable Energy Forecasting. Intech 2016, 13, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Trigo-González, M.; Batlles, F.J.; Alonso-Montesinos, J.; Ferrada, P.; del Sagrado, J.; Martínez-Durbán, M.; Cortés, M.; Portillo, C.; Marzo, A. Hourly PV production estimation by means of an exportable multiple linear regression model. Renew. Energy 2019, 135, 303–312. [Google Scholar] [CrossRef]
- Madsen, H.; Pinson, P.; Kariniotakis, G.; Nielsen, H.A.; Nielsen, T.S. Standardizing the performance evaluation of short-term wind power prediction models. Wind Eng. 2005, 29, 475–489. [Google Scholar] [CrossRef] [Green Version]
Parameter | Estimated Value | p-Value |
---|---|---|
0.208 | 0.000 | |
−0.125 | 0.000 | |
−0.197 | 0.000 | |
Constant term | 0.000 | 1.000 |
Variance | 0.107 | 0.000 |
Methods Used | RMSE (1 h) | MAE (1 h) | BIAS (1 h) | RMSE (1 D) | MAE (1 D) | BIAS (1 D) | RMSE (1 W) | MAE (1 W) | BIAS (1 W) |
---|---|---|---|---|---|---|---|---|---|
CNN-Simple | 0.068 | 0.066 | −0.066 | 0.051 | 0.033 | −0.017 | 0.056 | 0.031 | −0.016 |
Multi-headed CNN | 0.169 | 0.169 | −0.169 | 0.081 | 0.053 | −0.036 | 0.080 | 0.050 | −0.038 |
CNN-LSTM | 0.053 | 0.053 | −0.053 | 0.051 | 0.035 | −0.025 | 0.045 | 0.030 | −0.019 |
ARMA | 0.046 | 0.043 | +0.043 | 0.192 | 0.153 | +0.153 | 0.244 | 0.134 | +0.880 |
Multiple linear regression | 0.477 | 0.474 | −0.474 | 0.258 | 0.179 | −0.149 | 0.258 | 0.146 | −0.120 |
Methods Used | RMSE (1 h) | MAE (1 h) | BIAS (1 h) | RMSE (1 D) | MAE (1 D) | BIAS (1 D) | RMSE (1 W) | MAE (1 W) | BIAS (1 W) |
---|---|---|---|---|---|---|---|---|---|
CNN-Simple | 0.466 | 0.451 | +0.450 | 0.036 | 0.018 | +0.005 | 0.104 | 0.039 | +0.026 |
Multi-headed CNN | 0.341 | 0.328 | +0.328 | 0.038 | 0.019 | −0.016 | 0.092 | 0.032 | +0.023 |
CNN-LSTM | 0.297 | 0.295 | −0.295 | 0.056 | 0.029 | +0.005 | 0.100 | 0.036 | +0.022 |
ARMA | 0.188 | 0.187 | +0.187 | 0.040 | 0.018 | +0.018 | 0.142 | 0.050 | +0.023 |
Multiple linear regression | 0.465 | 0.778 | +0.778 | 0.092 | 0.059 | −0.011 | 0.040 | 0.098 | +0.032 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suresh, V.; Janik, P.; Rezmer, J.; Leonowicz, Z. Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm. Energies 2020, 13, 723. https://doi.org/10.3390/en13030723
Suresh V, Janik P, Rezmer J, Leonowicz Z. Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm. Energies. 2020; 13(3):723. https://doi.org/10.3390/en13030723
Chicago/Turabian StyleSuresh, Vishnu, Przemyslaw Janik, Jacek Rezmer, and Zbigniew Leonowicz. 2020. "Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm" Energies 13, no. 3: 723. https://doi.org/10.3390/en13030723
APA StyleSuresh, V., Janik, P., Rezmer, J., & Leonowicz, Z. (2020). Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm. Energies, 13(3), 723. https://doi.org/10.3390/en13030723