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Abstract: The major objective of the investigation reported in this article is to demonstrate the
feasibility of controlling a Doubly Fed Induction Generator actuating directly on the rotor voltage
produced by the Rotor Side Converter, as its reference value may be determined analytically, after
definition of the control objective. Two usual objectives are here considered: maximum power
extraction from wind (MPPT) and stator reactive power equal to zero. This last objective defines the
reference slip to be considered in the formulation of developed power that, jointly with the reactive
power equation, forms the system to calculate the rotor reference voltages. The process is completed
by specifying the desired dynamical response. Thus, the angular velocity of the rotor should quickly
reach its reference value, which requires maximal power acceleration at the beginning, but respects
the restriction that no overshoot should be allowed. This is achieved by means of a constrained
optimization process solved in real time. Following recent trends, only measurements obtained from
stator (voltages and currents) sensors are used. This way, angular velocity and rotor currents are
estimated in real time. An algorithm for inductance estimation is also included, which prevents
deviations of nominal values that could lead to false reference voltages.

Keywords: DFIG optimal control; direct control; minimal sensors set; MPPT; transient stability; WECS

1. Introduction

Although many wind turbine technologies are in use [1], and some others are in development [2,3],
nowadays, the Doubly Fed Induction Generator (DFIG) is still used in about 50% of all Wind Energy
Conversion Systems (WECSs) in operation. The predominance of this technology, in comparison to
others, is due to its capacity of maximizing energy production in a wide range of wind conditions, allied
to a good performance in dynamical response to input variations, including undesirable disturbance,
in the Power System [1]. Thus, the focus of the present work is how to control a DFIG efficiently,
without relying on parameters that can be corrupted over time. Therefore, it is noteworthy that the
proposed control strategy is specific to DFIG, and there is no guarantee of the efficiency of its application
in other technologies. The WECS based on DFIG possesses the stator connected directly to the grid and
is projected considering that about 30% of active nominal power may be transferred through the rotor
circuit, which is connected to the grid via back-to-back converters. The Grid-Side Converter (GSC) is
responsible for maintaining constant voltage at the DC-link and controlling the reactive power at its
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output. Thus, active power may flow from the rotor to stator via GSC. The Rotor-Side Converter (RSC)
controls active and reactive powers at the stator [4] by means of velocity control. Both stator and rotor
circuits deliver power to the grid, but the direction of power flow via the rotor depends on the wind
velocity and, consequently, on the angular velocity of the rotor.

Several strategies for controlling RSC are found in technical literature. The most usual method
adopts a Field-Oriented Control (FOC), using linear PI controllers [5–11]. By this proposition, a direct
and quadrature (d-q) decomposition for the rotor currents is accomplished, so that active and reactive
powers flowing through the gap to the stator are controlled by d-q components. The FOC usually
adopts two PI control loops: the inner one for controlling the rotor current and the outer for controlling
the voltage applied to the rotor circuit. Owing to the d-q decomposition, the control of DFIG may be
accomplished in decoupled loops, that is, the stator active power is controlled by variables of the q-axis,
and the stator terminal voltage or reactive power is controlled by the control loop of the d-axis [7].

Another widely studied control approach is the Direct Power Control (DPC) [12–14]. This approach
is based on Direct Torque Control (DTC) [12], which proposes firstly the elimination of the current
control loop, and secondly a control of the stator active and reactive powers, accomplished by selecting
directly the voltage applied to the rotor via RSC [13]. For this purpose, the states of stator active and
reactive powers, as well the stator flux position, are measured or estimated. Using a hysteresis control
allied to a switching table, the states of the RSC switches are defined for further application to the rotor
circuit [13,14].

Other authors adopt different approaches like Predictive Control [15], Robust Control [16],
Sliding-mode Control (SMC) [17], or even combined techniques as in [18], aiming to overcome
specific deficiencies or to increase the efficiency inherent in the traditional algorithms of FOC or DPC.
Propositions of optimal controllers supported by metaheuristics may be also found in the literature,
as in [19,20]. A formulation of an optimization nonlinear process for determining the optimal values
of rotor voltages is presented in [21]. The constraints are defined in order to respect regions where
steady-state stable operation of DFIG occurs, limited by optimal values of rotor voltages. The authors
of [22] present a formulation to determine analytically the values of voltages to be applied at the rotor
circuit in a steady state. A nonlinear system composed of three equations is built, consisting of two
equations corresponding to the real part and imaginary part of the rotor current, and the third one
defines the electromagnetic torque. However, the system is solved symbolically using proprietary
software. Moreover, the proposals of [21,22] do not incorporate dynamical simulations.

This article proposes a new control strategy for RSC. GSC is considered to work optimally and
efficiently, that is, its power factor is maintained unitary and the dc battery voltage is controlled, so that
active power can flow from or to the rotor. An equation system derived from the equivalent circuit is
adopted to represent the desired operating point of DFIG, and the solution of this system defines the
value of the steady-state rotor supply voltages. In this system, the developed power (PD), which is
the mechanical power converted to electrical by the generator, must be equal to the maximum power
provided by the turbine from the wind, ignoring mechanical losses, and the stator reactive power (QS)

must equal zero. At steady state, the wind turbine is considered to work at the point of maximum
wind power extraction, so the steady-state reference speed is known. It is also considered that the
wind turbine is connected to the 13.8 kV bus of a relatively weak 69/13.8 kV grid represented by its
equivalent of Thévenin; therefore, the stator voltage may vary during transient states. For this reason,
the equations system must be solved in real time. The unknown variables are the real and imaginary
parts of the complex rotor voltage (VRr and VRi, respectively). After determining the rotor reference
voltage, it is possible to outline a strategy for achieving it. Direct application of the steady-state
reference voltage to the machine rotor can cause undesirable transients, such as large variations in
electromagnetic torque and, consequently, very high transient currents. For this reason, a new strategy
is proposed here to achieve rotor voltage reference values, without violating existing limits in other
variables. This strategy is designed so that the speed of evolution of the control variables (VRr and VRi)
is governed by the dynamic evolution of the rotor speed (ωm). Thus, the rate of evolution of the control
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variables in the direction of the reference must be controlled. An optimization process was formulated
to minimize the convergence time of the rotor speed, restricting transient variations in net generated
power, in order to accelerate the machine without exceeding the DFIG current nominal limits.

Magnetic saturation affects the inductance values of the DFIG, and consequently the control
performance [23]. However, the effect of this saturation mainly influences the magnetizing inductance,
since the path of the magnetic leakage flux is mainly air; thus, the variations of the leakage inductances
are irrelevant to the control [24]. Changes in inductance values may lead to a different operating
point than expected, and for this reason a method for estimating the magnetizing inductance under
steady-state conditions is proposed here. In addition, in order to eliminate sensor dependence
for evaluating rotor quantities, mainly because of the disadvantages of using sensors (robustness,
maintenance, costs and cabling [25,26]), a solution is proposed here to estimate currents and the rotor
speed by means of stator quantities.

The main advantages of the proposed strategy are the accuracy of the steady-state response
and that a single adjustment of a single control parameter is valid for the entire wind speed range,
as reference values are known in advance, and the real-time optimization process adapts to actual
conditions. Through this new control strategy, which avoids the knowledge of controller data
(in this case, unnecessary), it would be easier to simulate the dynamic response. Sensitive data from
manufacturers would no longer be needed. This would constitute a new dimension in the relationship
between manufacturers, consultants, entrepreneurs and agencies for the regulation and operation of
the electrical system. The motivation of our strategy was inspired to solve such problems, which are
reported in textbooks, for example, in reference [27] (p. 132). If manufacturers make it possible to
define a single control parameter at the level of supervisory control system [27], the wind farm operator
may extend it, easily, to each wind profile along the day or for different seasons. The proposed method
to estimate the slip and the magnetizing inductance only by means of stator variables makes it possible
to minimize the sensors needed to control the DFIG. Another advantage is the online correction of
the magnetizing inductance, which is shown to be a critical parameter to reach the unitary power
factor operation.

2. Materials and Methods

The Wind Energy Conversion System used to specify, analyze and test the control strategy
proposed in this work is sketched in Figure 1. It consists of a wind turbine equipped with a generator
of type DFIG, connected to an infinite bus of 13.8 kV, by a line whose impedance is 0.3943 + 1.6564j p.u.
in a 100 MVA basis. The GSC is assumed to work ideally, assuring constant voltage at the DC link,
and unity power factor at its output (grid side). The RSC is a pulse width modulation (PWM) device of
the voltage source type. Its dynamical response is not considered, once the objective is to investigate
the electromechanical transients of the machine, whereby harmonics caused by converter switching are
not considered. The machine adopted for simulations was a 2 MW induction generator. The system
was simulated in the Scilab environment using the 4th order Runge–Kutta numerical method to solve
differential equations.

2.1. Wind Turbine

The mechanical power extracted from the wind by the turbine, Pt, is given in watts by

Pt = 0.5ρπR2Cp(β,λ)V3
w (1)

where ρ is the air density; R is the radius, in meters, of the circle described by the blades; Vw is the wind
velocity, in m/s; and Cp(λ, β) is the power coefficient, which determines the capacity of the turbine by
extracting power from the wind. It is a function of the pitch angle β and of the tip-speed ratio λ [28].
The tip-speed ratio λ is calculated by

λ =
ωtR
Vw

(2)
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where ωt is the rotational velocity of the turbine. WECS using DFIG requires a mechanical velocity
multiplier (gearbox-gb) in order to convert the low rotational velocity of the turbine and the high
mechanical torque into quantities compatible to the DFIG operation. Thus, the relationship between
the turbine velocity and the DFIG rotor velocity is given by

ωt =
ωm

gb
(3)

where wm is the mechanical speed of DFIG.
The mechanical torque, Tm, imposed by the turbine to the generator may be obtained from

Tm =
Pt

ωm
=

0.5ρπR3Cp(β,λ)V2
w

λgb
(4)

The curve of the power coefficient Cp(λ, β) may assume different forms for different turbines.
In this work, the adopted curve Cp(λ, β) is given in [29].

The maximum power extraction from wind occurs when the power coefficient assumes its maximal
value, corresponding to β = 0 and λ = λotm = 7.206. To attend this condition, the reference velocity of
the DFIG rotor, for different wind velocities, is given by

ω∗m =
λotmVwgb

R
(5)
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In order to maintain the turbine in Maximum Power Point Tracking (MPPT), the angular velocity
must be controlled so that the power coefficient is continuously maximal, corresponding to an optimal
tip-speed ratio. This must occur from the moment the generator begins to produce power, at a cut-in
wind velocity, until the rotor reaches the maximal admitted velocity for the turbine. When this occurs,
the control objective is no longer to maintain the optimal tip-speed ratio but to assure the turbine
velocity is no higher than the maximal allowed value. This causes a reduction of the power coefficient,
reducing the amount of power extracted from the wind. An increase in the wind velocity would lead
the turbine to produce more power than the nominal power of DFIG. From this moment on, the pitch
control acts on the pitch angle of the blades, so that the absorbed power by the turbine equals the
nominal value of DFIG [22,29].

The turbine used in the present work was taken from [29]. Its characteristics are shown in Table 1.
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Table 1. Parameters of the wind turbine.

Parameter Value Unit

Diameter 75 m
Gearbox ratio 1:100 -

Inertia constant 2.5 s
Nominal rotor speed 18 RPM
Nominal wind speed 12 m/s

2.2. DFIG Model

The DFIG was modeled by both its steady-state equations and its representation in the direct
and quadrature d-q coordinates. Equivalent circuit equations were used to find the rotor steady-state
values and to formulate the constrained nonlinear optimization problem, which defines the strategy of
evolution of the control variables to their reference value. The DFIG dynamic equations resulting from
the d-q reference frame transformation were used to calculate estimated mechanical velocity, rotor
currents and magnetizing inductance values. The parameters of the generator used in the simulations
can be seen in Table 2 [29].

Table 2. Parameters of the Doubly Fed Induction Generator (DFIG).

Parameter Value Unity

Number of poles 4 -
Frequency 50 Hz

Generator speed 1000–1900 RPM
Inertia constant 0.5 s

Mutual inductance 3.0 p.u.
Stator leakage inductance 0.1 p.u.
Rotor leakage inductance 0.08 p.u.

Stator resistance 0.01 p.u.
Rotor resistance 0.01 p.u.

2.2.1. Equivalent Circuit Equations

In [21,22] the authors demonstrate the steady-state equations in their trigonometric form. In this
work, to simplify the algebraic solution of the equation system as well as the restricted nonlinear
optimization, the equations are presented in their algebraic form.

The equivalent circuit of DFIG can be seen in Figure 2.
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Considering VS = VS + j0, the complex currents of stator (IS) and rotor (I′R), obtained from the
equivalent circuit, are

IS =
−Vs

(
R′R + jsX′R

)
+ jV′RXm(

RsR′R − sXsX′R + sX2
m

)
+ j

(
R′RXs + RssX′R

) , (6)
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I′R =
V′R(RS + jXS) − jVssXm(

RsR′R − sXsX′R + sX2
m

)
+ j

(
R′RXs + RssX′R

) , (7)

where, RS and Xs are the stator resistance and reactance, respectively; s is the slip; R′R and X′R are the
rotor resistance and reactance referred to the stator, respectively; and Xm is the magnetizing reactance.
The parameters Xs and X′R are defined as

XS = XlS + Xm, (8)

X′R = X′lR + Xm, (9)

where, XlS and X′lR are the stator and rotor leakage reactances, respectively.
Using Equations (5) and (6), it is possible to calculate the stator and rotor powers, as well the

developed power PD. In order to simplify the equations, the variables below are introduced:

AD =
(
RsR′R − sXsX′R + sX2

m

)
, (10)

BD =
(
R′RXs + RssX′R

)
. (11)

The complex powers of stator (SS) and rotor (SR) are calculated by

SS = 3VSIS
∗ = 3(PS + jQS), (12)

SR = 3V′RI′R
∗ = 3(PR + jQR). (13)

Defining V′R = VRr + jVRi and substituting Equations (5) and (6) in (11) and (12) obtains each
power equation (active and reactive) as a function of three variables: slip, real and imaginary parts of
the rotor voltage, as presented in Equations (13)–(16).

PS =
3

A2
D + B2

D

[
VSXm(BDVRr − ADVRi) −V2

S

(
R′RAD + sXRBD

)]
, (14)

QS =
3

A2
D + B2

D

[
VSXm(−ADVRr − BDVRi) + V2

S

(
−R′RBD + sXRAD

)]
, (15)

PR =
3

A2
D + B2

D

[
V2

Rr(RSAD + XSBD) + V2
Ri(RSAD + XSBD) − VSsXm(BDVRr + ADVRi)

]
, (16)

QR =
3

A2
D + B2

D

[
V2

Rr(RSBD − XSAD) + V2
Ri(RSBD − XSAD) + VSsXm(ADVRr − BDVRi)

]
. (17)

The developed power in the machine is given by [30]

PD = −
3(1− s)

s
R′RI′R

2 +
3(1− s)

s
PR, (18)

Considering yet

I′R
2 =

∣∣∣I′R∣∣∣2 = I′RI′R
∗, (19)

and, substituting Equation (6) in (18) results in

∣∣∣I′R∣∣∣2 =

(
R2

S + X2
S

)
(V2

Rr + V2
Ri) − 2VSsXSXmVRr − 2VSsXmRSVRi + V2

Ss2X2
m

A2
D + B2

D

. (20)
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Finally, the equation for the developed power of a DFIG, in steady state, may be obtained by
substitution of Equations (15) and (19) into (17):

PD =
3(1− s)

AD + jBD

[
RSX2

m(V
2
Rr + V2

Ri) + VSXm
(
2R′RXS − BD

)
VRr + VSXm

(
2RSR′R −AD

)
VRi−V2

SsR′RX2
m

]
(21)

The stator power may be so calculated, using the energy conservation principle, as

PS = PD + PR − PR,loss − PS,loss (22)

where:
PS,loss = RS

∣∣∣∣IS

∣∣∣∣2 (23)

PR,loss = R′R
∣∣∣I′R∣∣∣2 (24)

2.2.2. Dynamic Model of DFIG

The dynamical modeling of DFIG is adopted in the synchronously rotating d-q reference frame,
as presented in [28]:

VSd = RSISd −ωeλSq +
dλSd

dt
(25)

VSq = RSISq +ωeλSd +
dλSq

dt
(26)

VRd = RRIRd −

(
ωe −

P
2
ωm

)
λRq +

dλRd
dt

(27)

VRq = RRIRq +
(
ωe −

P
2
ωm

)
λRd +

dλRq

dt
(28)

where ωe is the synchronous electric frequency of the grid; P is the number of poles; RS and RR are
the stator and rotor resistances; ISd, ISq, IRd and IRq are the stator and rotor currents; λSd, λSq, λRd and
λRq are the stator and rotor linkage fluxes; VSd, VSq, VRd and VRq are the stator and rotor voltages,
respectively. The equations relating currents and fluxes are

λSd = LSISd + LmIRd, (29)

λSq = LSISq + LmIRq, (30)

λRd = LRIRd + LmISd, (31)

λRq = LRIRq + LmISq, (32)

where, Lm is the mutual inductance, LS is the stator proper inductance and LR is the rotor proper
inductance. Parameters Ls and LR are defined as

LS = LlS + Lm, (33)

LR = LlR + Lm, (34)

where, LlS is the stator leakage inductance and LlR is the rotor leakage inductance.
The electromagnetic torque may be given by

Te =
3
2

P
2

(
λRqIRd − λRdIRq

)
, (35)
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and the equation to describe the dynamical behavior of the machine may be expressed using the
moment of inertia as

J
dωm

dt
= Tm − Te, (36)

where J is the moment of inertia, whose relationship with the inertia constant H, in seconds, is [31]

J =
2H
ω2

0

Sb, (37)

where ω0 is the synchronous velocity in mechanical radians per second and Sb is the apparent power
in volt-amperes.

2.3. Calculation of Reference Values for Control Variables

The operating point adopted as the basis for the control efficiency study proposed in this article
corresponds to the maximum utilization of wind power and unit power factor in the stator. As explained
in Section 2.1, for the turbine to extract maximum wind power, the power coefficient must assume the
value λ = λotm = 7.206. Therefore, Equation (4) calculates the reference speed and the corresponding
reference slip in steady state.

DFIG’s power generation and speed control are done by RSC, which is a voltage source PWM
converter. Thus, it is necessary to define the voltage that the converter must supply to the DFIG rotor
circuit to control it at the desired operating point. In most studies found in the literature, the rotor
reference voltage is given in polar form; in the present work, the reference voltage will be calculated in
its Cartesian form. Thus, the rotor reference voltage will have the following form:

V′R
∗ = V∗Rr + jV∗Ri (38)

This way, to keep DFIG operating at the desired operating point, the values of V∗Rr and V∗Ri must
be known.

To extract maximum wind power, it is necessary that all mechanical energy absorbed by the
turbine be transformed into electrical energy in the generator, disregarding the rotational losses, at the
optimal power coefficient value. The second condition imposed on the control is that the stator reactive
power is zero. Therefore, the equations system that defines the desired steady-state operating point for
the wind turbine is {

PD = Pt

QS = 0
(39)

Equations (14) and (20) will form the system proposed in Equation (37) to find the values of
V∗Rr and V∗Ri that ensures the DFIG will work at the desired operating point in steady state. Thus,
the proposed equation system is

3(1−s∗)
A2

D+B2
D

[
RSX2

m

(
V∗Rr

2 + V∗Ri
2
)
+ VSXm(2RRXS − BD)V∗Rr + VSXm(2RSRR −AD)V∗Ri − V2

Ss∗RRX2
m

]
− Pt = 0

VSXm
(
−ADV∗Rr − BDV∗Ri

)
+ V2

S(−RRBD + s∗XRAD) = 0
, (40)

AD =
(
RsRR − s∗XsXR + s∗X2

m

)
, (41)

BD = (RRXs + Rss∗XR). (42)

In addition to the DFIG equivalent circuit parameters, the variables that form the equation system
above are the reference slip, s∗, which is known for the desired operating point; the stator voltage
magnitude (VS); and the control variables of RSC, V∗Rr and V∗Ri. As can be seen from Figure 1, the stator
voltage will vary transiently according to the net current generated by the DFIG. Thus, the use of
voltage sensors to measure the amplitude and phase of the stator voltage is necessary for the solution
of the equation system.
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Having all the data, the system of equations has a simple solution obtained analytically by solving
the system defined in Equation (38) (e.g., by variable elimination), thus finding the desired values.
Observe that the PD equation has a degree of 2, which results in two solutions. The choice of the
appropriate solution is done by analyzing the magnitude of the current corresponding to each of
these solutions. The value of the current is calculated by Equation (19), and the solution chosen will
correspond to a current smaller than the magnitude of the DFIG rotor-rated current. The solution
[V∗Rr,V

∗

Ri] is found considering VS = VS + j0. As shown in the system proposed by Figure 1, the voltage
VS has a nonzero phase angle, so it is necessary that the actual value of its angle be compensated at
the end of the process of calculating the rotor voltage reference values. In the simulations, the stator
voltage angle was obtained by the solution of the Thevenin equivalent circuit, but in practice, as it is
not possible to know the equivalent of Thevenin at all times, it is necessary to use a Phase-Locked
Loop (PLL) algorithm.

2.4. Velocity of the Control Variables Trajectory

The desired operating point is defined by the measured wind velocity, which determines the
reference velocity ω∗m, according to Equation (4). A change in wind velocity requires new settings of the
control variables. The new reference values for these variables, V∗Rr and V∗Ri, may be calculated directly
by solving Equation (38). Thereafter, a strategy is required for defining the transition from initial
steady-state values of these variables (Vi

Rr and Vi
Ri) until the corresponding final values (V f

Rr and V f
Ri),

where V f
Rr = V∗Rr and V f

Ri = V∗Ri. A sudden change of the control variables to their new reference values
may cause undesirable or even damaging transients to the network state. For exemplary purposes,
a wind velocity step from 7 m/s to 7.5 m/s was simulated, with application of the corresponding rotor
voltage step. The resulting rotor current is shown in Figure 3, presenting a transient value high above
the rated value.
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The current transient caused by application of the rotor voltage step reaches, approximately,
two times the rotor nominal current. A current of such magnitude could damage the circuits of the
RSC converter. For this reason, the trajectory of control variables towards their reference value must be
carefully designed, respecting physical limitations of generator components.

The basic idea of the strategy proposed here is to link the time variations of the control variables,
( dVRr

dt and dVRr
dt ), to the time variations of the machine speed ( dωm

dt ) in order to define the evolution of
the control variables, assuring their convergence compatible to the convergence of the rotor velocity,
when steady state is reached. This way, major disturbances are avoided.
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Firstly, it will be stated that no overshot in the time response of the rotor velocity is desirable.
Thus, this velocity is assumed to change from a previous reference to the next one according to a
time-varying exponential function:

ωm =
(
ωi

m −ω
f
m

)
e− fωt +ω

f
m, (43)

where, ωi
m is the initial value of the velocity, ω f

m is its final value (ω f
m = ω∗m) and fω is a frequency that

defines the convergence of the rotor velocity. As the equations from the equivalent circuit presented in
Section 2.2.1 contain the variable slip, instead of velocity, a simple relationship between dωm

dt and ds
dt can

be obtained:
ds
dt

=
d
dt

(
ωs −ωm

ωs

)
, (44)

ds
dt

= −
1
ωs

dωm

dt
, (45)

Combination of Equations (41) with (43) leads to

ds
dt

=
1
ωs

fω
(
ωi

m −ω
f
m

)
e− fωt, (46)

Evaluating Equation (44) in t = 0 gives[
ds
dt

]
t=0

=
1
ωs

fω
(
ωi

m −ω
f
m

)
, (47)

[
ds
dt

]
t=0

=
1
ωs

fω
[(

1− si
)
ωs −ω

f
m

]
, (48)

Equation (46) may be rearranged as[
ds
dt

]
t=0

= fω
(
s f
− si

)
. (49)

where s f is the final slip, which must equal the new reference slip s∗; and si is the initial slip, which
could equal the previous reference value, if the machine was previously in a steady state. In order to
establish a relationship between the time variations of the control variables with the corresponding
slip time variations, Equation (48) is proposed. The basic idea of these equations is to search the aims
of maintaining both power conversion and reactive control dynamically. d(PD−Pt)

dt = 0
dQS
dt = 0

. (50)

Unlike the system of equations seen in Equation (38), where the reference slip is defined by wind
speed, the system of equations proposed here takes into account slip variations that are proportional to
the rotor speed variations. Adopting linearization at a time t = t0:

d(PD − Pt)

dt
=
∂(PD − Pt)

∂s
ds
dt

+
∂(PD − Pt)

∂VRr

dVRr

dt
+
∂(PD − Pt)

∂VRi

dVRi
dt

= 0, (51)

dQS

dt
=
∂QS

∂s
ds
dt

+
∂QS

∂VRr

dVRr

dt
+
∂QS

∂VRi

dVRi
dt

= 0, (52)
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thus, the equations system is defined by
∂(PD−Pt)

∂s
ds
dt +

∂(PD−Pt)
∂VRr

dVRr
dt +

∂(PD−Pt)
∂VRi

dVRi
dt = 0

∂QS
∂s

ds
dt +

∂QS
∂VRr

dVRr
dt +

∂QS
∂VRi

dVRi
dt = 0

. (53)

where, the numerical values of the partial derivatives ∂(PD−Pt)
∂VRr

, ∂(PD−Pt)
∂VRi

, ∂QS
∂s and ∂QS

∂VRr
as well ∂(PD−Pt)

∂s

and ∂QS
∂s may be calculated at each time t = t0 using the expressions

∂(PD − Pt)

∂VRr
=

3(1− s)
A2

D + B2
D

[
VSXm(2RRXS − BD) + 2VRrRSX2

m

]
, (54)

∂(PD − Pt)

∂VRi
=

3(1− s)
A2

D + B2
D

[
VSXm(2RSRR −AD) + 2VRiRSX2

m

]
, (55)

∂(PD − Pt)

∂s
=

DPD
∂NPD
∂s −NPD

∂DPD
∂s

DP2
D

, (56)

where, NPD and DPD are, respectively, the numerator and denominator of the developed power from
Equation (20). From Equation (54), the partial derivative of the developed power PD is obtained as a
function of slip, s. In this calculation, AD and BD are considered as defined in Equations (9) and (10).
Thus, the solution of Equation (54) is

NPD = 3(1− s)
[
RSX2

m(V2
Rr + V2

Ri) + VSXm(RRXS −RSsXR)VRr

+ VSXm
(
RSRR + s

(
−X2

m + XSXR
))

VRi − V2
SsRRX2

m

] , (57)

∂NPD
∂s = −3

[
RSX2

m(V2
Rr + V2

Ri) + VSXm(RRXS − 2RSsXR)VRr

+VSXm
(
RSRR + 2s

(
−X2

m + XSXR
))

VRi − 2V2
SsRRX2

m

]
+3

[
−VSXmRSXRVRr + VSXm

(
−X2

m + XSXR
)
VRi −V2

SRRX2
m

] (58)

DPD = A2
D + B2

D (59)

∂DPD

∂s
= 2AD

(
−XsXR + X2

m

)
+ 2BDRsXR. (60)

The partial derivative expressions of the stator reactive power are as follows:

∂QS

∂VRr
=

1
A2

D + B2
D

[−VSXmAD], (61)

∂QS

∂VRi
=

1
A2

D + B2
D

[−VSXmBD], (62)

∂QS

∂s
=

DQS
∂NQS
∂s −NQS

∂DQS
∂s

DQ2
S

, (63)

where, NQS and DQS are, respectively, the numerator and denominator of the stator reactive power
Equation (14). AD and BD are considered as shown in Equations (9) and (10). Thus, the solution of
Equation (61) is

NQS = VSXm
[(

RsRR − sXsXR + sX2
m

)
VRr − (RRXs + RssXR)VRi

]
+ V2

S

(
−R2

RXs − s2XsX2
R +s2X2

mXR
)

(64)

∂NQS

∂s
= VSXm

[(
−XsXR + X2

m

)
VRr −RsXRVRi

]
+ V2

S

(
−2sXsX2

R + 2sX2
mXR

)
(65)
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DQS = A2
D + B2

D. (66)

∂DQS

∂s
= 2AD

(
−XsXR + X2

m

)
+ 2BDRsXR. (67)

After evaluating all partial derivatives and knowing the variables VRr, VRi and s at each instant,
the solution of the system of equations proposed in Equation (51) is simply given by

 dVRr
dt

dVRi
dt

 =
 ∂(PD−Pt)

∂VRr

∂(PD−Pt)
∂VRi

∂QS
∂VRr

∂QS
∂VRi


−1 ∂(PD−Pt)

∂s
∂QS
∂s

ds
dt

. (68)

 dVRr
dt

dVRi
dt

 = [
ξVr

ξVi

]
ds
dt

(69)

where ds
dt is calculated by Equation (47).

2.5. Optimizing Rotor Speed Convergence

Calculation of the convergence speeds of the control variables shown in Equation (66), Section 2.4,
depends on the calculation of ds

dt . In Equation (47) the variable fω is responsible for defining the
convergence speed of the rotor (mechanical) speed to its reference value, according to the exponential
proposed in Equation (41). In order to maximize fω to lead to a fast convergence of the rotor speed,
as well as not violating DFIG limits, a nonlinear constrained optimization technique is proposed in this
work. Nonlinear constrained programming problems propose the maximization or minimization and
has the following generic form [32]:

min f (x), x ∈ <n

s.t.
{

hi(x) = 0, i = 1, . . . , m < n
g j(x) ≥ 0, j = 1, . . . , p

(70)

The problem consists of an objective function f (x), respecting limits imposed by constraint
functions, which may be equality hi(x) or inequality g j(x). Depending on the proposed problem and
the nature of its component functions, different solution techniques may be applied. For the solution
of the problem proposed in this work, the Lagrange multiplier method can be applied because it is a
relatively simple problem, where the solution of the problem can be found analytically without the
need for concern with numerical convergence, as in iterative methods. The first-order condition for the
constrained problem using the Lagrange multiplier method is then given by [32].

∇L(x) = ∇ f (x) + λ∇h(x) + µ∇g(x) = 0. (71)

where L(x) is the Lagrange Augmented Function (Lagrangian) and µ is the Lagrange multiplier.
The optimization problem of variable fω will be defined as follows for rising wind speed:{

max fω(VRr, VRi)

s.t. Pliq(VRr, VRi) ≥ Plim
, (72)

where fω can be defined by Equations (34) and (41) for t = 0 as follows:

fω =
Tm − Te

J
(
ω

f
m −ω

i
m

) , (73)
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Torque Tm is calculated by Equation (3), and Te is obtained from the developed power equation
PD, as shown below:

Te =
PD

ωm
=

PD

(1− s)ωs
, (74)

Te =
3
[
RSX2

m(V2
Rr + V2

Ri

)
+ VSXm(2RRXS − BD)VRr + VSXm(2RSRR −AD)VRi − V2

SsRRX2
m]

ωs
(
A2

D + B2
D

) (75)

The net power is the difference between the stator and the rotor active power, Pliq = PS − PR.
Thus, from Equations (13) and (15), Pliq is defined as

Pliq = 3
A2

D+B2
D
[−(RSAD + XSBD)

(
V2

Rr + V2
Ri

)
+ (1 + s)VSXmBDVRr

+(−1 + s)VSXmADVRi + V2
S(RRAD + sXRBD)]

. (76)

The limitation of the net power generated is justified by the fact that, to produce rotor acceleration,
it is necessary that there is a difference between the mechanical torque and the electromagnetic torque,
as can be observed by Equation (34). Thus, as the electromagnetic torque is directly proportional to the
developed power, as shown in Equation (72), it is necessary to limit the distance of the electromagnetic
torque, in order to respect an allowable limit of net power that already discounted the losses in the
DFIG. This power limit will be proportional to the available wind power

Plim = αPt, (77)

the constant α is chosen by experimental simulations, and it is different for rising or falling wind speed,
reflecting operational conditions of the site where the turbine will be installed.

The only constraint proposed in the problem is an inequality constraint, and for the solution of
the first-order condition it must be considered active, that is

g(VRr, VRi) = Pliq(VRr, VRi) − Plim = 0. (78)

The first-order condition for the optimization problem proposed in Equation (70) is:

∇L(VRr, VRi,µ) = ∇ fω(VRr, VRi) + µ∇g(VRr, VRi) = 0 (79)

To find the stationary points of the function presented in Equation (77), it is necessary to assemble
the system of equations that define the first-order condition for the Lagrange function and the problem
constraint [32], as shown below:

∇ fω(VRr, VRi) =

 ∂ fω
∂VRr
∂ fω
∂VRi

 (80)

∇g(VRr, VRi) =

 ∂g
∂VRr
∂g
∂VRi

 (81)


∂ fω
∂VRr

+ µ
∂g
∂VRr

= 0
∂ fω
∂VRi

+ µ
∂g
∂VRi

= 0
g(VRr, VRi) = 0

(82)

where:
∂ fω
∂VRr

=
−1

J
(
ω

f
m −ω

i
m

) 3

ωs
(
A2

D + B2
D

) [VSXm(2RRXS − BD) + 2RSX2
mVRr

]
(83)
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∂ fω
∂VRi

=
−1

J
(
ω

f
m −ω

i
m

) 3

ωs
(
A2

D + B2
D

) [VSXm(2RSRR −AD) + 2RSX2
mVRi

]
(84)

∂g
∂VRr

=
3(

A2
D + B2

D

) [(1 + s)VSXmBD − 2(RSAD + XSBD)VRr] (85)

∂g
∂VRi

=
3(

A2
D + B2

D

) [(−1 + s)VSXmAD − 2(RSAD + XSBD)VRi] (86)

Therefore, System (80) can be rewritten as
−1

ωs J
(
ω

f
m−ω

i
m

) [VSXm(2RRXS − BD) + 2RSX2
mVRr]+µ[(1 + s)VSXmBD − 2(RSAD + XSBD)VRr

]
= 0

−1
ωs J

(
ω

f
m−ω

i
m

) [VSXm(2RSRR −AD) + 2RSX2
mVRi]+µ[(−1 + s)VSXmAD − 2(RSAD + XSBD)VRi

]
= 0

Pliq(VRr, VRi) − Plim = 0

(87)

The solution of the system is obtained analytically by manipulating these equations. Dividing the
first one by the second leads to

2VRr
[
VSRSX3

mAD (−1 + s) + VSXm(2RSRR −AD)(RSAD + XSBD)]

−2VRi
[
VSRSX3

mBD(1 + s) + VSXm(2RRXS − BD)(RSAD + XSBD)
]

= V2
SX2

mBD(2RSRR −AD)(1 + s) + V2
SX2

mAD(2RRXS − BD)(1− s)
(88)

Thus, the Lagrange multiplier is eliminated, and an equation is obtained from which it is possible
to explicit VRr as a function of VRi. Entering the following constants:

KVr = 2
[
VSRSX3

mAD(−1 + s) + VSXm(2RSRR −AD)(RSAD + XSBD)
]
, (89)

KVi = 2
[
VSRSX3

mBD(1 + s) + VSXm(2RRXS − BD)(RSAD + XSBD)
]
, (90)

Ki = V2
SX2

mBD(2RSRR −AD)(1 + s) + V2
SX2

mAD(2RRXS − BD)(1− s), (91)

one obtains
VRr =

KViVRi + Ki
KVr

. (92)

Substitution of Equation (90) in constraint g(VRr, VRi) leads to

[− (RSAD + XSBD)
((KViVRi+Ki

KVr

)2
+ V2

Ri

)
+ (1 + s)VSXmBD

(KViVRi+Ki
KVr

)
+(−1 + s)VSXmADVRi + V2

S(RRAD + sXRBD)
]
− Plim

A2
D+B2

D
3 = 0

(93)

This polynomial has two roots, which represent two possible solutions for Votm
Ri . Replacing these

solutions into Equation (90), yields two solution pairs [Votm
Rr , Votm

Ri ], known as stationary (or critical)
points of the problem.

The first analysis of the critical points is done by observing the signal of the Lagrange multiplier
µ, calculated by the following equation, taken from the system presented in Equation (85):

µ =
1

ωs J
(
ω

f
m −ω

i
m

)  VSXm(2RRXS − BD) + 2RSX2
mVotm

Rr

(1 + s)VSXmBD − 2(RSAD + XSBD)Votm
Rr

, (94)

When the constraint is of inequality type, the sign of the Lagrange multiplier expresses the need
to use the imposed constraint to limit the objective function. If the problem is maximization and the
inequality constraint is of type “greater or equal”, a positive sign of the multiplier indicates that the
constraint is naturally limiting the objective function because its gradients are opposite to ensure
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the first-order condition seen in Equation (77). If the problem is minimization, with the inequality
constraint of type “less than or equal”, a negative sign of the Lagrange multiplier leads to the same
conclusion. When, in the cases presented, the signs are opposite, it means that the objective function is
being forced to go to the constraint limit, in which case it would be unwanted.

After applying the first-order condition and calculating the critical points, it is necessary to analyze
the second-order condition and the Hessian matrix of the problem. The second-order condition is
applied as shown below:

∇
2
L(VRr, VRi,µ) = ∇2 fω(VRr, VRi) + µ∇2g(VRr, VRi), (95)

and the Hessian matrix is presented below:

H =

 ωI −∇2
L

(
Votm

Rr , Votm
Ri

)
∇g

(
Votm

Rr , Votm
Ri

)
∇

Tg
(
Votm

Rr , Votm
Ri

)
0

. (96)

The analysis of the eigenvalues of the Hessian matrix is necessary to define the convexity of
the region around each critical point and to verify if they are minimum or maximum points [31].
The eigenvalues are obtained from the Hessian determinant as shown below:

det


ω2
−
∂L(Votm

Rr ,Votm
Ri )

∂V2
Rr

−
∂2
L(Votm

Rr ,Votm
Ri )

∂VRr∂VRi

∂gL(Votm
Rr ,Votm

Ri )
∂VRr

−
∂2
L(Votm

Rr ,Votm
Ri )

∂VRi∂VRr
ω−

∂2
L(Votm

Rr ,Votm
Ri )

∂V2
Ri

∂g(Votm
Rr ,Votm

Ri )
∂VRi

∂g(Votm
Rr ,Votm

Ri )
∂VRr

∂g(Votm
Rr ,Votm

Ri )
∂VRi

0

 = 0 (97)

If all the eigenvalues of the Hessian matrix, analyzed for a certain critical point, have a positive
sign, then the region around the critical point is convex; therefore, this is a minimum. If negative,
the critical point is a maximum of the objective function [32].

The objective function and the constraint function of the problem proposed by Equation (70) are
both second-order polynomials. Thus, it is expected that the critical points found are one maximum
and one minimum. Therefore, the critical point that solves this problem will be one that maximizes
the objective function. Similarly, when the wind is decreasing, the problem becomes minimization,
as shown below: {

min fω(VRr, VRi)

s.t. Pliq(VRr, VRi) ≤ Plim
, (98)

All mathematical inferences presented throughout this section are valid for this formulation
as well.

In the second-order condition, for the problem presented in Equation (70), we search for the
critical point that generates the eigenvalue of the Hessian matrix, with negative sign, which maximizes
the objective function. For the problem presented in Equation (96) the eigenvalue of the Hessian matrix
should be positive.

At the end of the optimization process of fω, we arrive at a pair Votm
Rr and Votm

Ri . Therefore,

f otm
ω =

Tm − Te
(
Votm

Ri , Votm
Ri

)
J
(
ω

f
m −ω

i
m

) . (99)

and
ds
dt

otm
= f otm

ω

(
s f
− si

)
. (100)
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The optimal values of the derivatives of the control variables VRr and VRi at t = 0 are determined
from Equations (67) and (98).  dVRr

dt
otm

dVRi
dt

otm

 = [
ξVr

ξVi

]
ds
dt

otm
(101)

As for the rotor speed, the exponential behavior for the convergence of control variables was also
adopted. Therefore, generally,

VRr =
(
Vi

Rr −V f
Rr

)
e− fvrt + V f

Rr, (102)

VRi =
(
Vi

Ri −V f
Ri

)
e− fvit + V f

Ri, (103)

where, fvr and fvi are the frequencies that define the convergence velocity, and V f
Rr and V f

Ri are the final
values of the control variables (i.e., their reference values).

To find the optimal convergence frequencies fvr and fvi, a relationship to the optimal velocity
convergence frequency is established. Deriving VRr and VRi:

dVRr

dt
= − fvr

(
Vi

Rr −V f
Rr

)
e− fvrt (104)

dVRi
dt

= − fvi
(
Vi

Ri −V f
Ri

)
e− fvit (105)

Substituting Equations (102) and (103) into Equation (99) gives

− f otm
vr

(
Vi

Rr −V f
Rr

)
e− f otm

vr t = ξVr
ds
dt

otm
(106)

− f otm
vi

(
Vi

Ri −V f
Ri

)
e− f otm

vi t = ξVi
ds
dt

otm
(107)

Substituting Equation (98) into Equations (104) and (105) and analyzing them at t = 0,
one concludes

f otm
vr =

−ξVr f otm
ω

(
s f
− si

)
(
Vi

Rr −V f
Rr

) (108)

f otm
vi =

−ξVi f otm
ω

(
s f
− si

)
(
Vi

Ri −V f
Ri

) (109)

2.6. Speed Estimation and Magnetizing Inductance Correction

Magnetic saturation affects the inductance value of the DFIG, and consequently the control
performance [23]. However, the effect of this saturation mainly influences the magnetizing inductance
since the path of the magnetic leakage flux is mainly air; thus, the variations of the leakage inductances
are irrelevant to the control [24]. Changes in inductance values may lead to a different operating
point than expected. Still, considering that the magnetizing inductance is the parameter that has the
highest value, compared to the other DFIG parameters, it is important to identify its value to ensure
control efficiency. Because of these facts, a strategy is proposed here for estimating the value of the
magnetizing inductance by means of measuring stator voltages and currents and estimating rotor slip
and rotor currents. The proposed procedure considers that the identification of magnetizing inductance
should not necessarily be performed at each step of the control. An error in its value would lead the
DFIG to an erroneous steady-state operating point. This way, correction of the magnetizing inductance
value should be performed when detecting the achievement of this condition, with differences in the
expected values for variables such as, for example, reactive power. For this reason, the proposed
strategy is based on the dynamic equations of DFIG, considering that, for steady state, one has dλ

dt = 0.
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It is assumed that the d axis of the Park transform is aligned with the stator voltage, which means that
VSd = VS and VSq = 0, where VSd and VSq are the stator voltages at the d and q coordinates. From these
considerations and from Equations (27) to (34), the problem can be solved as follows:

VSd = −RSISd −ωe
(
−LSISq + LmIRq

)
, (110)

0 = −RSISq +ωe(−LSISd + LmIRd), (111)

VRd = RRIRd − sωe
(
LRIRq − LmISq

)
, (112)

VRq = RRIRq + sωe(LRIRd − LmISd). (113)

It should be noted that Equations (27) to (34) assume that the directions of stator and rotor currents
are entering the DFIG. The stator current direction assumed for the mathematical equation of the
strategy proposed here, as shown in Figure 2, comes out of the generator, so the stator current signals
have been changed to suit the calculation.

From Equations (108) and (109), the value of the rotor currents can be estimated as follows:

ĨRd =
RS ÎSq +ωẽLS ÎSd

ωẽLm
(114)

ĨRq =
−V̂Sd −RS ÎSd +ωẽLS ÎSq

ωẽLm
(115)

The values of the variables represented with “~” are estimated, whereas the variables represented
with “ˆ” have their values measured. Therefore, ĨRd and ĨRq are the estimated values of rotor currents,
and V̂Sd, V̂Sq, ÎSd and ÎSq are the measured values of stator voltages and currents, respectively. L̃m and
L̃S are the estimated values of the magnetizing inductance and stator self-inductance, respectively.
Initially, their nominal values are considered for the calculation.

As previously mentioned, variations in the dispersion inductances are irrelevant in the control,
so it is possible to state that variations in the DFIG magnetizing inductance are reflected in equal
proportions in the rotor and stator proper inductances, as follows:

Lm

L̃m
=

LS

L̃S
(116)

where Lm and LS are the nominal values provided by the manufacturer. Substituting Equation (31)
into (114) results in

LlS + Lm

Lm
=

L̃S

L̃m
(117)

(1 + klS )̃Lm = L̃S (118)

where,

klS =
LlS
Lm

(119)

Similarly to the rotor:
(1 + klR )̃Lm = L̃R (120)

klR =
LlR
Lm

(121)
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and, therefore, it is possible to modify Equations (112) and (113) to be exclusively dependent on L̃m,

ĨRd =
RSÎSq +ωe(1 + klS )̃Lm ÎSd

ωẽLm
, (122)

ĨRq =
−V̂Sd −RS ÎSd +ωe(1 + klS )̃Lm ÎSq

ωẽLm
. (123)

With the estimated values of rotor currents by Equations (120) and (121), it is possible to estimate
the slip and magnetizing inductance by Equations (110) and (111), respectively, as shown below:

s̃ =
−VRd + RR ĨRd

ωe((1 + klR )̃Lm ĨRq − L̃mÎSq)
, (124)

L̃2
m [̃sω2

e ÎSd − s̃ω2
e (1 + klr)(1 + kls)ÎSd]

+L̃m[ωeVRq −ωeRR(1 + kls)ÎSq − s̃ωe(1 + klr)RS ÎSq] + RR(V̂Sd
+RS ÎSd) = 0,

(125)

and the values of VRd and VRq are found by Equations (100) and (101).
The slip estimation process is performed in real time, and its estimated value is used in the

optimization process presented in Sections 2.4 and 2.5. The estimation of magnetizing inductance is not
performed in real time, as the current transient would generate unrealistic values for L̃m. The strategy
proposes that the magnetizing inductance value should be calculated when the machine is in a steady
state and the stator reactive power is not close to zero, considering a tolerance. Failure to achieve
this objective of steady-state control indicates that the value of the magnetizing inductance used in
calculating the reference values of the control variables is different from the actual value. It is expected
that, under this condition, the estimated rotor and slip current values are wrong. Upon detecting this
condition, the value of L̃m will be corrected using Equation (123), and the corrected value will be used
for the calculation of the analytic solution and optimal strategy routines.

There are two values for L̃m possible for the solution of Equation (123). To achieve a less turbulent
convergence toward the actual inductance value, the value closest to the value calculated in the
previous step is always chosen.

3. Results

The DFIG RSC control methodology proposed in this article was analyzed by applying wind speed
steps, as shown in Figure 4. This wind profile was adopted with the intention of demonstrating the
effectiveness of the proposed method in low and high wind speeds, as well as near zero slip. The wind
speed ranging from 5.5 to 10.0 m/s was adopted to respect the generator speed limits presented in
Table 2, corresponding to a slip range of 30% to −30%, approximately. In order to ensure that the control
assumptions are respected, the convergence of velocity to its reference value should be analyzed,
as well as the behavior of the control variables.

For each wind speed, a reference rotor speed for the maximum wind power extraction was defined,
as shown in Equation (4). The control variables VRr and VRi had their reference values calculated
over time by Equation (38) and changed due to stator voltage variation, caused by transitory currents.
The exponentials presented in Equations (100) and (101) defined the trajectory of VRr and VRi to their
reference values. Figures 5 and 6 show this behavior.
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The optimization process was proposed to define an optimal rotor convergency speed and, by this,
to calculate a trajectory for the control variables that respects some power limits. The strategy intended
to accelerate the DFIG rotor by maintaining a difference between the mechanical torque and the
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electromagnetic torque, and this difference depended on the value that was chosen for the constant α,
as shown at Equation (75). The value of α has been set to 0.85 for rising speed wind and at 1.15 for
falling speed wind, and the effect of this strategy can be observed by the torques in Figure 7.Energies 2020, 13, 770 20 of 29 

 

 
Figure 7. Difference between toques to accelerate the DFIG rotor. 

For the effect of the distance between the torques, the DFIG rotor accelerated or deaccelerated to 
reach the speed corresponding to the maximum power extraction point operation. Figure 9 shows 
the rotor speed behavior and its convergence to the reference values. The value of the estimated rotor 
speed was accurate, and the difference between both curves can hardly be observed in Figure 8. 

 
Figure 8. Estimation of rotor speed and its convergence to the reference value. 

To verify the effectiveness of the proposed strategy at steady state, the developed, active and 
wind powers were analyzed. The behavior of the torques directly influenced the active power output, 
as can be analyzed from Figure 9. 

Figure 7. Difference between toques to accelerate the DFIG rotor.

For the effect of the distance between the torques, the DFIG rotor accelerated or deaccelerated to
reach the speed corresponding to the maximum power extraction point operation. Figure 9 shows the
rotor speed behavior and its convergence to the reference values. The value of the estimated rotor
speed was accurate, and the difference between both curves can hardly be observed in Figure 8.
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Figure 8. Estimation of rotor speed and its convergence to the reference value.

To verify the effectiveness of the proposed strategy at steady state, the developed, active and wind
powers were analyzed. The behavior of the torques directly influenced the active power output, as can
be analyzed from Figure 9.

The net active power moved away from its previous value, increasing or decreasing, because of the
behavior of the electromagnetic torque, but it quickly converged to its steady-state value. The developed
power had a similar behavior, and transiently, the value of λwas not optimal. At convergence, the value
of the developed power was equal to the value of the power delivered by the wind. Net active power
was lower due to stator and rotor losses.
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Similar to net active power, due to machine acceleration, the value of stator reactive power did
not remain constant, as can be seen from Figure 10.
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Figure 10. Reactive power.

Since there was no voltage control, transient reactive power variations caused variations in stator
voltage. Despite the reactive power peaks, the stator voltage remained within the limits imposed by
the international grid codes, transiently [33], as shown in Figure 11.

The slip estimation strategy based on the rotor current estimation, using only the stator variables,
proved to be efficient and accurate, as shown in Figure 8. In order to analyze the algorithm to correct
the value of the magnetizing inductance online, the following situation was supposed. The value of
this parameter, used to solve the Runge–Kutta method, was changed to 70% of its nominal value. Thus,
control algorithms (composed of analytical solutions to the control variables), the optimal strategy
for rotor speed convergency and estimation of the rotor currents and slip all became dependent on a
value of the magnetizing inductance that was different from the real value at the DFIG. Since its value
was corrected only in a steady-state situation, the control will perform transiently and give wrong
information. To test the algorithm, a variation of wind speed from 7.5 to 8 m/s was used, and the result
is shown in Figure 12.
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Figure 12. Estimated and actual rotor speed behavior of wrong and corrected magnetizing
inductance values.

As should be expected, there was an error between the actual rotor speed and its estimated
value, caused by the wrong value of the magnetizing inductance. In addition, the rotor speed would
not converge to its optimal reference value, since the reference values for the control variables were
miscalculated. As can be observed in Figure 13, the first convergence value, approximately between
3.3 and 4.4 s, was very close to the optimal value. This means the tip-speed ratio was near its optimal
value, and the effect of the wrong value of the magnetizing inductance had a small effect on tracking
the maximum power point; however, the value of the reactive power at the stator was significantly
affected, as shown in Figure 13. Between 3.3 and 4.4 s the reactive power consumed from the grid was
about 280 kvar.

At 4.4 s, the proposed algorithm to correct the value of magnetizing inductance started.
This algorithm rapidly converged to a value very close to the real one. The control variables
were quickly corrected too, as shown in Figures 14–16. Then, the rotor speed and the stator reactive
power converged to its desired value, as shown in Figures 12 and 13.

In order to test the proposed control in situations near to real conditions, a set of real measurement
data of wind speed in a real farm was obtained. A selected range of 10 min, characterized by the
mean value and standard deviation, was used to compose 600 points following a normal distribution.
This variation is presented in Figure 17.
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in Figure 18. Once more, the estimated rotor speed superposed the real speed, attesting the efficiency
of the rotor speed estimation.
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The efficiency of extracting power from wind may be evaluated by calculating the total optimal
energy available and the total energy converted for the period considered in Figure 18, as suggested
by [15]. Proceeding this way, the obtained value was about 98%, which was 5% higher than the
best result presented in that reference. However, it is important to point out that different wind
speed profiles were used in both simulations; the wind speed profile of Figure 17 better reflected the
wind behavior from the specific site where the measurement data were obtained. The corresponding
voltages were such that the difference between the maximal and minimal voltages by this simulation
corresponded to a range of about 0.5%. No violations in variable limits were detected.

In order to give another idea about the efficiency of the proposed control strategy, the variation
of the power coefficient with time is sketched in Figure 19. In this figure, a comparison between
the optimal value, the mean value and the actual value of the power coefficient was registered for a
time period of 300 s. The mean value corresponded to 99.77% of the optimal value, with a standard
deviation of 0.19%.
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4. Discussion

In previous works, objectives are set, and the control variables match their final values by
approximation as objectives are achieved. In the present work, final values of the control variables
(references) are calculated by means of an analytical procedure to solve a system of nonlinear equations.
If the terminal voltage cannot be considered constant because of high equivalent Thévenin impedance,
the reference rotor voltages must be recalculated using information acquired from a voltage sensor and
a PLL.

A new DFIG control strategy was proposed and presented using a nonlinear, real-time optimization
process, formulated from the equivalent circuit equations. In addition, a solution for the machine
slip estimation and magnetizing inductance estimation for online correction of values was presented.
The proposed control strategy performed the DFIG rotor acceleration optimally, respecting the limits
of net power injected into the grid, by means of controlling the trajectory of the control variables that
defined the RSC voltage. The electromagnetic and mechanical torques moved apart for a brief period
to cause acceleration of the rotor, which caused the injected net power to rise or fall for a few seconds.
Control has proven to be effective over a wide range of wind speeds, and the only parameter to be
defined, in order to reach this purpose, was the net active power limit. Rotor currents were transiently
controlled well, and reactive power peaks caused mild overvoltages or undervoltages well below the
limits imposed by actual regulations. The strategy to estimate rotor currents, slip and the magnetizing
inductance obtained from the dynamical formulation of DFIG has proven to be effective. It used only



Energies 2020, 13, 770 26 of 28

stator voltage and current sensors, being independent of rotor and speed sensors, thus reducing the
number of sensors in the system. Table 3 presents a synthetic comparation of the Direct Voltage Control
(DVC), here proposed, with other methods found in the literature.

Table 3. Comparison of proposed Direct Voltage Control with other methods.

Method LmEstimation
Rotor

Sensors
Dependency

Active
Power Flow
Inversion

Respect
Voltage
Limits

Convergency Time
to 2 m/s Step

PI Gains
Dependency for

RSC Control

[8] × X × X >10 s X

[9] (a *) × X X
Not

considered <1 s X

[9] (b *) × X ×
Not

considered <5 s X

[10] × X X
Not

considered <1 s X

DVC X × × X <5 s ×

* (a): Rotor speed control; (b): Power control.

5. Conclusions

The major objective of the present work was to control a DFIG efficiently, without relying on
parameters that can be corrupted over time like PI gains. An optimization process was proposed
to define an optimal rotor convergency speed and thus define the trajectory of the control variables,
respecting some power limits. The strategy intended to accelerate the DFIG rotor by maintaining a
difference between the mechanical torque and the electromagnetic torque, and this difference depended
on the allowed limit in net active power. This limit defines the momentaneous acceleration of the
machine, in response to wind speed variations. When the wind speed changes, a new mechanical
torque is imposed. The difference to the instantaneous electromagnetic torque, resulting in the
acceleration torque, may not be enough to cause a fast convergence to the new reference speed. This
way, the objective of optimization was to maximize acceleration, respecting limits on other variables.

Implementation of the optimization process is dependent on the instantaneous values of rotor
speed. In order to avoid the necessity of using a speed sensor, a process of rotor speed estimation was
proposed. As presented in Figure 8, the estimated speed resulted very close to the actual rotor speed,
obtained by solving the differential equation set.

Simulation results demonstrated that too high acceleration torques (or powers) may cause
violations both in currents or in voltage limits (see Figure 3). This way, optimization had to be
constrained. This was implemented by limiting the net generated active power as a percentage of the
previous reference power. For both wind speed profiles used (step change and near to real conditions)
as example in this article, a variation of ±15% was adjusted so that no violations in currents or voltages
magnitudes could have resulted. Considering all simulations, the highest resulting voltage amplitude
was about 1.5% above the nominal value, as shown in Figure 11.

From the results of simulations performed for a real wind speed profile, it was observed
(see Figure 18) that the proposed control was efficient in keeping the rotor speed close to the reference
speed. Furthermore, the time variation of the power coefficient, as shown in Figure 19, presented an
average very close to the optimal value.

Variations in the magnetizing inductance value have been shown to cause DFIG to operate at
a different operating point than desired, implying small errors in rotor steady state velocity but a
significant error in reactive power. The proposed algorithm quickly detected errors in the magnetizing
inductance and corrected its value with good precision, causing the generator to work as expected,
according to the right trajectory of control. The main advantages of the proposed method can be
observed by comparing it other methods with respect to some desired features, as compiled in Table 3.
From this table, it can be observed (third and fifth columns) that requiring fast convergence leads
to a compromise in active power flow. It must be pointed out that oscillations in power flow may
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cause voltage fluctuations and, therefore, should be avoided. In general, the DFIG Direct Voltage
Control with an optimum rotor acceleration strategy and parameter estimation proved to be effective in
reaching the proposed objectives. The proposed technique is planned to be checked in an experimental
system in a further work.
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