Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
2.3. Preparation of Feedstock’s/Soxhlet Extraction
2.4. Experimental Procedure of Transesterification
2.5. Analytical Study of KP Biodiesel
2.6. Fuel Properties of KP Biodiesel
3. Results and Discussion
3.1. Koelreuteria Paniculata FAMEs Process of Optimizations
3.1.1. Effect of Methanol to Oil Molar Ratio
3.1.2. Impact of Catalyst Concentration on FAMEs Production
3.1.3. Influence of Temperature on Yield
3.1.4. Influence of Reaction Time on FAMEs Yield
3.1.5. Influence of Agitation Rate on Biodiesel Yield
3.2. KP FAMEs Characterizations
3.3. Physical and Fuel Characterizations
3.4. NMR Spectroscopy Analysis of Biodiesel
3.4.1. 1H NMR Spectrum Analysis
3.4.2. 13C NMR Spectrum Analysis
3.5. KP FAMEs FT-IR Spectroscopy Analysis
3.6. GC/MS Analysis
3.7. ICP-OES and Elemental Analyzer (EA) Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Röllin, H. Evidence for health effects of early life exposure to indoor air pollutants: What we know and what can be done. J. Clean Air 2017, 27, 2–3. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B.; Upadhyay, S.N. Advancements in development and characterization of biodiesel. A review. Fuel 2008, 87, 2355–2377. [Google Scholar] [CrossRef]
- Xue, B.J.; Luo, J.; Zhang, F.; Fang, Z. Biodiesel production from soybean andJatropha oils by magnetic CaFe2O4-Ca2Fe2O5-based catalyst. Energy 2014, 68, 584–591. [Google Scholar] [CrossRef]
- Samadi, S.; Karimi, K.; Behnam, S. Simultaneous biosorption and bioethanol production from lead-contaminated media by mucor indicus. J. Biofuel Res. 2017, 4, 545–550. [Google Scholar] [CrossRef] [Green Version]
- McKendry, P. Energy production from biomass conversion technologies. Bioresour. Technol. Part A 2002, 83, 47–54. [Google Scholar] [CrossRef]
- Warren Spring Laboratory. Fundamental Research on the Thermal Treatment of Wastes and Biomass: Literature Review of Part Research on Thermal Treatment of Biomass and Waste; B/T1/00208/Rep/1; ETSU: Johnson City, TN, USA, 1993. [Google Scholar]
- Khan, I.U.; Yan, Z.H.; Chen, J. Optimization, transesterification and analytical study of Rhus typhina non-edible seed oil as biodiesel production. Energies 2019, 12, 4290. [Google Scholar]
- Guedes, R.E.; Luna, A.S.; Torres, A.R. Operating parameters for bio-oil production in biomass pyrolysis: A review. J. Anal. Appl. Pyrol. 2018, 129, 134–149. [Google Scholar] [CrossRef]
- Mucak, A.; Karabektas, M.; Hasimoglu, C.; Ergen, G. Performance and emission characteristics of a diesel engine fuelled with emulsified biodiesel-diesel fuel blends. Int. J. Autom. Eng. Technol. 2016, 5, 176–185. [Google Scholar] [CrossRef]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef]
- Martín-Lara, M.A.; Ortuño, N.; Conesa, J.A. Volatile and semivolatile emissions from the pyrolysis of almond shell loaded with heavy metals. Sci. Total Environ. 2018, 613–614, 418–427. [Google Scholar]
- Tremblay, A.Y.; Montpetit, A. The in-process removal of sterol glycosides by ultrafiltration in biodiesel production. J. Biofuel Res. 2017, 4, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Rashed, M.M.; Kalam, M.A.; Masjuki, h.H.; Mofijur, M.; Rasul, M.G. Performance and emission characteristics of a diesel engine fueled with palmjatropha, and moringa oil methyl ester. Ind. Crops Prod. 2016, 79, 70–76. [Google Scholar] [CrossRef]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N. Production of biodiesel using high free fatty acid feedstocks. Renew. Sustain. Energy Rev. 2012, 16, 3275–3285. [Google Scholar] [CrossRef]
- Shafiei, A.; Rastegari, H.; Ghaziaskar, H.S.; Yalpani, M. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer. J. Biofuel Res. 2017, 4, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, M.; Ramu, N.; Bakkiya Raj, S. Methyl ester production from Schlichera oleosa. Int. J. Pharm. Sci. Res. 2011, 2, 1244–1250. [Google Scholar]
- Wang, L.B.; Yu, H.Y. Biodiesel from Siberian apricot (Prunus sibirica L.) seed kernel oil. Bioresour. Technol. 2012, 112, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Atabani, A.E.; Chong, W.T. A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties. Renew. Sustain. Energy Rev. 2013, 24, 514–533. [Google Scholar] [CrossRef]
- Ashraful, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Imtenan, S.; Shahir, S.A.; Mobarak, H.M. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Convers. Manag. 2014, 80, 202–228. [Google Scholar] [CrossRef]
- Aliyu, B.; Agnew, B.; Douglas, S. Croton megalocarpus (Musine) seeds as potential source of bio-diesel. Biomass Bioenergy 2010, 34, 1495–1499. [Google Scholar] [CrossRef]
- Atapour, M.; Kariminia, H.R. Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Appl. Energy 2011, 88, 2377–2381. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Sbihi, H.M.; Al-Resayes, S.I. Rhazya stricta Decne seed oil as an alternative, non-conventional feedstock for biodiesel production. Energy Convers. Manag. 2014, 81, 400–406. [Google Scholar] [CrossRef]
- Reshad, A.S.; Tiwari, P.; Goud, V.V. Extraction of oil from rubber seeds for biodiesel application: Optimization of parameters. Fuel 2015, 150, 636–644. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Aziz, A.M.; Altamer, M.H. Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Convers. Manag. 2016, 108, 255–265. [Google Scholar] [CrossRef]
- Aldobouni, I.A.; Fadhil, A.B.; Saied, I.K. Optimized alkali catalyzed transesterification of wild mustard (Brassica juncea L.) seed oil. Energy Sources Part A 2016, 38, 2319–2325. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, J.H.; Luo, Y.M. Complementary biodiesel combination from tung and medium-chain fatty acid oils. Renew. Energy 2012, 44, 305–310. [Google Scholar] [CrossRef]
- Kpikpi, W.M. Jatropha curcus as a vegetable source of renewable energy. ANSTI Sub. Network Meeting on Renew. Energy 2002, 3, 18–22. [Google Scholar]
- Ahmad, M.; Khan, M.A.; Zafar, M.; Sultana, S. Practical Handbook on Biodiesel Production and Properties; Taylor and Francis: Boca Raton, FL, USA, 2012; pp. 1–157. [Google Scholar]
- Bhandari, D.C.; Chandel, K.P.S. Status of rocket germplasm in India: Research accomplishments and priorities. In Rocket: A Mediterranean Crop for the World; International Plant Genetics Research Institute: Legnaro, Italy, 1996; Volume 67, pp. 13–14. [Google Scholar]
- Christie, W.W. Lipid Analysis, 3rd ed.; Oily Press: Bridgwater, UK, 2003. [Google Scholar]
- Sen, N.; Kar, Y. Pyrolysis of black cumin seed cake in a fixed-bed reactor. Biomass Bioenerg. 2011, 3, 4297–4304. [Google Scholar] [CrossRef]
- Usta, N.; Öztürk, E.; Can, O.; Conkur, E.S.; Nas, S.; Çon, A.H. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a diesel engine. Energy Convers. Manag. 2005, 46, 741–755. [Google Scholar] [CrossRef]
- Kafuku, G.; Mbarawa, M. Effects of biodiesel blending with fossil fuel on flow properties of biodiesel produced from non-edible oils. Int. J. Green Energy 2010, 7, 434–444. [Google Scholar] [CrossRef]
- Vedaraman, N.; Puhan, S.; Nagarajan, G.; Velappan, K.C. Preparation of palm oil biodiesel 305 and effect of various additives on NOx emission reduction in B20: An experimental study. Int. J. Green Energy 2011, 8, 383–397. [Google Scholar] [CrossRef]
- Abdelrahman, B.F.; Mohammed, A.A.; Liqaa, I.S. Date (Phoenix dactylifera L.) palm stones as a potential new feedstock for liquid bio-fuels production. Fuel 2017, 210, 165–176. [Google Scholar]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animal feedstock’s for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, W.W.; Hanna, M.A.; Zhang, Y.P.; Bhadury, P.S.; Wang, Y.; Song, B.A.; Yang, S. Biodiesel preparation, optimization, and fuel properties from non-edible feedstock, Datura stramonium L. Fuel 2012, 91, 182–186. [Google Scholar] [CrossRef]
- Soares, I.P.; Rezende, T.F.; Silva, R.C.; Castro, E.V.R.; Fortes, I.C.P. Multivariate calibration by variable selection for blends of raw soybean oil/biodiesel from different sources using Fourier Transform Infrared Spectroscopy (FT-IR) spectra data. Energy Fuels 2008, 22, 2079–2083. [Google Scholar] [CrossRef]
- Safar, M.; Bertrand, D.; Robert, P.; Devaux, M.F.; Genut, C. Characterization of edible oils, butters and margarines by Fouier Transform Infrared Spectroscopy with attenuated total reflectance. J. Am. Oil Chem. Soc. 1994, 71, 371–377. [Google Scholar] [CrossRef]
- Schober, S.; Mittelbach, M. Influence of Diesel Particulate Filter Additives on Biodiesel Quality. Eur. J. Lipid Sci. Technol. 2005, 107, 268–271. [Google Scholar] [CrossRef]
- McCormick, R.L.; Alleman, T.L.; Ratcliff, M.; Moens, L.; Lawrence, R. Survey of the Quality and stability of Biodiesel and Biodiesel Blends in the United States in 2004. In Technical Report of National Renewable Energy Laboratory; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2005. [Google Scholar]
- Song, H.; Quinton, K.S.; Peng, Z.; Zhao, H.; Ladommatos, N. Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines. Energies 2016, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Mwang, J.K.; Lee, W.J.; Chang, Y.C.; Chen, C.Y.; Wang, L.C. An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines. Appl. Energy 2015, 159, 214–236. [Google Scholar] [CrossRef]
- Singh, D.; Subramanian, K.A.; Juneja, M.; Singh, K.; Singh, S. Investigating the effect of fuel cetane number, oxygen content, fuel density, and engine operating variables on NOx emissions of a heavy duty diesel engine. Environ. Prog. Sustain. Energy 2017, 36, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Combustion Efficiency Impacts of Biofuels. Energy Sources Part A 2009, 31, 602–609. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acıkalın, K.; Karaca, F.; Bolat, E. Pyrolysis of pistachio shell: Effects of pyrolysis conditions and analysis of products. Fuel 2012, 95, 169–717. [Google Scholar] [CrossRef]
- Uysal, T.; Duman, G.; Onal, Y.; Yasa, I.; Yanik, J. Production of activated carbon and fungicidal oil from peach stone by two-stage process. J. Anal. Appl. Pyrol. 2014, 108, 47–55. [Google Scholar] [CrossRef]
- Demiral, I.; Kul, S.C. Pyrolysis of apricot kernel shell in a fixed-bed reactor: Characterization of bio-oil and char. J. Anal. Appl. Pyrol. 2014, 107, 17–24. [Google Scholar] [CrossRef]
- Duman, G.; Okutucu, C.; Ucar, S.; Stah, R.; Yanik, J. The slow and fast pyrolysis of cherry seed. Bioresour. Technol. 2011, 102, 1869–1878. [Google Scholar] [CrossRef]
- Pradhan, D.; Singh, R.K.; Bendu, H.; Mund, R. Pyrolysis of Mahua seed (Madhuca indica)—Production of biofuel and its characterization. Energy Convers. Manag. 2016, 108, 529–538. [Google Scholar] [CrossRef]
Parameter | Descriptions |
---|---|
Column | QP2010SE, Shimadzu, PEG-20M Length: 30 m, Internal diameter: 0.32 mm Film thickness: 1 um |
Injector temperature | 220 °C |
Detector temperature (EI 250) | 210 °C |
Carrier gas | Helium, flow rate = 1.2 mL min−1 |
Injection | V = 1 uL |
Split ratio | Flow rate = 40:1 |
Temperature program | Initial temperature = 100 °C Rate of progression = 10 °C min−1 Final temperature = 210 °C, 20 min |
Parameters | EN 14214 | ASTM D-6751 | Pedro-diesel | Present Results/KPOB | DPSOME [36] | SBOME [37] | DSOME [38] |
---|---|---|---|---|---|---|---|
Oil contents (wt.%) | − | − | − | 28–30 | 10.50 ± 1.50 | 15–20 | 21.4 |
Density @ 15 °C (g/cm3) | 0.86–0.90 | 0.86–0.90 | 0.809 | 0.879 | 0.8781 ± 0.0012 | − | 0.882 |
Kinematic viscosity @ 40 °C (mm2/s) | 3.5–5.0 | 1.9–6.0 | 1.3–4.1 | 6.21 | 3.91 ± 0.25 | 4.50 | 4.33 |
Flashpoint (°C) | Min. 120 | Min. 130 | 60–80 | 147 | 141 | 160 | 161.5 |
Ignition value | − | − | − | 175 | − | − | − |
Acid value (mg KOH/g−1) | Max. 0.50 | Max. 0.5 | − | 0.07 | 0.10 ± 0.02 | 0.15 | 0.10 |
Saponification value (mg KOH/g−1) | − | − | − | 176.4 | 224 | − | − |
Iodine value (g I2/100 mg) | Max. 120 | Max. 120 | − | 80.7 | 48.51 | − | − |
Refractive index @ 20 °C | − | − | − | 1.4901 | 1.4544 | − | − |
Cloud point (°C) | − | − | −15–5 | 2 | 3 | 4 | − |
Pour point (°C) | − | − | −2.0 | −30 | −1 | −7 | − |
Cetane number | Min. 51 | Min. 47 | 49.7 | 51 | 59.75 | 58.1 | 51.9 |
Free fatty acid (%) | − | − | − | 0.91 | − | − | − |
HHV | − | − | − | 23.39 | 39.52 | − | − |
Ash content | − | − | − | 0.002 | − | − | < 3 |
Specific gravity @15 (°C) | − | − | − | 0.88 | − | − | − |
Cold filter plug point (°C) | Max. 19 | Max. 19 | −16 | −18 | − | − | −5 |
Sulphated ash content (wt.%) | Max. 0.02 | − | − | 0.003 | − | 0.008 | 0.004 |
S/ No | Fatty Acids | Retention Time | Number of Carbons | Fatty Acids (%) | Chemical Name | Chemical Structure | Molecular Weight |
---|---|---|---|---|---|---|---|
1 | Palmitic acid | 9.530 | C16:0 | 9.7 | Hexadecanoic acid, methyl ester | 270 | |
2 | Stearic acid | 14.248 | C18:0 | 1.8 | Methyl stearate | 298 | |
3 | Oleic acid | 15.058 | C18:1 | 25.5 | 9-Octadecenoic acid (Z)-, methyl Ester | 296 | |
4 | Linoleic acid | 16.753 | C18:2 | 8.5 | 9, 12-Octadecadienoic acid (Z, Z)-, methyl ester | 294 | |
5 | α-Linolenic acid | 19.505 | C18:3 | 3.6 | α-Linolenic acid | 292 | |
6 | Arachidic acid | 22.565 | C20:0 | 2.4 | Eicosanoic acid, methyl ester | 326 | |
7 | Gondoic acid | 23.005 | C20:1 | 48.5 | Cis-11-Eicosenoic acid, methyl ester | 324 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.U.; Yan, Z.; Chen, J. Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil. Energies 2020, 13, 791. https://doi.org/10.3390/en13040791
Khan IU, Yan Z, Chen J. Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil. Energies. 2020; 13(4):791. https://doi.org/10.3390/en13040791
Chicago/Turabian StyleKhan, Inam Ullah, Zhenhua Yan, and Jun Chen. 2020. "Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil" Energies 13, no. 4: 791. https://doi.org/10.3390/en13040791
APA StyleKhan, I. U., Yan, Z., & Chen, J. (2020). Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil. Energies, 13(4), 791. https://doi.org/10.3390/en13040791