Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept
Abstract
:1. Introduction
2. Experimental Setup
3. Methodology
3.1. Description of the Experimental Campaign
3.2. Determination of Performance Parameters
4. Results and Discussion
4.1. Direct Measurements and Testing Observations
4.2. Heating and Cooling Powers for RCE
4.3. Maximum Potential for Cooling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Parliament. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance). Off. J. Eur. Union 2018, 156, 75–91. [Google Scholar] [CrossRef]
- Kristin, S.; Sverrisson, F.; Appavou, F.; Brown, A.; Epp, B.; Leidreiter, A. Renewables 2016 Global Status Report; Ren21: Paris, France, 2016; Available online: https://www.ren21.net/wp-content/uploads/2019/05/REN21_GSR2016_FullReport_en_11.pdf (accessed on 1 June 2018).
- Hughes, B.R.; Chaudhry, H.N.; Ghani, S.A. A review of sustainable cooling technologies in buildings. Renew. Sustain. Energy Rev. 2011, 15, 3112–3120. [Google Scholar] [CrossRef]
- European Commission. Decision of 1 March 2013 (2013/114/EU) establishing the guidelines for Member States on calculating renewable energy from heat pumps from different heat pump technologies pursuant to Article 5 of Directive 2009/28/EC of the European Parliament and of the. Off. J. Eur. Union 2013, 62, 27–35. [Google Scholar]
- European Parliament. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, 140, 16–62. [Google Scholar] [CrossRef]
- Hassan, H.Z.; Mohamad, A.A. A review on solar cold production through absorption technology. Renew. Sustain. Energy Rev. 2012, 16, 5331–5348. [Google Scholar] [CrossRef]
- Bell, E.E.; Eisner, L.; Young, J.; Oetjen, R.A. Spectral-Radiance of Sky and Terrain at Wavelengths between 1 and 20 Microns. II. Sky Measurements. J. Opt. Soc. Am. 1960, 50, 1313–1320. [Google Scholar] [CrossRef]
- Zhang, K.; McDowell, T.P.; Kummert, M. Sky Temperature Estimation and Measurement for Longwave Radiation Calculation. In Proceedings of the 15th IBPSA Conf 2017, San Francisco, Ca, USA, 7–9 August 2017. [Google Scholar] [CrossRef]
- Swinbank, W.C. Long-wave radiation from clear skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [Google Scholar] [CrossRef]
- Idso, S.B. A Set of Equations for Full Spectrum and 8- to 14 micron and 10.5- to 12.5 micron Thermal Radiation From Cloudless Skies. Water Resour. Res. 1981, 17, 295–304. [Google Scholar] [CrossRef]
- Berdahl, P.; Martin, M. Emissivity of clear skies. Sol. Energy 1984, 32, 663–664. [Google Scholar] [CrossRef]
- Prata, A.J. A new long-wave formula for estimating downward clear-sky radiation at the surface. Q. J. R. Meteorol. Soc. 1996, 122, 1127–1151. [Google Scholar] [CrossRef]
- Catalanotti, S.; Cuomo, V.; Piro, G.; Ruggi, D.; Silvestrini, V.; Troise, G. The radiative cooling of selective surfaces. Sol. Energy 1975, 17, 83–89. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Hjortsberg, A. Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films. J. Appl. Phys. 1981, 52, 4205–4220. [Google Scholar] [CrossRef]
- Eriksson, T.S.; Lushiku, E.M.; Granqvist, C.G. Materials for radiative cooling to low temperature. Sol. Energy Mater. 1984, 11, 149–161. [Google Scholar] [CrossRef]
- Tazawa, M.; Jin, P.; Tanemura, S. Thin film used to obtain a constant temperature lower than the ambient. Thin Solid Films 1996, 281–282, 232–234. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Ferrante, A.; Lewis, J.O. The cooling potential of a metallic nocturnal radiator. Energy Build. 1998, 28, 251–256. [Google Scholar] [CrossRef]
- Erell, E.; Etzion, Y. Radiative cooling of buildings with flat-plate solar collectors. Build. Environ. 2000, 35, 297–305. [Google Scholar] [CrossRef]
- Sima, J.; Sikula, O.; Kosutova, K.; Plasek, J. Theoretical Evaluation of Night Sky Cooling in the Czech Republic. Energy Procedia 2014, 48, 645–653. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Mihalakakou, G. Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renew. Energy 2008, 33, 1220–1227. [Google Scholar] [CrossRef]
- Etzion, Y.; Erell, E. Thermal Storage Mass in Radiative Cooling Systems. Build. Environ. 1991, 26, 389–394. [Google Scholar] [CrossRef]
- Bathgate, S.N.; Bosi, S.G. A robust convection cover material for selective radiative cooling applications. Sol. Energy Mater. Sol. Cells 2011, 95, 2778–2785. [Google Scholar] [CrossRef]
- Rephaeli, E.; Raman, A.P.; Fan, S. Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling. Nano Lett. 2013, 13, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Ruan, X. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 2017, 104, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Pu, M.; Zhao, Z.; Li, X.; Ma, X.; Luo, X. Broadband metamaterial as an “invisible” radiative cooling coat. Opt. Commun. 2018, 407, 204–207. [Google Scholar] [CrossRef]
- Wu, D.; Liu, C.; Xu, Z.; Liu, Y.; Yu, Z.; Yu, L.; Ye, H. The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 2018, 139, 104–111. [Google Scholar] [CrossRef]
- Yang, P.; Chen, C.; Zhang, Z.M. A dual-layer structure with record-high solar reflectance for daytime radiative cooling. Sol. Energy 2018, 169, 316–324. [Google Scholar] [CrossRef]
- Wong, R.Y.M.; Tso, C.Y.; Chao, C.Y.H.; Huang, B.; Wan, M.P. Ultra-broadband asymmetric transmission metallic gratings for subtropical passive daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2018, 186, 330–339. [Google Scholar] [CrossRef]
- Vall, S.; Castell, A. Radiative cooling as low-grade energy source: A literature review. Renew. Sustain. Energy Rev. 2017, 77, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cavelius, R.; Isaksson, C.; Perednis, E.; Read, G.E.F. Passive Cooling Technologies; Austrian Energy Agency: Vienna, Austria, 2005. [Google Scholar]
- Eicker, U.; Dalibard, A. Photovoltaic-thermal collectors for night radiative cooling of buildings. Sol. Energy 2011, 85, 1322–1335. [Google Scholar] [CrossRef]
- Kong, A.; Cai, B.; Shi, P.; Yuan, X. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Opt. Express 2019, 27, 30102–30115. [Google Scholar] [CrossRef]
- Erell, E.; Etzion, Y. Heating experiments with a radiative cooling system. Build. Environ. 1996, 31, 509–517. [Google Scholar] [CrossRef]
- Hosseinzadeh, E.; Taherian, H. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors. Int. J. Green Energy 2012, 9, 766–779. [Google Scholar] [CrossRef]
- Xu, X.; Niu, R.; Feng, G. An Experimental and Analytical Study of a Radiative Cooling System with Flat Plate Collectors. Procedia Eng. 2015, 121, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Vall, S.; Castell, A.; Medrano, M. Energy Savings Potential of a Novel Radiative Cooling and Solar Thermal Collection Concept in Buildings for Various World Climates. Energy Technol. 2018, 6, 2200–2209. [Google Scholar] [CrossRef]
- Hu, M.; Pei, G.; Li, L.; Zheng, R.; Li, J.; Ji, J. Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling. Int. J. Photoenergy 2015, 2015, 807875. [Google Scholar] [CrossRef]
- Hu, M.; Pei, G.; Wang, Q.; Li, J.; Wang, Y.; Ji, J. Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Appl. Energy 2016, 179, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Fujisol S.S.L. Energías Renovables.—N.d. Available online: https://www.fujisol.com/pdf/ficha-fujip.pdf (accessed on 22 January 2020).
- Hu, M.; Zhao, B.; Ao, X.; Zhao, P.; Su, Y.; Pei, G. Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system. Appl. Energy 2018, 231, 288–300. [Google Scholar] [CrossRef]
- Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1994.
- Erell, E.; Etzion, Y. A Radiative Cooling System Using Water as a Heat Exchange Medium. Archit. Sci. Rev. 1992, 35, 39–49. [Google Scholar] [CrossRef]
- European Parliament. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency. Off. J. Eur. Union Dir. 2012, 1–56. [Google Scholar] [CrossRef]
UV–Vis | NIR | FT-IR | |
---|---|---|---|
Range | (0.19–1.1 μm) | (0.4–2.5 μm) | (2.5–15.5 μm) |
Mean Transmittance | 0.88 | 0.84 | 0.98 |
Date/Hour of Test | Test Label | Clear or Cloudy | Average Volumetric Flow Rate (L/min) | |
---|---|---|---|---|
First period | 26/07/17 (13:00–20:00) | Day 1.1 | Clear | 1.36 ± 0.07 |
26/07/17 (21:00)–27/07/17 (7:00) | Night 1.1 | Clear | 1.30 ± 0.02 | |
27/07/17 (8:00–20:00) | Day 1.2 | Clear | 1.25 ± 0.2 | |
27/07/17 (21:00)–28/07/17 (7:00) | Night 1.2 | Clear | 1.29 ± 0.02 | |
28/07/17 (8:00–18:00) | Day 1.3 | Clear | 1.89 ± 0.51 | |
Second period | 31/07/17 (8:30–20:00) | Day 2.1 | Clear | 1.42 ± 0.1 |
31/07/17 (21:00)–01/08/17 (7:00) | Night 2.1 | Clear | 0.63 ± 0.01 | |
01/08/17 (8:00–20:00) | Day 2.2 | Cloudy | 1.34 ± 0.14 | |
01/08/17 (21:00)–02/08/17 (7:00) | Night 2.2 | Cloudy | 0.56 ± 0.01 | |
02/08/17 (8:00–20:00) | Day 2.3 | Cloudy | 1.36 ± 0.09 | |
02/08/17 (21:00)–03/08/17 (7:00) | Night 2.3 | Cloudy | 0.57 ± 0.01 | |
03/08/17 (8:00–20:00) | Day 2.4 | Clear | 1.34 ± 0.15 | |
03/08/17 (21:00)–04/08/17 (7:00) | Night 2.4 | Clear | 0.52 ± 0.02 |
Average (Tout − Tamb) (K) | Average Efficiency (%) | |||||||
---|---|---|---|---|---|---|---|---|
Test Period | Average | Peak | Average | Peak | Heating | Cooling | ||
Day 1.1 | 313.3 | 545.5 | - | - | 24.98 | - | 43 | - |
Night 1.1 | - | - | 26.04 | 36.3 | - | −2.14 | - | 24 |
Day 1.2 | 293.5 | 513.8 | - | - | 19.68 | - | 46 | - |
Night 1.2 | - | - | 12.63 | 22.5 | - | −2.68 | - | 12 |
Day 1.3 | 310.7 | 583.3 | - | - | 13.84 | - | 49 | - |
Day 2.1 | 265.7 | 482.9 | - | - | 20.65 | - | 42 | - |
Night 2.1 | - | - | 33.35 | 48.5 | - | −2.47 | - | 32 |
Day 2.2 | 122.9 | 425.7 | - | - | 8.16 | - | 34 | - |
Night 2.2 | - | - | 23.84 | 31.6 | - | −2.56 | - | 26 |
Day 2.3 | 238.6 | 538.5 | - | - | 12.95 | - | 46 | - |
Night 2.3 | - | - | 22.69 | 33.9 | - | −2.62 | - | 24 |
Day 2.4 | 293.0 | 512.7 | - | - | 15.71 | - | 46 | - |
Night 2.4 | - | 30.64 | 36.2 | - | −3.44 | - | 28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vall, S.; Medrano, M.; Solé, C.; Castell, A. Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept. Energies 2020, 13, 893. https://doi.org/10.3390/en13040893
Vall S, Medrano M, Solé C, Castell A. Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept. Energies. 2020; 13(4):893. https://doi.org/10.3390/en13040893
Chicago/Turabian StyleVall, Sergi, Marc Medrano, Cristian Solé, and Albert Castell. 2020. "Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept" Energies 13, no. 4: 893. https://doi.org/10.3390/en13040893
APA StyleVall, S., Medrano, M., Solé, C., & Castell, A. (2020). Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept. Energies, 13(4), 893. https://doi.org/10.3390/en13040893