Temperature Measurements on a Solar and Low Enthalpy Geothermal Open-Air Asphalt Surface Platform in a Cold Climate Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pyranometer Measurements
2.2. Heat Flux Measurements on the Asphalt Surface
2.3. Underground Temperature Measurements
3. Results
3.1. Analyzing Pyranometer and Heat Flux Data
3.2. Relation between the Cumulative Heat Flux and Soil Temperature
3.3. Temperature Distribution Measurements Using DTS
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bobes-Jesus, V.; Pascual-Muñoz, P.; Castro-Fresno, D.; Rodriguez-Hernandez, J. Asphalt solar collectors: A literature review. Appl. Energy 2013, 102, 962–970. [Google Scholar] [CrossRef]
- Bijsterveld, W.T.V.; Houben, L.J.M.; Scarpas, A.; Molenaar, A.A.A. Using Pavement as Solar Collector: Effect on Pavement Temperature and Structural Response. Transp. Res. Rec. 2001. [Google Scholar] [CrossRef]
- Li, C.; Shang, J.; Cao, Y. Discussion on energy-saving taking urban heat island effect into account. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–3. [Google Scholar] [CrossRef]
- Mäkiranta, A.; Hiltunen, E. Utilizing Asphalt Heat Energy in Finnish Climate Conditions. Energies 2019, 12, 2101. [Google Scholar] [CrossRef] [Green Version]
- Majorowicz, J.; Grasby, S.E.; Skinner, W.R. Estimation of Shallow Geothermal Energy Resource in Canada: Heat Gain and Heat Sink. Nat. Resour. Res. 2009, 18, 95–108. [Google Scholar] [CrossRef]
- Loomans, M.; Oversloot, H.; De Bondt, A.; Jansen, R.; Van Rij, H. Design tool for the thermal energy potential of asphalt pavements. In Proceedings of the Eighth International IBPSA Conference, Eindhoven, The Netherlands, 11–14 August 2003; pp. 745–752. [Google Scholar]
- Hailu, G.; Hayes, P.; Masteller, M. Long-Term Monitoring of Sensible Thermal Storage in an Extremely Cold Region. Energies 2019, 12, 1821. [Google Scholar] [CrossRef] [Green Version]
- Mehrpooya, M.; Hemmatabady, H.; Ahmadi, M.H. Optimization of performance of Combined Solar Collector-Geothermal Heat Pump Systems to supply thermal load needed for heating greenhouses. Energy Convers. Manag. 2015, 97, 382–392. [Google Scholar] [CrossRef]
- Hesaraki, A.; Holmberg, S.; Haghighat, F. Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review. Renew. Sustain. Energy Rev. 2015, 43, 1199–1213. [Google Scholar] [CrossRef] [Green Version]
- Sibbitt, B.; McClenahan, D.; Djebbar, R.; Thornton, J.; Wong, B.; Carriere, J.; Kokko, J. The Performance of a High Solar Fraction Seasonal Storage District Heating System—Five Years of Operation. Energy Procedia 2012, 30, 856–865. [Google Scholar] [CrossRef] [Green Version]
- Lund, J.W.; Freeston, D.H.; Boyd, T.L. Direct utilization of geothermal energy 2010 worldwide review. Geothermics 2011, 40, 159–180. [Google Scholar] [CrossRef]
- Mesquita, L.; McClenahan, D.; Thornton, J.; Carriere, J.; Wong, B. Drake Landing Solar Community: 10 Years of Operation. In Proceedings of SWC2017/SHC2017; International Solar Energy Society: Abu Dhabi, UAE, 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Haq, H.M.K.U.; Hiltunen, E. An inquiry of ground heat storage: Analysis of experimental measurements and optimization of system’s performance. Appl. Therm. Eng. 2019, 148, 10–21. [Google Scholar] [CrossRef]
- Martinkauppi, J.B.; Mäkiranta, A.; Kiijärvi, J.; Hiltunen, E. Thermal Behavior of an Asphalt Pavement in the Laboratory and in the Parking Lot. Sci. World J. 2015, 2015. [Google Scholar] [CrossRef]
- Ho, I.H.; Dickson, M. Numerical modeling of heat production using geothermal energy for a snow-melting system. Geomech. Energy Environ. 2017, 10, 42–51. [Google Scholar] [CrossRef]
- File: Fennoscandia.png—Wikimedia Commons, the Free Media Repository. 2019. Available online: https://commons.wikimedia.org/w/index.php?title=File:Fennoscandia.png&oldid=365664646 (accessed on 14 January 2020).
- Finnish Meteorological Institute FMI: Heating Degree Days. Available online: https://en.ilmatieteenlaitos.fi/heating-degree-days (accessed on 13 January 2020).
- Finnish Meteorological Institute FMI: Monthly Average Air Temperature Data 2014–2016, Klemettilä, Vaasa. Available online: https://ilmatieteenlaitos.fi/havaintojen-lataus#! (accessed on 28 January 2019).
- Hall, M.R.; Dehdezi, P.K.; Dawson, A.R.; Grenfell, J.; Isola, R. Influence of the Thermophysical Properties of Pavement Materials on the Evolution of Temperature Depth Profiles in Different Climatic Regions. J. Mater. Civ. Eng. 2012, 24, 32–47. [Google Scholar] [CrossRef]
- Strzelczyk, P.; Szewczyk, M.; Gałek, R.; Gil, P. Measurement of solar radiation properties and thermal energy of the atmosphere in Rzeszow. In Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika; z. 90 [298], nr 4; Rzeszow University of Technology: Rzeszow, Poland, 2018. [Google Scholar]
- Van den Box, K. Hukseflux User Manual LP02, Second Class Pyranometer. 2015. Available online: https://www.hukseflux.com/uploads/product-documents/LP02_manual_v1606.pdf (accessed on 12 September 2019).
- Hoeksema, E. User Manual, HFP01 & HFP03, Heat Flux Plate/Heat Flux Sensor. 2015. Available online: https://www.hukseflux.com/uploads/product-documents/HFP01_HFP03_manual_v1721.pdf (accessed on 12 September 2019).
- Zhu, K.; Blum, P.; Ferguson, G.; Balke, K.D.; Bayer, P. The geothermal potential of urban heat islands. Environ. Res. Lett. 2010, 5, 044002. [Google Scholar] [CrossRef]
- Fisher, A.T.; Mankoff, K.D.; Tulaczyk, S.M.; Tyler, S.W.; Foley, N.; WISSARD Science Team. High geothermal heat flux measured below the West Antarctic Ice Sheet. Sci. Adv. 2015, 1, e1500093. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.B.; Belanger, D. Flow Profiling via Distributed Temperature Sensor (DTS) System—Expectation and Reality. In Proceedings of the Society of Petroleum Engineers, SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004. [Google Scholar] [CrossRef]
- Coleman, T.I.; Parker, B.L.; Maldaner, C.H.; Mondanos, M.J. Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes. J. Hydrol. 2015, 528, 449–462. [Google Scholar] [CrossRef]
- Henninges, J.; Zimmermann, G.; Büttner, G.; Schrötter, J.; Erbas, K.; Huenges, E. Fibre-optic temperature measurements in boreholes. In Proceedings of the 7th FKPE-Workshop “Bohrlochgeophysik and Gesteinsphysik”, GeoZentrum Hannover, Hannover, Germany, 23–24 October 2003; pp. 23–24. [Google Scholar]
- Oryx DTS User Manual v4; Sensornet Ltd.: London, UK, 2007.
- Ukil, A.; Braendle, H.; Krippner, P. Distributed Temperature Sensing: Review of Technology and Applications. IEEE Sens. J. 2012, 12, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Sayde, C.; Gregory, C.; Gil-Rodriguez, M.; Tufillaro, N.; Tyler, S.; Giesen, N.V.d.; English, M.; Cuenca, R.; Selker, J.S. Feasibility of soil moisture monitoring with heated fiber optics. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Solaimanian, M. Modeling temperature distribution and thermal property of asphalt concrete for laboratory testing applications. Constr. Build. Mater. 2010, 24, 487–497. [Google Scholar] [CrossRef]
- Valtanen, E. The Handbook of Math and Physics, Matematiikan ja Fysiikan Käsikirja, 2nd ed.; Genesis-kirjat Oy: Jyväskylä, Finland, 2007. [Google Scholar]
- Engineering Toolbox. Densities and Heat Capacities of Materials. Available online: https://www.engineeringtoolbox.com (accessed on 15 December 2019).
- Blocon, A. EED Earth Energy Designer-Vertical Borehole Design Program for. 2015. Available online: https://www.buildingphysics.com/manuals/EED3.pdf (accessed on 20 October 2019).
- Ronkainen, N. Properties of Finnish Soil Types; Finnish Environment Institute: Helsinki, Finland, 2012; Available online: https://core.ac.uk/download/pdf/14927376.pdf (accessed on 5 December 2019).
- Gracia, A.M.; Huld, T.; European Commission; Joint Research Centre; Institute for Energy and Transport. Performance Comparison of Different Models for the Estimation of Global Irradiance on Inclined Surfaces: Validation of the Model Implemented in PVGIS; Publications Office: Luxembourg, 2013.
- European Comission, J.R.G. Photovoltaic Geographical Information System. 2014. Available online: http://re.jrc.ec.europa.eu/pvgis (accessed on 21 September 2019).
- Datta, U.; Dessouky, S.; Papagiannakis, A.T. Thermal Energy Harvesting from Asphalt Roadway Pavement. In Advancement in the Design and Performance of Sustainable Asphalt Pavements; Mohammad, L., Ed.; Sustainable Civil Infrastructures; Springer International Publishing: Cham, Switzerland, 2018; pp. 272–286. Available online: https://link.springer.com/chapter/10.1007/978-3-319-61908-8_20 (accessed on 20 February 2020).
- Basheer Sheeba, J.; Krishnan Rohini, A. Structural and Thermal Analysis of Asphalt Solar Collector Using Finite Element Method. J. Energy 2014, 2014, 602087. [Google Scholar] [CrossRef]
- Pascual-Muñoz, P.; Castro-Fresno, D.; Serrano-Bravo, P.; Alonso-Estébanez, A. Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors. Appl. Energy 2013, 111, 324–332. [Google Scholar] [CrossRef] [Green Version]
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | HDD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 4.2 | 9.3 | 12.6 | 20 | 16.5 | 11.5 | 5 | 1 | −0.7 | 3926 | |||
2015 | −3.1 | −0.2 | 0.1 | 4 | 8.4 | 12.1 | 15.2 | 16.5 | 12.1 | 5.9 | 3.9 | 1.2 | 3546 |
2016 | −9.7 | −2.3 | 0.1 | 3.3 | 11 | 14 | 17.2 | 14.6 | 11.9 | 4 | −1.1 | −0.5 | 4124 |
Soil Type | Specific Heat Capacity [kJ/kgC] | Density [kg/m] |
---|---|---|
Asphalt | 0.92 | 2400 |
Gravel | 1.50 (dry) | 1680 (dry) |
Sand | 0.84 (dry, 20 C) | 2660 |
Clay | 0.88 (10% moisture) 1.76 (50% moisture) | 1600 (dry) 1760 (wet) |
Parameter | Autumn | Winter | Spring | Summer | Yearly Average |
---|---|---|---|---|---|
Average solar irradiance | 92 W/m2 | 11 W/m2 | 230 W/m2 | 260 W/m2 | 148 W/m2 |
Average net heat flux | −28 W/m2 | −1.9 W/m2 | 42 W/m2 | 8.4 W/m2 | 9.5 W/m2 |
Absorption ratio | −30% | −18% | 18% | 3.3% | 6.4% |
Average positive heat flux | 60 W/m2 | 16 W/m2 | 150 W/m2 | 190 W/m2 | 104 W/m2 |
Absorption ratio, positive flux | 65% | 145% | 65% | 73% | 70% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çuhac, C.; Mäkiranta, A.; Välisuo, P.; Hiltunen, E.; Elmusrati, M. Temperature Measurements on a Solar and Low Enthalpy Geothermal Open-Air Asphalt Surface Platform in a Cold Climate Region. Energies 2020, 13, 979. https://doi.org/10.3390/en13040979
Çuhac C, Mäkiranta A, Välisuo P, Hiltunen E, Elmusrati M. Temperature Measurements on a Solar and Low Enthalpy Geothermal Open-Air Asphalt Surface Platform in a Cold Climate Region. Energies. 2020; 13(4):979. https://doi.org/10.3390/en13040979
Chicago/Turabian StyleÇuhac, Caner, Anne Mäkiranta, Petri Välisuo, Erkki Hiltunen, and Mohammed Elmusrati. 2020. "Temperature Measurements on a Solar and Low Enthalpy Geothermal Open-Air Asphalt Surface Platform in a Cold Climate Region" Energies 13, no. 4: 979. https://doi.org/10.3390/en13040979
APA StyleÇuhac, C., Mäkiranta, A., Välisuo, P., Hiltunen, E., & Elmusrati, M. (2020). Temperature Measurements on a Solar and Low Enthalpy Geothermal Open-Air Asphalt Surface Platform in a Cold Climate Region. Energies, 13(4), 979. https://doi.org/10.3390/en13040979