Numerical Study on Effects of Air Return Height on Performance of an Underfloor Air Distribution System for Heating and Cooling
Abstract
:1. Introduction
2. Methodology
2.1. Case Description
2.2. CFD Model and Validation
3. Results
3.1. Flow Pattern and Thermal Conditions
3.2. Thermal Comfort Evaluation
3.3. IAQ Evaluation
3.4. Energy Consumption
3.5. Overall Performance Assessment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
ACE | air change effectiveness [-] |
DR | draught rate [%] |
IAQ | indoor air quality |
MV | mixing ventilation [-] |
MAA | mean air age [s] |
PMV | predicted mean vote [-] |
PPD | predicted mean vote [%] |
UFAD | underfloor floor air distribution [-] |
VOCs | volatile organic compounds [-] |
contaminant concentration in returning air (mg/m3) | |
contaminant concentration in outdoor air (mg/m3) | |
exhaust air flow rate (kg/s) | |
velocity component (m/s) | |
coordination (m) | |
air density (kg/m3) | |
contaminant concentration (mg/m3) | |
source term | |
exhaust air temperature (°C) | |
set-point temperature for the room (°C) | |
age of air (s) | |
reduced cooling coil load (W) |
References
- Yu, B.H.; Seo, B.-M.; Hong, S.H.; Yeon, S.; Lee, K.H. Influences of different operational configurations on combined effects of room air stratification and thermal decay in UFAD system. Energy Build. 2018, 176, 262–274. [Google Scholar] [CrossRef]
- Yu, K.-H.; Yoon, S.-H.; Jung, H.-K.; Kim, K.; Song, K.-D. Influence of Lighting Loads upon Thermal Comfort under CBAD and UFAD Systems. Energies 2015, 8, 6079–6097. [Google Scholar] [CrossRef] [Green Version]
- Yau, Y.H.; Poh, K.S.; Badarudin, A. A numerical airflow pattern study of a floor swirl diffuser for UFAD system. Energy Build. 2018, 158, 525–535. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, B.; Lin, Z.; Yang, J.; Jia, J.; Du, Z. Cooling load calculation methods in spaces with stratified air: A brief review and numerical investigation. Energy Build. 2018, 165, 47–55. [Google Scholar] [CrossRef]
- Lim, T.S.; Schaefer, L.; Kim, J.T.; Kim, G. Energy Benefit of the Underfloor Air Distribution System for Reducing Air-Conditioning and Heating Loads in Buildings. Indoor Built Environ. 2011, 21, 62–70. [Google Scholar] [CrossRef]
- Awbi, H.B.; Gan, G. Evaluation of the overall performance of room air distribution. In Proceedings of the 6th International Conference on Indoor Air Quality and Climate, Helsinki, Finland, 4–8 July 1993; Volume 5, pp. 283–288. [Google Scholar]
- UFAD. Guide Design, Construction and Operation of Underfloor Air Distribution Systems; ASHRAE: Atlanta, GA, USA, 2013. [Google Scholar]
- Ahmed, A.Q.; Gao, S.; Kareem, A.K. Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms. Appl. Therm. Eng. 2017, 110, 821–834. [Google Scholar] [CrossRef] [Green Version]
- Ameen, A.; Cehlin, M.; Larsson, U.; Karimipanah, T. Experimental Investigation of Ventilation Performance of Different Air Distribution Systems in an Office Environment—Heating Mode. Energies 2019, 12, 1835. [Google Scholar] [CrossRef] [Green Version]
- Alajmi, A.; El-Amer, W. Saving energy by using underfloor air distribution (UFAD) system in commercial buildings. Energy Convers. Manag. 2010, 51, 1637–1642. [Google Scholar] [CrossRef]
- Cheng, Y.; Niu, J.; Gao, N. Stratified air distribution systems in a large lecture theatre: A numerical method to optimize thermal comfort and maximize energy saving. Energy Build. 2012, 55, 515–525. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, J.; Du, Z.; Peng, J. Investigations on the Energy Efficiency of Stratified Air Distribution Systems with Different Diffuser Layouts. Sustainability 2016, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Fathollahzadeh, M.H.; Heidarinejad, G.; Pasdarshahri, H. Prediction of thermal comfort, IAQ, and energy consumption in a dense occupancy environment with the under floor air distribution system. Build. Environ. 2015, 90, 96–104. [Google Scholar] [CrossRef]
- Cheng, Y.; Niu, J.; Liu, X.; Gao, N. Experimental and numerical investigations on stratified air distribution systems with special configuration: Thermal comfort and energy saving. Energy Build. 2013, 64, 154–161. [Google Scholar] [CrossRef]
- Heidarinejad, G.; Fathollahzadeh, M.H.; Pasdarshahri, H. Effects of return air vent height on energy consumption, thermal comfort conditions and indoor air quality in an under floor air distribution system. Energy Build. 2015, 97, 155–161. [Google Scholar] [CrossRef]
- Fan, Y.; Li, X.; Yan, Y.; Tu, J. Overall performance evaluation of underfloor air distribution system with different heights of return vents. Energy Build. 2017, 147, 176–187. [Google Scholar] [CrossRef]
- Park, D.Y.; Chang, S. Numerical analysis to determine the performance of combined variable ceiling and floor-based air distribution systems in an office room. Indoor Built Environ. 2013, 23, 971–987. [Google Scholar] [CrossRef]
- Demetriou, D.W.; Khalifa, H.E. Evaluation of distributed environmental control systems for improving IAQ and reducing energy consumption in office buildings. Build. Simul. 2009, 2, 197–214. [Google Scholar] [CrossRef]
- Lin, Z.; Chow, T.T.; Tsang, C.F.; Fong, K.F.; Chan, L.S.; Shum, W.S.; Tsai, L. Effect of internal partitions on the performance of under floor air supply ventilation in a typical office environment. Build. Environ. 2009, 44, 534–545. [Google Scholar] [CrossRef]
- ANSI/ASHRAE. Ventilation for Acceptable Indoor Air Quality; Standard 62.1-2010; ASHRAE: Atlanta, GA, USA, 2010. [Google Scholar]
- Ng, L.C.; Musser, A.; Persily, A.K.; Emmerich, S.J. Indoor air quality analyses of commercial reference buildings. Build. Environ. 2012, 58, 179–187. [Google Scholar] [CrossRef]
- China Architecture. Design code for heating ventilation and air conditioning of civil buildings. In National Standard of the People’s Republic of China; GB 50736-2012; China Architecture & Building Press: Beijing, China, 2012. [Google Scholar]
- Lin, Z.; Chow, T.T.; Tsang, C.F.; Fong, K.F.; Chan, L.S. CFD study on effect of the air supply location on the performance of the displacement ventilation system. Build. Environ. 2005, 40, 1051–1067. [Google Scholar] [CrossRef]
- Kobayashi, N.; Chen, Q.Y. Floor-supply displacement ventilation in a small office. Indoor Built Environ. 2003, 12, 281–291. [Google Scholar] [CrossRef]
- Horikiri, K.Y.Y.; Yao, J. Modelling conjugate flow and heat transfer in a ventilated room for indoor thermal comfort assessment. Build Environ. 2014, 77, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tu, J. Evaluation of the eddy viscosity turbulence models for the simulation of convection–radiation coupled heat transfer in indoor environment. Energy Build. 2019, 184, 8–18. [Google Scholar] [CrossRef]
- Ansys Inc. Ansys CFX-Solver Theory Guide (Release 15.0); Southpointe: Canonsburg, PA, USA, 2013; Volume 15317. [Google Scholar]
- Li, X.; Yan, Y.; Tu, J. Evaluation of models and methods to simulate thermal radiation in indoor spaces. Build. Environ. 2018, 144, 259–267. [Google Scholar] [CrossRef]
- Wan, M.P.; Chao, C.Y. Numerical and experimental study of velocity and temperature characteristics in a ventilated enclosure with underfloor ventilation systems. Indoor AIR 2005, 15, 342–355. [Google Scholar] [CrossRef]
- Zhuang, R.N.; Li, X.; Tu, J. An energy saving ventilation strategy for short-term occupied rooms based on the time-dependent concentration of CO2. Int. J. Vent. 2015, 14, 39–52. [Google Scholar] [CrossRef]
- Zhuang, R.N.; Li, X.; Tu, J. A computation fluid dynamics study on the effects of computer fan on indoor airflow and indoor airflow and indoor air quality in breathing zone. Indoor Built Environ. 2013, 24, 295–307. [Google Scholar] [CrossRef]
- Kennett, R.; Cao, T.; Hwang, Y. CFD modeling and testing of an extended-duct air delivery system in high bay buildings. Sci. Technol. Built Environ. 2018, 25, 46–57. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort; Danish Technical Press: Copenhagen, Denmark, 1970; p. 242. [Google Scholar]
- ISO. Economics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO 7730; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- ANSI/ASHRAE. Thermal Environmental Conditions for Human Occupancy; Standard 55-2004; ASHRAE: Atlanta, GA, USA, 2004. [Google Scholar]
- Buratti, C.; Mariani, R.; Moretti, E. Mean age of air in a naturally ventilated office: Experimental data and simulations. Energy Build. 2011, 43, 2021–2027. [Google Scholar] [CrossRef]
- Fisk, W.J.; Faulkner, D.; Sullivan, D.; Bauman, F. Air change effectiveness and pollutant removal efficiency during adverse mixing conditions. Indoor AIR 1997, 7, 55–63. [Google Scholar] [CrossRef]
- Kemal, G.M.A. Guide to air change effectiveness. EColiBriuM.2013.pp32-39. Available online: https://www.gbca.org.au/green-star/rating-tools/green-star-office-v3/ (accessed on 20 December 2016).
- ASHRAE. ASHRAE Standard 129-1997 (RA 2002)—Measuring Air Change Effectiveness; ASHRAE: Atlanta, GA, USA, 2002. [Google Scholar]
- Ahmed Qasim, G.; Kareem, S.; Khaleel, A. A numerical study on the effects of exhaust locations on energy consumption and thermal environment in an office room served by displacement ventilation. Energy Convers. Manag. 2016, 117, 74–85. [Google Scholar] [CrossRef] [Green Version]
Boundary | Details |
---|---|
Supply diffuser | Supply air temperature 24 °C, Air supply rate 65 L/s, CO2 concentration: , =786 mg/m3 [19], VOCs concentration: , MAA: 0 s; |
Return vent | air flow rate 58.5 L/s |
Exhaust vent | Pressure outlet |
Heat sources | Heat flux 200 W/m2 |
CO2 sources | Emission rate 7.079 mg/m2·s [20] |
VOCs source | Emission rate 0.5 mg/m2·h [21] |
External wall | Heat transfer coefficient 1.222 W/m2·K [22], Outside temperature: −2.2 °C [22] |
Ceiling/Floor | Adiabatic wall |
Heater stands | Adiabatic wall |
Air supply Rate | Measured Turbulence Intensity | Enclosure Heat Load | Location of Exhaust | ||
---|---|---|---|---|---|
1 | 0.170 | 17.0 | 34 | 530 | Floor |
2 | 0.103 | 15.5 | 36 | 530 | Ceiling |
△head-ankle | No_Return | H = 2.3 m | H = 1.8 m | H = 1.5 m | H = 1.3 m | H = 1.1 m | H = 0.8 m |
---|---|---|---|---|---|---|---|
Line 2 | 2.24 | 2.31 | 2.07 | 1.65 | 2.05 | 2.15 | 2.37 |
Line 3 | 2.27 | 2.32 | 2.08 | 1.67 | 2.06 | 2.44 | 2.39 |
Line 4 | 2.21 | 2.29 | 2.06 | 1.63 | 2.03 | 2.18 | 2.35 |
Different Setting | Tr (°C) | Te (°C) | Toz (°C) | ||
---|---|---|---|---|---|
No return | 21.51 | 21.52 | 19.35 | 38.59 | 5.00 |
H = 2.3 m | 20.96 | 22.38 | 19.57 | 29.11 | 3.77 |
H = 1.8 m | 20.49 | 22.17 | 19.81 | 28.49 | 3.69 |
H = 1.5 m | 20.48 | 22.33 | 20.09 | 26.00 | 3.37 |
H = 1.3 m | 20.49 | 22.51 | 20.28 | 23.19 | 3.00 |
H = 1.1 m | 19.96 | 22.83 | 20.39 | 18.21 | 2.36 |
H = 0.8 m | 19.51 | 22.87 | 20.55 | 17.59 | 2.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Li, X.; Zheng, M.; Weng, R.; Tu, J. Numerical Study on Effects of Air Return Height on Performance of an Underfloor Air Distribution System for Heating and Cooling. Energies 2020, 13, 1070. https://doi.org/10.3390/en13051070
Fan Y, Li X, Zheng M, Weng R, Tu J. Numerical Study on Effects of Air Return Height on Performance of an Underfloor Air Distribution System for Heating and Cooling. Energies. 2020; 13(5):1070. https://doi.org/10.3390/en13051070
Chicago/Turabian StyleFan, Yaming, Xiangdong Li, Minfeng Zheng, Rengui Weng, and Jiyuan Tu. 2020. "Numerical Study on Effects of Air Return Height on Performance of an Underfloor Air Distribution System for Heating and Cooling" Energies 13, no. 5: 1070. https://doi.org/10.3390/en13051070
APA StyleFan, Y., Li, X., Zheng, M., Weng, R., & Tu, J. (2020). Numerical Study on Effects of Air Return Height on Performance of an Underfloor Air Distribution System for Heating and Cooling. Energies, 13(5), 1070. https://doi.org/10.3390/en13051070