Evolution of Mechanical Properties with Time of Fly-Ash-Based Geopolymer Mortars under the Effect of Granulated Ground Blast Furnace Slag Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
3. Results and Discussion
3.1. Density and Porosity
3.2. Compressive Strength and Flexural Tensile Strength
3.3. Evolution of Ultrasonic Pulse Velocity and Modulus of Elasticity of Tested Materials
4. Conclusions
- For the mortars cured at room temperature, the addition of a higher GGBFS content resulted in an increase in both compressive and tensile strength;
- Blending of FA (silica content 52.3 wt.%) with GGBFS (calcium oxide 43.9 wt.%) enabled us to obtain strength development kinetics similar to those observed for cement-based materials (Figure 4);
- The mechanical properties of compressive and flexural tensile strength of the mortars increased along with an increase in the amount of GGBFS. The best performances at 28 days were obtained by the 50N mortar (50% FA and 50% GGBFS), reaching fc = 63 MPa and ft = 6.8 MPa;
- Relatively high values of flexural tensile strength were observed for all the FA-based geopolymer mortars tested.Moreover, tensile to compressive strength ratios were higher than those of Portland cement composites and the ft(fc) relationships proposed for fly-ash geopolymer mortars were of a similar form to that given in the ACI 318-02;
- Ultrasonic pulse velocity measurements are an effective method for evaluating the maturity of a geopolymer and correlate well with the evolution of their mechanical properties over time;
- In a similar manner to the evolution of compressive strength, the UPV values tend to stabilize after 7 days;
- For FA-based geopolymers with the addition of GGBFS, the polynomial relationships fc(V) and ft(V) were proposed. These relations can be used to evaluate the maturity or damage to geopolymer mortars;
- For all materials tested, the values of the dynamic modulus of elasticity were calculated on the basis of UPV measurements andthe static modulus of elasticity values E were evaluated.A unique power law was provided for all the materials tested, in order to determine the variation in elastic modulus as a function of compressive strength E(fc); and
- The results show that the EC2 and FIB formulae may not be suitable to evaluate the E(fc) relations and tend to overestimate the modulus of elasticity inFA-based geopolymer binders of a given strength.
Author Contributions
Funding
Conflicts of Interest
References
- Ma, C.-K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Bai, T.; Song, Z.; Wang, H.; Wu, Y.; Huang, W. Performance evaluation of metakaolin geopolymer modified by different solid wastes. J. Clean. Prod. 2019, 226, 114–121. [Google Scholar] [CrossRef]
- Saha, S.; Rajasekaran, C. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr. Build. Mater. 2017, 146, 615–620. [Google Scholar] [CrossRef]
- Albitar, M.; Mohamed Ali, M.S.; Visintin, P.; Drechsler, M. Durability evaluation of geopolymer and conventional concretes. Constr. Build. Mater. 2017, 136, 374–385. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L. Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 2008, 91, 3864–3869. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Ekolu, S.O. Method for comprehensive mix design of fly ash geopolymer mortars. Constr. Build. Mater. 2019, 202, 704–717. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Sitarz, M.; Hager, I.; Kochanek, J. Effect of High Temperature on Mechanical Properties of Geopolymer Mortar. In Proceedings of the MATBUD’2018—8th Scientific-Technical Conference on Material Problems in Civil Engineering, Cracow, Poland, 25–27 June 2018. [Google Scholar]
- Fan, F.; Liu, Z.; Xu, G.; Peng, H.; Cai, C.S. Mechanical and thermal properties of fly-ash based geopolymers. Constr. Build. Mater. 2018, 160, 66–81. [Google Scholar] [CrossRef]
- Bakharev, T. Thermal behaviour of geopolymers prepared using class F fly-ash and elevated temperature curing. Cem. Concr. Res. 2006, 36, 1134–1147. [Google Scholar] [CrossRef]
- Sitarz, M.; Hager, I. Twelfth International Symposium On Brittle Matrix Composites. In Proceedings of the Effect Of Addition Of Limestone Powder On Fly-Ash Based Geopolymer Cured At 80 °C And At Ambient Temperature, Warsaw, Poland, 23–24 September 2019. [Google Scholar]
- Palomo, A.; Alonso, S.; Femandez-Jimenez, A. Alkaline activation of fly-ashes: NMR study of the reaction products. J. Am. Cem. Soc. 2004, 87, 1141–1145. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of Geopolymerization and Factors Influencing Its Development: A Review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Mustafa Al Bakri, A.M.; Kamarudin, H.; Bnhussain, M.; Nizar, I.K.; Mastura, W.I.W. Mechanism and Chemical Reaction of Fly-Ash Geopolymer Cement-A Review. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Lloyd, R.R.; Provis, J.L.; Van Deventer, J.S.J. Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. J. Mater. Sci. 2009, 44, 620–631. [Google Scholar] [CrossRef]
- Oh, J.E.; Monteiro, P.J.M.; Jun, S.S.; Choi, S.; Clark, S.M. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly-ash-based geopolymers. Cem. Concr. Res. 2010, 40, 189–196. [Google Scholar] [CrossRef]
- ASTM International. ASTM C618-19—Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Marjanović, N.; Komljenović, M.; Baščarević, Z.; Nikolić, V.; Petrović, R. Physical–mechanical and microstructural properties of alkali-activated fly-ash–blast furnace slag blends. Ceram. Int. 2015, 41, 1421–1435. [Google Scholar] [CrossRef]
- Standards, EN 450-1-Fly-ash for concrete—Part 1: Definition, Specifications and Conformity Criteria. Available online: https://global.ihs.com/doc_detail.cfm?document_name=BS%20EN%20450%2D1&item_s_key=00463023&rid=IHS (accessed on 3 March 2020).
- Davidovits, J. Geopolymer Chemistry and Applications, 4th ed.; Geopolymer Institute: Saint-Quentin, France, 2008; Volume 171, ISBN 9782951482098. [Google Scholar]
- Ghosh, R.; Sagar, S.P.; Kumar, A.; Gupta, S.K.; Kumar, S. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. J. Build. Eng. 2018, 16, 39–44. [Google Scholar] [CrossRef]
- Mohammed, T.U.; Rahman, M.N. Effect of types of aggregate and sand-to-aggregate volume ratio on UPV in concrete. Constr. Build. Mater. 2016, 125, 832–841. [Google Scholar] [CrossRef]
- Picandet, V.; Khelidj, A.; Bastian, G. Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete. Cem. Concr. Res. 2001, 31, 1525–1532. [Google Scholar] [CrossRef] [Green Version]
- Giesche, H. Mercury Porosimetry. In Handbook of Porous Solids; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 309–351. [Google Scholar]
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef]
- Steins, P.; Poulesquen, A.; Frizon, F.; Diat, O.; Jestin, J.; Causse, J.; Lambertin, D.; Rossignol, S. Effect of aging and alkali activator on the porous structure of a geopolymer. J. Appl. Crystallogr. 2014, 47, 316–324. [Google Scholar] [CrossRef]
- Medpelli, D.; Seo, J.-M.; Seo, D.-K. Geopolymer with Hierarchically Meso-/Macroporous Structures from Reactive Emulsion Templating. J. Am. Ceram. Soc. 2014, 97, 70–73. [Google Scholar] [CrossRef]
- Tuan, T.M. ACI 318-02. Practice. Concr. Int. 2003, 25, 71–75. [Google Scholar]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.N.S. Investigation of engineering properties of normal and high strength fly-ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr. Build. Mater. 2019, 196, 26–42. [Google Scholar] [CrossRef]
- Lydon, F.D.; Balendran, R.V. Some observations on elastic properties of plain concrete. Cem. Concr. Res. 1986, 16, 314–324. [Google Scholar] [CrossRef]
- European Standards EN 12504-1—Testing Concrete in Structures—Part 1: Cored Specimens—Taking, Examining and Testing in Compression. Available online: https://global.ihs.com/doc_detail.cfm?document_name=BS%20EN%2012504%2D1&item_s_key=00348183 (accessed on 3 March 2020).
- International Federation for Structural Concrete Model Code 2010 (Final Version). fib Bull. 2012, 65 & 66. Available online: https://www.ernst-und-sohn.de/index.php?q=en/fib-model-code-for-concrete-structures-2010 (accessed on 3 March 2020).
- European standards EN 1992-1—Design of Concrete Structures General Rules and Rules for Buildings. Available online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf (accessed on 3 March 2020).
- Tomosawa, F.; Noguchi, T. Relationship Between Compressive Strength And Modulus Of Elasticity Of High-Strength Concrete. J. Struct. Constr. Eng. 1995, 60, 1–10. [Google Scholar]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O | P2O5 | TiO2 | Mn3O4 |
---|---|---|---|---|---|---|---|---|---|---|
52.30 | 28.05 | 6.32 | 3.05 | 1.71 | 0.28 | 2.51 | 0.76 | 0.69 | 1.35 | 0.07 |
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O | Cl¯ | Na2Oeq | Blaine |
---|---|---|---|---|---|---|---|---|---|---|
39.31 | 7.61 | 1.49 | 43.90 | 4.15 | 0.51 | 0.356 | 0.468 | 0.038 | 0.702 | 3904 |
Characteristic | Unit | Geosil 34417 (Na-Sil) |
---|---|---|
Na2O | wt.% | 16.74 |
SiO2 | wt.% | 27.5 |
density | g/cm3 | 1.552 |
viscosity | mPa.s | 470 |
weight ratio (WR = wt.% SiO2/wt.% Na2O) | − | 1.64 |
molar ratio (MR = mol SiO2/molNa2O) | − | 1.70 |
Component | Na2O | SiO2 | H2O |
---|---|---|---|
Percentage content [wt.%] | 12.6 | 20.6 | 66.8 |
Mortar Component | Density (g/cm3) |
---|---|
Fly-ash (FA) | 2.10 |
GGBFS | 2.90 |
Sand | 2.65 |
Alkaline solution | 1.41 |
Components | 10N | 30N | 50N |
(kg/m3) | (kg/m3) | (kg/m3) | |
Alkaline solution (Na-Sil + extra water) | 334.0 | 340.6 | 347.5 |
FA | 667.9 | 529.8 | 386.1 |
GGBFS | 74.2 | 227.1 | 386.1 |
Sand (0/2 mm) | 1113.2 | 1135.3 | 1158.3 |
Mortar parameters | |||
sand to binder weight ratio (sand/FA + GGBFS) | 1.5 | 1.5 | 1.5 |
alkaline solution to binder (FA + GGBFS) weight ratio | 0.45 | 0.45 | 0.45 |
water to binder (FA + GGBFS) weight ratio | 0.3 | 0.3 | 0.3 |
Mean Values of Apparent Density | 10N | 30N | 50N |
---|---|---|---|
(kg/m3) | (kg/m3) | (kg/m3) | |
1d | 2051 | 2141 | 2223 |
3d | 2047 | 2137 | 2215 |
7d | 2043 | 2133 | 2211 |
14d | 2027 | 2121 | 2210 |
28d | 2012 | 2113 | 2207 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitarz, M.; Hager, I.; Choińska, M. Evolution of Mechanical Properties with Time of Fly-Ash-Based Geopolymer Mortars under the Effect of Granulated Ground Blast Furnace Slag Addition. Energies 2020, 13, 1135. https://doi.org/10.3390/en13051135
Sitarz M, Hager I, Choińska M. Evolution of Mechanical Properties with Time of Fly-Ash-Based Geopolymer Mortars under the Effect of Granulated Ground Blast Furnace Slag Addition. Energies. 2020; 13(5):1135. https://doi.org/10.3390/en13051135
Chicago/Turabian StyleSitarz, Mateusz, Izabela Hager, and Marta Choińska. 2020. "Evolution of Mechanical Properties with Time of Fly-Ash-Based Geopolymer Mortars under the Effect of Granulated Ground Blast Furnace Slag Addition" Energies 13, no. 5: 1135. https://doi.org/10.3390/en13051135
APA StyleSitarz, M., Hager, I., & Choińska, M. (2020). Evolution of Mechanical Properties with Time of Fly-Ash-Based Geopolymer Mortars under the Effect of Granulated Ground Blast Furnace Slag Addition. Energies, 13(5), 1135. https://doi.org/10.3390/en13051135