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Abstract: Based on a 10-kW organic Rankine cycle (ORC) experimental prototype, the system
behaviors using a plunger pump and centrifugal pump have been investigated. The heat input is
in the range of 45 kW to 82 kW. The temperature utilization rate is defined to appraise heat source
utilization. The detailed components’ behaviors with the varying heat input are discussed, while
the system generating efficiency is examined. The exergy destruction for the four components is
addressed finally. Results indicated that the centrifugal pump owns a relatively higher mass flow rate
and pump isentropic efficiency, but more power consumption than the plunger pump. The evaporator
pressure drops are in the range of 0.45–0.65 bar, demonstrating that the pressure drop should be
considered for the ORC simulation. The electrical power has a small difference using a plunger
pump and a centrifugal pump, indicating that the electric power is insensitive on the pump types.
The system generating efficiency for the plunger pump is approximately 3.63%, which is 12.51%
higher than that of the centrifugal pump. The exergy destruction for the evaporator, expander,
and condenser is almost 30%, indicating that enhancing the temperature matching between the
system and the heat (cold) source is a way to improve the system performance.

Keywords: organic Rankine cycle (ORC); plunger pump; centrifugal pump; pressure drop;
temperature utilization rate; system generating efficiency

1. Introduction

The issues of energy high-speed consumption and safe supply have aroused widespread concern
in society. In order to effectively solve the energy problem, countries around the world have proposed
measures that focus on both energy development and conservation. According to statistics, 50% of
the energy used by humans is directly emitted by low-temperature waste heat. If this energy can be
used, it will not only solve some energy problems but also reduce environmental pollution. Among
much of the low-grade thermal energy conversion and utilization technologies, the organic Rankine
cycle is extensively applied on account of its wide temperature range and moderate power [1–3].
In addition, the organic Rankine cycle is often used in conjunction with other systems to achieve
higher efficiency. Peris et al. [4] were interested in using ORC for combined heat and power (CHP)
applications, and Capata et al. [5] recovered vehicle waste heat with small-scale ORC. In addition, solar
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energy, wind energy, and ocean temperature difference energy are of particular interest in small-scale
ORC systems [6–8]. Therefore, extensive research studies have been conducted on the ORC.

For the industrial ORC prototype, the back work ratio is as high as 25%, indicating that improving
the pump performance is a key for ORC commercial application. Numerous studies devoted main
efforts on the pump improvement, including piston pumps, gear pumps, and centrifugal pumps.
The vane pump delivers energy by the impeller, while the positive displacement pump is dependent
on the periodic variation of the volume. Mathias et al. [9] conducted a comparison between the
piston pump and gear pump, representing that the piston pump was preferred for the ORC system.
Lei et al. [10] tested an ORC system using a roto-jet pump, stating that the pump efficiency of 11–23% was
obtained. Bianchi et al. [11] conducted a test on an ORC system using a sliding vane pump, reporting
that the shaft power has a significant influence on mass flow rate and pressure. Villani et al. [12]
proposed two different ORC systems combined with the heavy diesel engines. One is that the pump and
the expander are connected to achieve a fixed speed, and the other is that the pump and expander are
separated, the pump optimal speed and expander optimal speed are selected by adjusting parameters.
Zeleny et al. [13] applied a gear pump on the ORC system to evaluate the pump mechanical losses.
Xu et al. [14] tested the operation characteristics of a piston pump on an ORC system, demonstrating
that the low pump frequency was applicable to all expander torques. Carraro et al. [15] integrated
a multi-diaphragm positive displacement pump into a 4-kW experimental prototype and found that
the pump global efficiency was about 45–48%. Bianchi et al. [16] changed the pump speed to measure
the performance of the pump and the overall system in a micro-ORC and found that the pump has
a back-work ratio of 50–75% and causes a lot of power consumption. Therefore, special attention should
be paid to the design of the pump in micro-ORC. Zhang et al. [17] experimentally studied the change
in pump characteristics with evaporation and condensation temperatures. The pump consumption
decreases with increasing condensation temperature and presents a non-linear relationship with
increasing evaporation temperature. Xi et al. [18] experimentally tested the transient process for the
sudden stop of the working fluid pumps in the ORC and regenerative ORC (RORC) systems and found
that the expander showed good performance if the pumps were closed when the working fluid was
overcharged. Abam et al. [19] analyzed the exergy performance for each component of the four different
ORCs and showed that the exergy destruction of evaporators was the largest and that of the pumps was
the smallest. Aleksandra et al. [20] integrated that the use of different refrigerants can produce different
pump work. Wu et al. [21] utilized a booster pump instead of a common working pump to optimize
system characteristics. Meng et al. [22] investigated the performance of the centrifugal pump applied to
the engine exhaust recovery ORC device and found that the total efficiency of the pump was 15–65.7%.
In addition, Yang et al. [23] and Sun et al. [24] compared a variety of pumps that can be applied to
the ORC in order to find the most suitable pump for ORC systems, indicating that the hydraulic
diaphragm metering pump was suitable for low heat capacity, whereas the multistage centrifugal
pump was preferred for higher heat capacity. Feng et al. [25–27] experimentally compared the system
behaviors on a 3kW ORC between pure working fluids and mixture working fluids using a scroll
expander. In addition, when the working fluids are condensed in a condenser, the working fluids’
temperature and pressure decrease, resulting in the working fluid pump cavitation. Cavitation affects
the stability of the system, resulting in a decrease of system efficiency. D’amico et al. [28] introduced
the thermodynamic model of a piston pump in the ORC and proposed the prediction of available head
margin to avoid cavitation. Liu et al. [29] found that cavitation can occur when the working fluid
was insufficient and proposed overcharging working fluid to avoid cavitation. Yang et al. [30] stated
that a subcooling of 20 ◦C was needed to prevent the cavitation of the piston pump. Pei et al. [31]
emphasized the use of a bypass tube to balance the pressure of the pump and the tank to solve the
cavitation. Galindoe et al. [32] and Dumont et al. [33] used a liquid sub-cooler to prohibit the cavitation.

To lessen the influence of the pump on the ORC property, a novel concept was proposed—pumpless
ORC. Gao et al. [34] raised the gravity-type pumpless ORC to ensure the stability and continuity of
the system shaft power output. Bao et al. [35] believed that an ORC system without a pump can
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achieve a more compact and efficient arrangement, which can improve the system’s net efficiency.
Jiang et al. [36] raised a cascade cycle of power and refrigeration, applying the pumpless ORC to the
upper cycle and the adsorption refrigeration cycle to the lower cycle. Within the range of experimental
parameters, the maximum power is 232 W and the maximum cooling capacity is 4.94 kW.

As mentioned above, it is evident that several experimental investigations using different pumps
have been performed. However, limited studies fulfilled the work on the experimental comparison
on an ORC operation characteristic using different pumps. Simultaneously, micro- ORC is still in
infancy, and more effort should be focused on the components’ design and test. For the micro-ORC
prototype, the considerably low efficiency of the pump may heavily affect the overall performance.
Therefore, comparing the operation characteristics of small-scale ORC prototypes using different
pumps is certainly of great interest. In the present study, a 10 kW R245fa-based ORC experimental
prototype is used to study the operation characteristics. A plunger pump and centrifugal pump are
adopted, which were widely used in previous experimental tests. The basic operation characteristics for
the plunger pump and centrifugal pump are first analyzed. The components’ behaviors are addressed,
and the overall performance is examined.

2. Experimental Setup Description

2.1. System Design and Operating Method

A 10 kW ORC test platform is adopted. Figure 1 displays a schematic diagram of the experimental
bench, and Figure 2 presents the pictures of the experimental equipment. To provide a simulated heat
source, diathermic oil is adopted and heated by an electric heater. An electric heater has twelve electric
heating rods, and each rod has a capacity of 10 kW. The heating rods are connected in series with
an SCR power regulator to adjust the input electric. The heat source temperature is from 85–105 ◦C
and each variation increases by about 5 ◦C. The heat input is in the range of 45–85 kW. The evaporator
and condenser are both plate heat exchangers and the specific parameters for the heat exchangers are
listed in Table 1.
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Table 1. Parameters of plate heat exchangers.

Component Maximum
Temperature Total Volume Total Heat

Transfer Area
Maximum
Pressure

Heat exchanger 200 ◦C 8.848 L 4.175 m2 30 bar
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A centrifugal pump and a plunger pump are adopted in this experimental prototype. The mass
flow rates are adjusted by the rotating speed of the pump and the pump rotating speed is controlled by
a frequency converter. Meanwhile, the pump raises the refrigerant to reasonable working pressure
and the refrigerant enters the evaporator to absorb heat. R245fa is chosen as the refrigerant because
of its good thermodynamics and economic characteristics. The scroll expander is adopted, which is
improved by a scroll air compressor that is operating in reverse. The product of the system is consumed
by the electrical resistance and capacitance, which determines the expander speed. The speed of the
expander is measured at 2500–2900rpm and the expander specifications are listed in Table 2. The steam
refrigerant absorbed heat enters the expander which exports power. In Figure 2, the scroll expander
is encapsulated with a generator, and the shaft power is hard to measure. Therefore, the expander
shaft power is expressed by the mass flow rates and expander enthalpy difference. Mass flow rates
are converted from volume flow rates directly measured by the flowmeter. The enthalpy difference is
determined by checking the REFPROP(a software that can check physical properties) according to the
temperature and pressure at both ends of the expander. An inductive generator is used as the power
output device.

Table 2. Parameters of the scroll expander.

Component Volume Ratio Inspiratory Volume Gear Height Basic Circle Radius

Scroll expander 2.95 23.56 m3/hr 48.2 mm 4.456 mm

A 3% lubricating oil is added in the expander to avoid the leakages and reduce the friction losses in
the expander. In addition, the compatibility of the lubricating oil and R245fa is tested at first. After the
expansion, the gaseous refrigerant enters the condenser and transfers the residual heat to the cooling
water. The mass flow rate of cooling water is 4m/s, which is regulated by the cooling pump frequency.
To better ascertain the effect of the pump on the system behavior, a plunger pump and centrifugal
pump are tested and compared in this study.

2.2. Plunger Pump and Centrifugal Pump

The plunger pump has a high volume ratio, small flow rate, good characteristic curve, and low
cost. It sucks and discharges the working fluid through the reciprocating motion of the plunger.
The maximum flow rate of the reciprocating plunger pump is 15.5 L/min with the maximum pressure
of 20 bar.

The centrifugal pump has a small area, less material consumption, less manufacturing and
installation costs, and can run at high speeds. The centrifugal pump is driven by centrifugal force.
The liquid is pumped out from the center to the periphery along the blade flow path and is sent to the
discharge pipe through the volute. The centrifugal pump has a maximum flow rate of 36.7 L/min and
the delivery pressure of 25 bar. More detailed information about the pumps is displayed in Table 3.

Table 3. Parameters of the plunger pump and centrifugal pump.

Components Maximum
Pressure(bar)

Maximum
Flow(L/min)

Temperature
Resistance (◦C)

Nominal Speed
(RPM)

Plunger pump 20 15.5 40 850
Centrifugal pump 25 36.7 120 3500

3. Measuring Device and Thermodynamic Analysis

The detailed operation parameters are measured, including temperature, pressure, and mass
flow rate. A vortex flowmeter placed at the pump outlet is used to measure volume flow rates,
and then the volume flow rates are converted into mass flow rates, with the detailed location shown
in Figure 1. The heat source temperature for both pump experiments was 85–110 ◦C. The system
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performance can be obtained based on the measured operation parameters, while an uncertainty
analysis is conducted [37].

∆Y =

√√∑
i

(
∂Y
∂Xi

)
2
∆X2

i (1)

where X and ∆Y are the independent variable and uncertainty, respectively. Table 4 lists the measuring
devices and the uncertainties for system parameters.

Table 4. The measuring devices and the uncertainties for system parameters.

Item Type Measurement Range Device Uncertainty

Temperature T-type 0–623.15 K ±0.3 K
Pressure JPT-131S 0–30 bar ±0.5% F.S
Flow rate GPI S050 1.9–37.9 L/min ±3% L/min

Rotation speed UT-372 10–99,999 rpm ±3% rpm
Electrical power PA310 0.5%

Pump shaft power 3.9%
Pump isentropic efficiency 4.5%

Evaporator heat transfer coefficient 1.9%
Condenser heat transfer coefficient 2.2%

Expander isentropic efficiency 4.7%
System generating efficiency 1.2%

Figure 3 shows the T-s diagram of the ORC system, the expander isentropic efficiency is calculated
based on the ideal expansion process and actual expansion process. The expander isentropic efficiency
(ηis,exp) and pressure difference (∆P) can be calculated as follows:

ηis,exp =
h1 − h2

h1 − h2s
(2)

∆P = P1 − P2 (3)

where h1 and p1 represent the enthalpy and pressure of the expander inlet, and h2, p2 and h2s represent
the enthalpy, pressure and isentropic enthalpy of the expander outlet.
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The condenser heat transfer rate (Qcond), the logarithmic mean temperature difference (LMTD)
(∆Tcond), heat transfer coefficient (Ucond) and pressure drop(∆Pcond) can be calculated as follows:

Qcond = m(h2 − h5) (4)
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∆Tcond =
∆Tmax − ∆Tmin

ln ∆Tmax
∆Tmin

=
(T13 − T5) − (T16 − T2)

ln T13−T5
T16−T2

(5)

Ucond =
Qcond

∆Tcond ·A
(6)

∆Pcond = P2 − P5 (7)

where h5 is the outlet enthalpy of the condenser; ∆Tmax and ∆Tmin are the maximum and minimum
temperature difference at the condenser, respectively; and A represents the surface area of the
heat exchanger.

The pump isentropic efficiency is calculated by the actual compression process and the ideal
compression process. The pump shaft power (Wsh,pump) and isentropic efficiency (ηis,pump) are
expressed as:

Wsh,pump = m(h6 − h5) (8)

ηis,pump =
h5s − h5

h6 − h5
(9)

where h5s and h6 denote the pump outlet enthalpy and isentropic enthalpy.
Similarly, the evaporator heat transfer rate (Qeva), LMTD (∆Teva), heat transfer coefficient (Ueva)

and pressure drop (∆Peva) can be expressed as:

Qeva = m(h1 − h6) (10)

∆Teva =
∆Tmax − ∆Tmin

ln ∆Tmax
∆Tmin

=
(T12 − T6) − (T9 − T1)

ln T12−T6
T9−T1

(11)

Ueva =
Qeva

∆Teva ·A
(12)

∆Peva = P1 − P6 (13)

To better understand the heat source utilization, the temperature utilization rate of the heat
source (θ) is proposed [38]. Assuming that the lowest heat source temperature can reach 60 ◦C
(333.15 K), the denominator of temperature utilization rate θ indicates the heat that the system can use.
The numerator denotes the actual heat used by the ORC system. So θ can be expressed as:

θ = (TH, in− TH, out)/(TH, in− 333.15) (14)

The generating efficiency can be expressed as:

ηele =
Wele,exp −Wele,pump

Qeva
(15)

where Wele,exp and Wele,pump represent the electrical power and pump consumption power.
The exergy destruction of the four components including the pump (Ed, pump), evaporator

(Ed, eva), expander (Ed, exp) and condenser (Ed, cond) can be calculated as follows:

Ed,pump = T0m(s6 − s5) (16)

Ed,eva = T0m[(s1 − s6) − 2(h1 − h6)/(T9 + T12)] (17)

Ed,exp = T0m(s2 − s1) (18)

Ed,con = T0m[(s5 − s2) − 2(h5 − h2)/(T13 + T16)] (19)
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4. Results and Discussion

To better compare the cycle behaviors of a 10-kW experimental prototype using two different
pumps, the system operation parameters at different heat inputs are collected. The heat input for
the plunger pump and centrifugal pump are in the range of 44.74–76.48 kW and 45.61–81.35 kW,
respectively. The basic operating parameters using the plunger pump and centrifugal pump are
displayed in Section 4.1. The detailed components’ behaviors are described in Section 4.2, while
the overall cycle characteristics, including system generating efficiency and exergy destruction are
expressed in Section 4.3.

4.1. Basic Operating Parameters

In particular, the present data is collected at different time periods. It is difficult to keep the
ambient temperature constant because of the fluctuating ambient conditions. However, the environment
temperature has a great influence on the condensation process, so it has a strong guiding significance
for explaining many basic operating parameters of ORC, such as pump inlet temperature and shaft
work, etc. The environment temperatures for the ORC system using the plunger pump and centrifugal
pump are listed in Tables 5 and 6, respectively. The environment temperature for the plunger pump
is approaching 23 ◦C, which is 4 ◦C higher than that of the centrifugal pump. Figure 4 illustrates
the relationship between mass flow rate and heat input using the plunger pump and centrifugal
pump. When the heat input keeps rising, more working fluids are needed to absorb the heat from the
evaporator. It also can be found that the centrifugal pump has a slightly higher mass flow rate than the
plunger pump for the same heat input, which may be contributed to the centrifugal pump having the
higher rotating speed and greater flow per revolution. The mass flow rate for the centrifugal pump is
from 0.17 to 0.31 kg/s, which is 6.7% higher than that of the plunger pump.

Table 5. The environment temperature for using the plunger pump.

Heat input (kW) 38.7 48.8 58.2 63.8

Environment temperature (◦C) 23.5 23.5 24.0 21.5

Table 6. The environment temperature for using the centrifugal pump.

Heat input (kW) 46.0 56.2 66.6 77.3

Environment temperature (◦C) 17.5 17.3 18.9 18.5
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Figure 5 shows details of the temperature and pressure for the pump inlet and outlet with
heat input using the plunger pump and centrifugal pump. In Figure 5a, the centrifugal pump inlet
temperature and pressure have no obvious variation with the heat input. However, the plunger
pump inlet temperature appears to suddenly decrease when the heat inputs exceed 66.53 kW, owing
to the fluctuating environmental temperature. The environment temperature decreases slightly for
heat inputs over 66.53 kW, resulting in a decrease of cooling water temperature and the pump inlet
temperature. In Figure 5b, the pump outlet temperature has a similar trend to the state at the pump
inlet, whereas the pump outlet pressure shows a sharp increase with the heat input. Because of the
difficulty in repeating tests with similar environmental temperatures, the non-dimensional operating
parameter (pump pressure ratio) is chosen to compare the characteristic of the two pumps, which
is shown in Figure 5c. The centrifugal pump pressure ratio is much higher than the plunger pump.
The pump outlet pressure for the plunger pump is in the range of 7.58–10.87 bar, which is 0.3 bar
higher than that of the centrifugal pump ranging from 7.29 bar to 10.84 bar.Energies 2020, 13, x FOR PEER REVIEW 10 of 19 
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Figure 5. Pressure and temperature at the pump inlet and outlet with heat input using the plunger pump
and centrifugal pump: (a) pressure and temperature at the pump inlet; (b) pressure and temperature at
the pump outlet and (c) pump pressure ratios.

Figure 6 presents the comparison of expander inlet and outlet temperatures and pressure with
heat input using the plunger pump and centrifugal pump. In Figure 6a, the expander inlet temperature
and pressure increase monotonically with heat input. The expander inlet temperature of the plunger
pump rises from 82.20 ◦C to 97.74 ◦C for heat inputs increasing from 45 kW to 85 kW, with the
corresponding expander inlet pressure ranging from 7.13 bar to 10.23 bar. Meanwhile, the plunger
pump demonstrates a higher expander inlet pressure and temperature than the centrifugal pump.
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The expander outlet pressure and temperature keep rising in Figure 6b, which is similar to that at the
expander inlet. Similarly, in order to more clearly compare the features of the expander using the two
pump systems, the pressure ratio for the expander is shown in Figure 6c. The expander pressure ratio
in the system using the centrifugal pump is more favorable than that using the plunger pump because
the centrifugal pump can provide higher pressure to the system.
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Figure 6. Temperature and pressure at the expander inlet and outlet with heat input using the plunger
pump and centrifugal pump: (a) pressure and temperature at the expander inlet; (b) pressure and
temperature at the expander outlet; (c) expander pressure ratios.

4.2. Detailed Components’ Behavior

4.2.1. Pump Behavior

The pump shaft power cannot be tested and is expressed by Equation (8). Figure 7 demonstrates
the details of shaft power using the plunger pump and centrifugal pump with heat input. Apparently,
the pump shaft power of the centrifugal pump keeps increasing with heat input, which may be caused
by the increase in mass flow rate and pump enthalpy difference. However, the shaft power of the
plunger pump presents a slight decrease when heat inputs exceed 66.53 kW because of the higher
sensitivity to the environmental temperature. The pump shaft power using the centrifugal pump
increases from 0.51 kW to 0.85 kW, which is 37% higher than that of the plunger pump.
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Figure 7. Pump shaft power with heat input using the plunger pump and centrifugal pump.

The pump isentropic efficiency can be considered as an important parameter to ascertain pump
characteristics. Figure 8 displays the pump isentropic efficiency of the plunger pump and centrifugal
pump. The isentropic efficiency keeps increasing with heat input because the pump compression process
gets closer to the ideal isentropic process. The isentropic efficiency of the plunger pump and centrifugal
pumps is in the range of 13.2–26.1% and 15.3–24.5%, respectively. The pump isentropic efficiency is
really low because there is no specialized pump for the ORC system. Moreover, the centrifugal pump
isentropic efficiency is higher than the plunger pump for low heat inputs, while a reverse trend for
higher input heats. Meanwhile, the low pump isentropic efficiency reminds us that enhancing the
pump’s behavior is vital for the improvement in ORC performance.
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4.2.2. Heat Exchanger Behavior

The details of evaporator and condenser heat transfer coefficients with heat input using the
plunger pump and centrifugal pump are plotted in Figure 9. In Figure 9a, the evaporator heat transfer
coefficient of the centrifugal pump keeps increasing, whereas that of the plunger pump displays
a parabolic trend with a maximum with heat input, which may be caused by both the evaporator heat
transfer rate and LMTD. The condenser heat transfer coefficient keeps rising with heat input in Figure 9,
this is because of an increasing expander outlet temperature. The increasing condenser heat transfer
rate is greater than that of condenser LMTD, which causes an increasing condenser heat transfer
coefficient. Meanwhile, the cycle using the centrifugal pump has a relatively higher heat transfer
coefficient than that using the plunger pump (whether evaporator or condenser). The evaporator heat
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transfer coefficients for the cycle using the plunger pump and centrifugal pump are in the range of
116.45–147.01 W/m2 ◦C and 126.95–149.58 W/m2 ◦C, and the corresponding condenser heat transfer
coefficients are 1003.18–1371.33 W/m2◦C and 1092.74–1608.27 W/m2 ◦C, respectively.
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Figure 10. Condenser and evaporator pressure drop with heat input using the plunger pump and 

centrifugal pump. 
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is used to appraise the heat source utilization. As illustrated in Figure 11, the temperature 

utilization rate for the centrifugal pump has a slight decrease whereas the plunger pump has almost 
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Figure 9. Evaporator and condenser heat transfer coefficients with heat input using the plunger pump
and centrifugal pump: (a) evaporator heat transfer coefficients; (b) condenser heat transfer coefficients.

As for the ORC simulation, the pressure drop in the evaporation and condensation processes
are usually ignored. However, for the actual cycle, having pressure drops can decrease the expander
inlet pressure, and thus affect the overall system property. Figure 10 demonstrates the variation of
condenser and evaporator pressure drop with heat input using the plunger pump and centrifugal
pump. Obviously, the pressure drops for evaporator and condenser increase with the heat input, which
may be caused by the increasing mass flow rate. A small difference in the evaporator pressure drop
appeared between the plunger pump and the centrifugal pump. However, when the heat inputs raise
from 40 kW to 82 kW, the condenser pressure drops using the centrifugal pump are 0.13–0.53 bar,
which is 0.07 bar higher than that using the plunger pump. The evaporator pressure drops are in the
range of 0.45–0.65 bar. It indicates that the pressure drop should be considered for the ORC simulation
and decreasing the pressure drop is one way to improve the system performance.
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Figure 10. Condenser and evaporator pressure drop with heat input using the plunger pump and
centrifugal pump.

The variation of temperature utilization rate with heat input using the plunger pump and
centrifugal pump is plotted in Figure 11. For a specific heat source temperature, a higher thermal
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efficiency does not represent a higher net power output. Therefore, the temperature utilization rate is
used to appraise the heat source utilization. As illustrated in Figure 11, the temperature utilization rate
for the centrifugal pump has a slight decrease whereas the plunger pump has almost no change with
the heat input. The average heat source temperature utilization rate for the centrifugal pump is about
30%, which is 5% higher than that of the plunger pump, indicating that the centrifugal pump absorbs
more heat than the plunger pump at the same heat source condition.
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4.2.3. Expander Behavior

Figure 12 shows the expander isentropic efficiency with heat input using the plunger pump and
centrifugal pump. It should be reminded that the scroll expander is designed with a nominal expander
shaft power of 10 kW, indicating a heat input of 40–200 kW is needed. However, the heat input is set
from 45 kW to 85 kW because of the power limitation. Therefore, the expander isentropic efficiency
presents an apparent decrease trend from 58.8% to 39.1% with heat input because of the insufficient
expansion. The expander isentropic efficiency for the plunger pump is in the range of 46.5–58.8%,
which is 12.6% higher than that of the centrifugal pump.
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The variation of electrical power with heat input using the plunger pump and centrifugal pump
is illustrated in Figure 13. The electrical power for the centrifugal pump rises from 1.83 kW to 3.01 kW,
while that of the plunger pump is in the range of 1.76–2.87 kW. The reason is that the increment in
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pressure difference causes an increase in the expander rotational speed, resulting in an increase in
electrical power. The electrical power has a small difference using the plunger pump and centrifugal
pump, indicating that the electric power is insensitive on the pump types.Energies 2020, 13, x FOR PEER REVIEW 15 of 19 
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4.3. Overall System Performance

Figure 14 displays the system generating efficiency of the plunger pump and centrifugal pump.
In this study, system generating efficiency is utilized as an evaluation criterion for this system, which is
obtained based on the net electrical power and heat input. The system generating efficiency has no
obvious change with heat input, demonstrating that the system generating efficiency has little effect on
the heat input. The increasing net electrical power and the increasing heat input enable the almost
unchanged system generating efficiency. The system generating efficiency for the plunger pump is
approximately 3.63%, which is 12.51% higher than that of the centrifugal pump. One reason for the
low overall system performance is that the pump consumed more power (as shown in Figure 7).
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Figure 15 presents the details of the exergy destruction of the four important components with the
heat input using the plunger pump and centrifugal pump. It is obvious that the exergy destruction
for the evaporator, expander and condenser keep rising, whereas that of the pump almost has no
change with the heat input. Besides, the exergy destruction of the piston pump is almost the same as
that of the centrifugal pump. However, for the other three components, the exergy destruction using
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the centrifugal pump is higher than that using the plunger pump, because of the relatively higher
mass flow rate for the centrifugal pump. For a specific heat input of 68.6 kW using the plunger pump,
the exergy destruction for the pump, evaporator, expander, and condenser is 0.5 kW, 3 kW, 2.5 kW,
and 3.2 kW, respectively.
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Figure 15. Exergy destruction of the four important components using the plunger pump and centrifugal
pump: (a) pump exergy destruction; (b) evaporator exergy destruction; (c) expander exergy destruction;
(d) condenser exergy destruction.

To ascertain which component contributes the maximum exergy destruction, the proportion of
exergy destruction for each component using the plunger pump and centrifugal pump is shown in
Figure 16. For the plunger pump and centrifugal pump, the exergy destruction for the evaporator,
expander and condenser is almost 30%, indicating that improving the temperature matching between
the cycle and the heat (cold) source is a way to improve the system property.
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5. Conclusions

The system behaviors using the plunger pump and centrifugal pump have been investigated
experimentally. A 10 kW R245fa-based experimental prototype is adopted. The heat source temperature
for both pump experiments was 85–106 ◦C. The heat inputs for the plunger pump and centrifugal
pump are in the range of 44.74–76.48 kW and 45.61–81.35 kW, respectively. Simultaneously, the mass
flow rates of the plunger pump are from 0.16–0.26kg/s and those of the centrifugal pump are in the
range of 0.19–0.31 kg/s. The temperature utilization rate is used to appraise the heat source utilization.
The detailed components’ behaviors with the varying heat input are discussed, while the system
generating efficiency is examined. The exergy destruction of the four main components is addressed.
The conclusions are summarized below:

(1) The mass flow rates of the centrifugal pump are from 0.19–0.31 kg/s, which is 19% higher than
that of the plunger pump. Compared with the plunger pump, the centrifugal pump owns a relatively
higher mass flow rate and more pump shaft power.

(2) A small difference of evaporator pressure drop appeared between the plunger pump and the
centrifugal pump. The condenser pressure drops using the centrifugal pump are 0.13–0.53 bar, while
the evaporator pressure drops are in the range of 0.45–0.65 bar, demonstrating that the pressure drop
should be considered for the ORC simulation.

(3) The average heat source temperature utilization rate for the centrifugal pump is about 30%,
which is 5% higher than that of the plunger pump, indicating that the centrifugal pump absorbs more
heat than the plunger pump at a same heat source condition.

(4) The electrical power for the centrifugal pump rises from 1.83 kW to 3.01 kW, while that of the
plunger pump is in the range of 1.76–2.87 kW. The electrical power has a small difference using the
plunger pump and centrifugal pump, indicating that the electrical power is insensitive of the pump
types. The system generating efficiency for the plunger pump is approximately 3.63%, which is 12.51%
higher than that of the centrifugal pump. It indicates that the plunger pump is more suitable for the
ORC system in this study. The system generating efficiency is insensitive of the heat input.

(5) No matter which pump is used in the ORC, evaporator, expander, and condenser exergy
destruction accounts for almost 30%.

(6) The exergy destruction for evaporators, expanders, and condensers is almost 30%, indicating
that improving temperature matching between the system and the heat (cold) source is a way to
improve the system property
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