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Abstract: A patented bidirectional power converter was studied as an interface to connect the DC-bus
of driving inverter, battery energy storage (BES), and ultracapacitor (UC) to solve the problem
that the driving motor damages the battery life during acceleration and deceleration in electric
vehicles (EVs). The proposed concept was to adopt a multiport switch to control the power flow
and achieve the different operating mode transitions for the better utilization of energy. In addition,
in order to improve the conversion efficiency, the proposed converter used a coupled inductor and
interleaved-pulse-width-modulation (IPWM) control to achieve a high voltage conversion ratio (i.e.,
bidirectional high step-up/down conversion characteristics). This study discussed the steady-state
operation and characteristic analysis of the proposed converter. Finally, a 500 W power converter
prototype with specifications of 72 V DC-bus, 24 V BES, and 48 V UC was built, and the feasibility was
verified by simulation and experiment results. The highest efficiency points of the realized prototype
were 97.4%, 95.5%, 97.2%, 97.1%, and 95.3% for the UC charge, battery charge, UC discharge, the
dual-energy in series discharge, and battery discharge modes, respectively.

Keywords: battery/ultracapacitor; dual-energy; bidirectional power converter; electric vehicles

1. Introduction

Electric vehicle (EV) technologies are currently being developed to lessen environmental impact
and overcome shortages of fossil fuel [1–10]. The typical power configuration of pure electric vehicle
(EV) contains four major parts: the battery energy storage (BES), the power converter, the driving
inverter of motor, and the energy management system (EMS) [6,8,10]. Among them, BES is the most
critical component, which can directly affect the life and endurance of the EV, driving efficiency, and
system performance. In general, the power will be drawn rapidly from the BES during the vehicle
acceleration, subsequently causing BES output current and temperature to rise quickly. Moreover,
the driving inverter is prone to generate less stable pulse currents for the BES during deceleration [9].
Such long-term use not only causes damage to the external body of the battery but also excessively
charges and discharges the BES, which eventually will shorten the lifespan of the BES, specifically in
high power applications. Although it is feasible to size up the BES for high power demands, the high
price of the overall system still remains an issue. Possible solutions may be to select an ultracapacitor
(UC), to assist BES, forming a “hybrid energy” system as shown in Figure 1 for EVs [11,12].
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Figure 1. Several schemes of interfacing battery energy storage (BES) and ultracapacitor (UC) to the 
DC-bus in electric vehicle (EV) power train: (a) Directly parallel hybrid scheme; (b) UC/BES scheme; 
(c) BES/UC scheme; (d) type-I of cascaded scheme; (e) type-II of cascaded scheme; (f) multiple 
converter parallel scheme. 

Figure 1. Several schemes of interfacing battery energy storage (BES) and ultracapacitor (UC) to the
DC-bus in electric vehicle (EV) power train: (a) Directly parallel hybrid scheme; (b) UC/BES scheme;
(c) BES/UC scheme; (d) type-I of cascaded scheme; (e) type-II of cascaded scheme; (f) multiple converter
parallel scheme.
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UC has high-power density, long cycle life, quick dynamic response, but low-energy-density,
which are opposite toward BES. Hence, it should exploit the complementary properties of both the
UC and the BES [12]. Several conventional schemes integrating both the BES and UC are shown in
Figure 1. These schemes have all been designed to control power flows, supply specific voltages to
loads, and to reduce design cost, mass, and power consumptions [12–15].

Figure 1a shows the most basic parallel scheme of the BES and UC, with the latter serving as the
low-pass filter [16]. Although simple, the energy stored in the UC is not utilized effectively due to
the absence of power converters. The slightly more robust Figure 1b shows that a power converter
is added in between the BES and UC [17–20]. In this scheme, the BES is connected directly to the
DC-bus instead of the UC. The power output of the UC is controlled by the power converter, and
this enables the UC to operate over a wider voltage range than in Figure 1a. Due to this, the power
rating of the converter has to be sufficiently large to handle high surges of power demands from the
UC. The purpose of the power converter is also to maintain a constant voltage value on the DC-bus
during the operation of the motor. The drawback of this scheme is that the BES is exposed to large
fluctuations of high charging and discharging current, resulting in its reduced lifetime. Figure 1c is
similar to Figure 1b except that the positions of the BES and UC have been swapped [21]. Due to this,
the BES is no longer exposed to the large current fluctuations. The power output from the BES is now
controlled by the power converter. The main disadvantage of this scheme is that the DC-bus voltage
is exposed to large voltages as it is directly connected to the UC. As a result, the power converter is
exposed to a high risk of suffering adverse losses, especially in harsh driving conditions.

All the schemes in Figure 1a–c clearly demonstrate that it is insufficient to use only one or no
power converter. Hence, cascaded schemes using two power converters, as shown in Figure 1d,e, have
also been considered before [22,23]. In these two schemes, two converters decouple the BES and UC
from the DC-bus. The circuit, in Figure 1d, is also known as the “type-I scheme” where an extra power
converter is added in between the UC and the DC-bus. The converter that is located in between the
BES and UC is rated according to the power rating of the BES. This scheme creates more losses for the
higher rated converter that is located in between the UC and the DC-bus due to the fluctuations of the
UC output voltage. In order to overcome this problem, the positions of the BES and UC are swapped,
as shown in Figure 1e (type-II scheme). However, it is difficult to balance the BES cell due to it now
being located at the higher voltage terminal. Although both the type-I and type-II schemes are more
robust than all the previous designs that use only one or no power converter, the power losses and
design costs of the schemes are increased substantially owing to the multi-stage energy conversion
processes in the vehicular power train. Besides that, only one power converter is connected to the
DC-bus in both of these schemes. An outage in one of the power converters will lead to the loss of
the power-control function. An alternative is to employ the scheme in Figure 1f, where the power
converters are connected in parallel and directly to the DC-bus [13,24–28]. In this scheme, the power
converters have the same output voltage, and the power flow of both the energy sources (BES and UC)
are not affected by the output of the other converter. Consequently, this scheme can operate in various
modes [28]. But, the fully power-rated converters are needed, and the cost of this scheme is higher
than all the aforementioned schemes.

In order to reduce the overall system cost, a multi-input power converter scheme is studied, as
shown in Figure 2, into the EV system [29–33].

Multi-input power converters are potential solutions when multiple energy sources with different
voltage levels (battery voltage , UC voltage , DC-bus voltage) and/or power capabilities are to be
combined and yet maintain a regulated output load voltage across them.

Using multi-input power converters, it is possible to apply a different power control command
for each input source. In order to reduce the cost and weight and enhance the overall performance of
the hybrid energy storage system, the multi-input power converter scheme was chosen in this paper
and further investigated.
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In [29], a multi-input power converter topology has been proposed to combine various input
energy sources in parallel by using a single-pole triple-throw switch. The major limitations of
parallel-connected source topologies are: input source voltage should be asymmetric, and only one
input source can supply power to the load at a time to avoid the power coupling effect.

In [30], a single-inductor unidirectional multi-input power converter has been presented, which
can operate in buck, boost, or buck-boost modes. To realize the bidirectional power flow mode, all the
diodes must be replaced by unidirectional switches, which increase the number of switches.

In [31], a DC-bus interfacing three-port converter with a simple topology and no electrical isolation
has been proposed, but it cannot cope with a wide operating voltage ratio; energy storage devices
connected to different ports must have a similar operating voltage, and this constricts the application.

In [32], a modular multi-input power converter has been presented to integrate the basic buck-boost
circuit and a shared DC-bus. It is a very simple approach to integrate multiple converters into a single
unit. However, it has limited static voltage gains, resulting in a narrow voltage range and a low voltage
difference between the high- and low-side ports. Besides, since only a few circuit elements are shared
among multiple converters, the benefits of the integration are limited.

In [33], a two-phase multi-input converter with a high voltage conversion ratio has been proposed
as an interface between dual-energy storage sources. Due to the intrinsic automatic current balance
characteristic, the currents of two energy sources are theoretically identical; it indicates that the high power
capability of UC cannot be utilized, and the applications of the proposed converter would be limited.

By conducting a research literature review of [29–36], in this paper, a bidirectional power converter
integrated BES/UC dual-energy storage was proposed, which had the capability to perform forward
power transmission and reverse energy recovery.

First, the proposed converter used a multiport switch to change the different operating modes
and to improve the energy utilization of UC and increase battery life.

Second, it was also integrated with interleaved-pulse-width-modulation (IPWM) control to increase
power density and reduce bidirectional current ripples, which makes power delivery more reliable.

Third, the proposed converter also used a coupled inductor technique instead of a general
single-winding inductor to achieve high voltage conversion ratio and high power density for
bidirectional power conversion.

Finally, the steady-state operation and characteristic analysis of the proposed converter were
described, validated using simulation and experimentation of a 500 W power converter prototype
with specifications of 72 V DC-bus, 24 V BES, and 48 V UC.

The summarized main features of the proposed converter were its ability to:

(1) interface more than two energy sources of different voltage levels,
(2) control power flow between the DC-bus and the two low-voltage energy sources,
(3) control power flow from either the UC or BES or both,
(4) enhance static voltage gain and reduce switch voltage stress, and
(5) possess a reasonable duty cycle and produce a wide voltage difference between its high- and

low-side ports.
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2. Converter Operating Principles

Figure 3 shows the architecture of the proposed converter integrated with dual-energy storage.
The power devices (S1~S4) are the multiport switch used to control the power flow between the
battery/UC dual-energy and DC-bus. To achieve the high conversion efficiency, the design concept
for the converter are based on multi-phase operation and switch stress reduction as (1) the power
devices (Q1~Q4) are designed to use IPWM control to reduce current stress and ripple on the switch, (2)
two-phase coupled inductors T1 and T2 are integrated into the bidirectional power converter with high
turns ratio to reduce the undesirable duty ratio and conduction loss of metal-oxide-semiconductor
field-effect transistors (MOSFETs).
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2.1. Multiport Switch

Figure 4 shows the equivalent circuits of the multiport switch of the proposed converter under
different operating modes. For the converter operating in the UC charge or discharge mode, the
multiport switches S1, S4 are turned on, and S2, S3 are turned off. The equivalent circuit of this
condition is shown in Figure 4a. It is shown that the bidirectional energy delivery between the UC and
the DC-bus can be achieved. For the converter operating under the battery charge mode or discharge
mode, the multiport switches S2, S3 are turned on, and S1, S4 are turned off. Under this condition,
the corresponding equivalent circuit is shown in Figure 4b. The figure shows that the bidirectional
energy delivery between the battery and the DC-bus can be achieved. For the converter operating
under the dual-energy in series discharge mode, the multiport switches S1, S3 are turned on, and S2, S4

are turned off. The battery/UC dual-energy delivers the energy to DC-bus, and its equivalent circuit is
shown in Figure 4c.
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2.2. Operating Principle of the Proposed Converter

Figure 5 shows the equivalent circuits of the different states for the proposed converter, where VH
represents the high-side voltage for the DC-bus, and VL represents low-side voltage for UC, battery, or
battery/UC dual-energy in series modes.Energies 2020, 13, x FOR PEER REVIEW 7 of 23 
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The assumptions are made in analyzing the proposed converter:

(1) the converter operates in continuous conduction mode (CCM);
(2) characteristic of the two-phase coupled inductors T1 and T2 are the same, i.e., Lm1 = Lm2, im1 =

im2 and n = N2/N1 = N4/N3;
(3) all voltages and currents in the circuits are periodic in steady-state condition; for simplicity, it is

assumed that all the components in Figure 3 are idealized.

State 1. The equivalent circuit of this state is shown in Figure 5a. The power switches Q2 and Q4 are
turned on, and Q1 and Q3 are turned off. During this state, the high-side voltage VH stores energy to
the magnetizing inductance Lm1 and Lm2, and then the magnetizing currents im1, im2 increase linearly.
The circuit equations are expressed as follows,

vN1 = Lm1
dim1

dt
= VH − vN2 −VL (1)

vN3 = Lm2
dim2

dt
= VH − vN4 −VL (2)

iH = iN2 + iN4 (3)

iT1 = iN2 (4)

iT2 = iN4 (5)

iT = iT1 + iT2 (6)

State 2. The equivalent circuit of this state is shown in Figure 5b. The power switches Q2 and Q3 are
turned on, and Q1 and Q4 are turned off. At this time, the high-side voltage VH continues to store
energy to the magnetizing inductance Lm1, and the magnetizing current im1 increases linearly. The
energy stored in the magnetizing inductor Lm2 is now released to the low-side energy device, and the
magnetizing current im2 decreases linearly. The circuit equations are expressed as follows,

vN1 = VH − vN2 −VL (7)

vN3 = −VL (8)

iH = iN2 (9)

iT1 = iN2 (10)

iT2 = im2 (11)

State 3. The equivalent circuit of this state is shown in Figure 5c. The power switches Q1 and Q4 are
turned on, and Q2 and Q3 are turned off. At this time, the energy stored in the magnetizing inductor
Lm1 is now released to the low-side energy storage, and the magnetizing current im1 decreases linearly.
The voltage across vN1 of the magnetizing inductor Lm1 is negative of the low-side voltage VL. The
magnetizing inductor Lm2 draws the energy from the high-side voltage VH, and the magnetizing
current im2 increases linearly. The circuit equations are expressed as follows,

vN1 = −VL (12)

vN3 = VH − vN4 −VL (13)

iH = iN4 (14)

iT1 = im1 (15)

iT2 = iN4. (16)
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State 4. The equivalent circuit of this state is shown in Figure 5d. The power switches Q1 and Q3 are
turned on, and Q2 and Q4 are turned off. At this time, the energy stored in the magnetizing inductor
Lm1 and Lm2 is now released to the low-side energy storage, and the magnetizing currents im1 and im2

decrease linearly. The voltage across vN1 and vN3 of the magnetizing inductor Lm1 and Lm2 is negative
of the low-side voltage VL. The circuit equations are expressed as follows,

vN1 = −VL (17)

vN3 = −VL (18)

iH = 0 (19)

iT1 = im1 (20)

iT2 = im2 (21)

Considering the different duty ratio conditions in the charge mode and discharge mode, the
operating state flow of each condition during a switching period is summarized as follows.

Charge Mode (Dc < 0.5)
State 2→ State 4→ State 3→ State 4

Charge Mode (Dc = 0.5)
State 2→ State 3

Charge Mode (Dc > 0.5)
State 2→ State 1→ State 3→ State 1

Discharge Mode (Dd < 0.5)
State 3→ State 1→ State 2→ State 1

Discharge Mode (Dd = 0.5)
State 3→ State 2

Discharge Mode (Dd > 0.5)
State 3→ State 4→ State 2→ State 4

As mentioned above, Dc is the duty ratio of switch Q2 and Q4 for the charge mode, and Dd is the
duty ratio of switch Q1 and Q3 for the discharge mode.

When the proposed converter operates with the duty ratio of 0.5 in the charge or discharge mode
(i.e., Dc = Dd = 0.5), the only two operating states of the proposed converter are produced.

When the proposed converter operates in the charge mode with duty ratio Dc > 0.5, the operation
state in a switching period is the same as the discharge mode with Dd < 0.5, and only the reverse
current direction is considered.

Similarly, when the proposed converter operates in the discharge mode with the duty ratio Dd
> 0.5, the operation state in the switching period is the same as the charge mode with Dc < 0.5, and
only the reverse current direction is considered. Figure 6 shows the key waveforms of the proposed
converter in the charge mode with Dc < 0.5, and in the discharge mode with Dd < 0.5, respectively.

The time intervals of Figure 6 are described as

Charge Mode (Dc < 0.5)
[t0 < t ≤ t1]: state 2; [t1 < t ≤ t2]: state 4; [t2 < t ≤ t3]: state 3; [t3 < t ≤ t4]: state 4.
Discharge Mode (Dd < 0.5)
[t0 < t ≤ t1]: state 3; [t1 < t ≤ t2]: state 1; [t2 < t ≤ t3]: state 2; [t3 < t ≤ t4]: state 1.
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3. Converter Steady-State Analyses

3.1. Static Voltage Conversion Ratio Analysis

Charge Mode (UC Charge; Battery Charge)

During steady-state operation and according to the volt-second balance principle of the
magnetizing inductance operating in the charge mode, the static voltage conversion ratio Mc can be
derived as from (22)–(25).

The voltage relationship between primary and secondary sides of the coupled inductor is shown
as follows

vN2 = nvN1 (22)

substituting (22) into (1), it can be rewritten as follows

vN1 = (VH −VL)
1

1 + n
(23)

By combining (23) and (12), the average voltage of the primary side for the coupled inductor
during a switching period can be expressed as follows

〈vN1〉Ts =

DcTs∫
0

VH −VL

1 + n
dt +

Ts∫
DcTs

(−VL)dt = 0 (24)

The static voltage conversion ratio of the proposed converter in the charge mode can be derived
as follows

Mc =
VL

VH
=

Dc

1 + n(1−Dc)
(25)

Figure 7a shows the relationship between the coupled inductance with different turns ratio and
the static voltage conversion ratio Mc of the proposed converter in the charge mode.
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For simplicity, assuming that the turns ratio of the coupling inductance is n = 1, the relationship
between Mc and Dc is shown in Figure 7b.

It can be seen that the static voltage conversion ratio of the proposed converter in the charge mode
has a better performance, compared with the conventional buck converter.
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Discharge Mode (UC Discharge; Battery Discharge; Dual-Energy in Series Discharge)

The static voltage conversion ratio Md in the discharge mode can be derived from the average
voltage of the magnetizing inductance. According to (23) and (12), and considering the duty ratio Dd
of the switch Q1 and Q3, the average voltage of the primary side for the coupled inductor during a
switching period can be expressed as follows

〈−vN1〉Ts =

DdTs∫
0

(−VL)dt +

Ts∫
DdTs

VH −V
1 + n

dt = 0 (26)

The static voltage conversion ratio of the converter in the discharge mode can be derived as follows

Md =
VH

VL
=

1 + nDd
1−Dd

(27)

Figure 8a shows the relationship between the coupled inductance with different turns ratios and
the static voltage conversion ratio Md of the proposed converter in the discharge mode. For simplicity,
assuming that the turns ratio of the coupling inductance is n = 1, the relationship between Md and Dd
is shown in Figure 8b. It can be seen that the static voltage conversion ratio of the proposed converter
in the discharge mode has a better performance, compared with the conventional boost converter.
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3.2. Boundary Condition Analysis

Charge Mode (UC Charge; Battery Charge)

According to the ampere-second balance principle for the filter capacitor CL on the low-voltage
side, it means that the average current of the filter capacitor should be zero in steady-state, and the
sum of the averaged currents IT1 and IT2 are equal to the low-side current IL,BCM (i.e., UC current or
battery current), as described below

IL,BCM =
VL

RL,BCM
= IT1 + IT2 (28)

IT1 =
imc1,pk

2(1 + n)
Dc +

imc1,pk

2
(1−Dc) (29)

IT1 = IT2 = imc1,pk(1−Dc) (30)
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In (28), RL,BCM represents the low-side equivalent resistance under boundary-conduction-mode
(BCM) condition.

Considering the low-side voltage VL is constant, the peak value of the magnetizing current imc1,pk
at BCM in the charge mode can be expressed as

imc1,pk =
VL

Lm
(1−Dc)Ts (31)

where Ts is the switching period.
Substituting (29), (30), and (31) into (28), the boundary magnetizing inductance Lmc,BCM in the

charge mode can be derived as follows

Lmc,BCM =
RL,BCM(1−Dd)

fs

[
1 + n(1−Dc)

1 + n

]
(32)

The boundary time constant τc,BCM of the proposed converter in the charge mode can be derived
as (33), and the corresponding relationship curve is depicted as shown in Figure 9.

τc,BCM =
Lmc,BCM fs

RL,BCM
= (1−Dc)

[
1 + n(1−Dc)

1 + n

]
(33)
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Discharge Mode (UC Discharge; Battery Discharge; Dual-Energy in Series Discharge)

According to the ampere-second balance principle of the filter capacitor CH on the high-voltage
side, it can be shown that the average current on the filter capacitor is zero in steady-state, and the sum
of the averaged currents IN2 and IN4 are equal to the high-side current IH,BCM (i.e., DC-bus current) as
described below

IH,BCM =
VH

RH,BCM
= IN2 + IN4 (34)

IN2 = IN4 =
imd1,pk

2(1 + n)
(1−Dd) (35)

where RH,BCM represents the high-side equivalent resistance under BCM.
Considering the high-side voltage VH is constant, the peak value of the magnetizing current imd1,pk

at BCM in the discharge mode can be expressed as follows

imd1,pk =
VHTs

Lm

(1−Dd)Dd

1 + nDd
(36)
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Substituting (35), (36) into (34) and simplifying it, the boundary magnetizing inductance in the
discharge mode can be derived as follows

Lmd,BCM =
RH,BCM

fs

 (1−Dd)
2Dd

(1 + n)(1 + nDd)

 (37)

The boundary time constant τd,BCM of the converter in the discharge mode can be derived as (38),
and the corresponding relationship curve is depicted as shown in Figure 10.

τd,BCM =
Lmd,BCM fs

RH,BCM
=

(1−Dd)
2Dd

(1 + n)(1 + nDd)
(38)
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3.3. Voltage and Current Stresses Analyses of Power Devices

3.3.1. Voltage Stress Derivations

The power switching device is the main design considerations when implementing the power
converter. The voltage and current stresses of the power device for the converter circuit are analyzed,
and then the appropriate components are selected as below.

The multiport switches S1~S4 are used as the pre-stage for the discharge mode or post-stage for
the charge mode. The voltage stress of the multiport switches S1 and S2 is equal to the UC voltage VU,
and the voltage stress of S3 and S4 is equal to the battery voltage VB, as follows

VS1,max = VS2,max = VU (39)

VS3,max = VS4,max = VB (40)

The voltage stress of the power switches Q1 to Q4 for the converter can be expressed as follows

VQ1,max = VQ3,max = VH − vN2 =
VH + nVL

1 + n
(41)

VQ2,max = VQ4,max = VH − vN2 = VH + nVL (42)
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3.3.2. Current Stress Derivations

The root mean square (RMS) current of the magnetizing inductances Lm1 and Lm2 are derived
based on the operating state of the proposed converter, as follows

Im1,rms = Im2,rms =

√
Im1

2 +

(
∆im1

2
√

3

)2

(43)

where Im1 and Im2 are the DC value of the magnetizing current im1 and im2, respectively; ∆im1 and ∆im2

are the magnetizing ripple currents, as follows

Im1 = Im2 =
IL

2
·

1 + n
1 + n(1−Dc)

(44)

∆im1 = ∆im2 =
VL

Lm
(1−Dc)Ts (45)

The RMS current of the power switches Q1~Q4 of the proposed converter in the charge mode can
be derived as follows

IQ1,rms = IQ3,rms = Im1,rms
√

1−Dc (46)

IQ2,rms = IQ4,rms =
Im1,rms

1 + n

√
Dc (47)

The RMS current of the filter capacitors CL and CH of the proposed converter in the charge mode
can be derived as follows

ICL,rms =
√

IT1,rms2 + IT2,rms2 − IL2 (48)

ICH,rms =
√

IQ2,rms2 + IQ4,rms2 − IH2 (49)

where

IT1,rms = IT2,rms = Im1,rms

√
Dc

(1 + n)2 + (1−Dc) (50)

4. Simulated and Experimented Results

The realized converter prototype is shown in Figure 11, and Table 1 shows the electrical
specifications and the circuit parameters of the realized power converter. For the convenience
of the experiments, in the charge mode, the power supply (ITECH IT6726G) was used as the DC-bus
on the high-voltage side, and the electronic load (ITECH IT8814B) was used as the UC or the battery
on the low-voltage side. Conversely, in the discharge mode, the power supply was used as the UC, the
battery, or the dual-energy storage in series.

Energies 2020, 13, x FOR PEER REVIEW 14 of 23 

 

3.3.2. Current Stress Derivations 

The root mean square (RMS) current of the magnetizing inductances Lm1 and Lm2 are derived 
based on the operating state of the proposed converter, as follows 

 Δ 
= = +  

 

2
2 1

1, 2, 1 2 3
m

m rms m rms m

i
I I I   (43)

where Im1 and Im2 are the DC value of the magnetizing current im1 and im2, respectively; Δim1 and Δim2 
are the magnetizing ripple currents, as follows 

+= = ⋅
+ −1 2

1
2 1 (1 )
L

m m
c

I nI I
n D

 (44)

Δ = Δ = −1 2 (1 )L
m m c s

m

V
i i D T

L
 (45)

The RMS current of the power switches Q1~Q4 of the proposed converter in the charge mode can 
be derived as follows 

= = −1, 3, 1, 1Q rms Q rms m rms cI I I D  (46)

= =
+
1,

2, 4 , 1
m rms

Q rms Q rms c

I
I I D

n
 (47)

The RMS current of the filter capacitors CL and CH of the proposed converter in the charge mode 
can be derived as follows  

= + −2 2 2
, 1, 2 ,CL rms T rms T rms LI I I I    (48)

= + −2 2 2
, 2 , 4 ,CH rms Q rms Q rms HI I I I   (49)

where  

= = + −
+1, 2, 1, 2 (1 )

(1 )
c

T rms T rms m rms c

D
I I I D

n
 (50)

4. Simulated and Experimented Results 

The realized converter prototype is shown in Figure 11, and Table 1 shows the electrical 
specifications and the circuit parameters of the realized power converter. For the convenience of the 
experiments, in the charge mode, the power supply (ITECH IT6726G) was used as the DC-bus on the 
high-voltage side, and the electronic load (ITECH IT8814B) was used as the UC or the battery on the 
low-voltage side. Conversely, in the discharge mode, the power supply was used as the UC, the 
battery, or the dual-energy storage in series.  

 
Figure 11. Prototype circuit of the proposed converter. Figure 11. Prototype circuit of the proposed converter.



Energies 2020, 13, 1234 15 of 23

Table 1. Specifications and circuit parameters of the realized power converter.

Symbol Descriptions Specifications

VH (Vbus) high-side voltage (DC-bus voltage) 72 V
VL low-side voltage
VB battery voltage 20 V~26 V
VU UC voltage 0 V~48 V
Po rated output power 500 W
fs switching frequency 20 kHz

Symbol Descriptions Parameters

Lm1, Lm2 magnetizing inductances of the coupled inductors 250 µH
n turns ratio of the coupled inductors 1

CH high-side capacitor 2400 µF
CL low-side capacitor 800 µF

UC Charge Mode

Figures 12 and 13 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and the
low-side voltage VU in the UC charge mode with full load condition, respectively. In this mode, the
UC voltage was about 48 V, the duty ratio of the switches Q2 and Q4 was set to 80% (i.e., Dc = 0.8), the
DC values of the primary currents (iT1, iT2) and secondary currents (iN2, iN4) of the coupled inductance
were about 5.2 A and 3.5 A, respectively.
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Figure 13. The waveform of the secondary-side currents of the coupled inductor and UC voltage in the
UC charge mode with Dc = 0.8: (a) simulated and (b) experimental.



Energies 2020, 13, 1234 16 of 23

Figure 14 shows the waveforms of the steady-state switching voltages across the power devices in
the UC charge mode. The results showed that the steady-state switching voltages across the lower-leg
MOSFETs Q1 and Q3 were about 60 V, and the steady-state switching voltages across the upper-leg
MOSFETs Q2 and Q4 were about 120 V. It could be seen that in Figure 14, the simulation and the
experimental results were consistent and corresponded to (41) and (42).
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Battery Charge Mode

Figures 15 and 16 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and
the low-side voltage VU in the battery charge mode with full load condition, respectively.

Energies 2020, 13, x FOR PEER REVIEW 16 of 23 

 

Figure 14 shows the waveforms of the steady-state switching voltages across the power devices 
in the UC charge mode. The results showed that the steady-state switching voltages across the lower-
leg MOSFETs Q1 and Q3 were about 60 V, and the steady-state switching voltages across the upper-
leg MOSFETs Q2 and Q4 were about 120 V. It could be seen that in Figure 14, the simulation and the 
experimental results were consistent and corresponded to (41) and (42). 

 
(a) (b) 

Figure 14. The waveform of switching voltage across the power devices in the UC charge mode with 
Dc = 0.8: (a) simulated and (b) experimental. 

Battery Charge Mode 

Figures 15 and 16 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents 
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and the 
low-side voltage VU in the battery charge mode with full load condition, respectively.  

In this mode, the battery voltage was about 24 V, the duty ratio of the switches Q2 and Q4 was 
set to 50% (i.e., Dc = 0.5), and the DC values of the primary currents (iT1, iT2) and secondary currents 
(iN2, iN4) of the coupled inductance were about 10.4 A and 3.5 A, respectively. It could be seen that in 
Figure 15 and Figure 16, the simulation and the experimental results were consistent.  

Figure 17 shows the waveforms of the steady-state switching voltages across the power devices 
in the battery charge mode. The results showed that the steady-state switching voltages across the 
lower-leg MOSFETs Q1 and Q3 were about 48 V, and the steady-state switching voltages across the 
upper-leg MOSFETs Q2 and Q4 were about 96 V. It could be seen that in Figure 17, the simulation and 
the experimental results were consistent and corresponded to (41) and (42). 

 
(a) (b) 

Figure 15. Waveforms of the switching gate signals and the primary-side currents of the coupled 
inductor in the battery charge mode with Dc = 0.5: (a) simulated and (b) experimental. 
Figure 15. Waveforms of the switching gate signals and the primary-side currents of the coupled
inductor in the battery charge mode with Dc = 0.5: (a) simulated and (b) experimental.

In this mode, the battery voltage was about 24 V, the duty ratio of the switches Q2 and Q4 was
set to 50% (i.e., Dc = 0.5), and the DC values of the primary currents (iT1, iT2) and secondary currents
(iN2, iN4) of the coupled inductance were about 10.4 A and 3.5 A, respectively. It could be seen that in
Figures 15 and 16, the simulation and the experimental results were consistent.

Figure 17 shows the waveforms of the steady-state switching voltages across the power devices
in the battery charge mode. The results showed that the steady-state switching voltages across the
lower-leg MOSFETs Q1 and Q3 were about 48 V, and the steady-state switching voltages across the
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upper-leg MOSFETs Q2 and Q4 were about 96 V. It could be seen that in Figure 17, the simulation and
the experimental results were consistent and corresponded to (41) and (42).
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UC Discharge Mode

Figures 18 and 19 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and
the high-side voltage VH in the UC discharge mode with full load condition, respectively.

In this mode, the DC-bus voltage was about 72 V, the duty ratio of the switches Q1 and Q3 was
set to 20% (i.e., Dd = 0.2), and the DC values of the primary currents (iT1, iT2) and secondary currents
(iN2, iN4) of the coupled inductance were about 5.2 A and 3.5 A, respectively. It could be seen that in
Figures 18 and 19, the simulation and the experimental results were consistent.

Figure 20 shows the waveforms of the steady-state switching voltages across the power devices
in the UC discharge mode. The results showed that the steady-state switching voltages across the
lower-leg MOSFETs Q1 and Q3 were about 60 V, and the steady-state switching voltages across the
upper-leg MOSFETs Q2 and Q4 were about 120 V. It could be seen that in Figure 20, the simulation and
the experimental results were consistent and corresponded to (41) and (42).
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inductor in the UC discharging mode with Dd = 0.2: (a) simulated and (b) experimental.
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Figure 20. The waveform of switching voltage across the power devices in the UC discharging mode
with Dd = 0.2: (a) simulated and (b) experimental.

Dual-Energy in Series Discharge Mode

Figures 21 and 22 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and
the high-side voltage VH in the dual-energy discharge mode with full load condition, respectively.

In this mode, the DC-bus voltage was about 72 V, the low-side voltage VL was 44 V, the duty
ratio of the switches Q1 and Q3 was set to 25% (i.e., Dd = 0.25), and the DC values of the primary
currents (iT1, iT2) and secondary currents (iN2, iN4) of the coupled inductance were about 5.8 A and 3.5
A, respectively. It could be seen that in Figures 21 and 22, the simulation and the experimental results
were consistent.
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Figure 23 shows the waveforms of the steady-state switching voltages across the power devices in
the dual-energy in series discharge mode. The results showed that the steady-state switching voltages
across the lower-leg MOSFETs Q1 and Q3 were about 58 V, and the steady-state switching voltages
across the upper-leg MOSFETs Q2 and Q4 were about 116 V. It could be seen that in Figure 23, the
simulation and the experimental results were consistent and corresponded to (41) and (42).
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Efficiency Measurement

The system used two power analyzers (YOKOGAWA WT310) connected to the input and output
of the realized converter prototype. As could be seen in Figure 24, in the UC charge mode, the highest
efficiency point was 97.4%; in the battery charge mode, the highest efficiency point was 95.5%; in the
UC discharge mode, the highest efficiency point was 97.2%; in the dual-energy in series discharge
mode, the highest efficiency point was 97.1%; in the battery discharge mode, the highest efficiency
point was 95.3%.
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5. Conclusions

This study proposed a patented bidirectional power converter that used dual-energy storage as
input sources and incorporated a coupled inductor to obtain a higher voltage conversion ratio. The
converter control used IPWM control to achieve low current ripple, dissipate low side current stress,
and reduce the conduction loss of the power MOSFET. Moreover, the proposed bidirectional power
converter in this study also discussed the steady-state operation in the charge mode and discharge
mode, respectively. The voltage conversion ratio, boundary conditions, and voltage and current stress
of each power component of the converter were analyzed. Finally, this study implemented a converter
prototype with a 500 W power rating for verification. The simulation results and the experimental
results were consistent; the highest efficiency points of the realized prototype were 97.4%, 95.5%,
97.2%, 97.1%, and 95.3% for the UC charge mode, battery charge mode, UC discharge mode, the
dual-energy in series discharge mode, and battery discharge mode, respectively. In summary, this
paper demonstrated that the proposed bidirectional power converter could be potentially applied to
produce hybrid power architecture (has been patented [37]).
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Nomenclature

T1, T2 Two-phase coupled inductors
Lm1, Lm2 Magnetizing inductors of the two-phase coupled inductors
Lmc,BCM Boundary magnetizing inductance in the charge mode
Lmd,BCM Boundary magnetizing inductance in the discharge mode
n Turns ratio of the two-phase coupled inductors (n = N2/N1 = N4/N3)
N1 Primary winding of T1
N2 Secondary winding of T1
N3 Primary winding of T2
N4 Secondary winding of T2
k Coupling coefficient
CU Input capacitor paralleled with UC
CB Input capacitor paralleled with BES
S1~S4 Power devices of the multiport switch
Q1~Q4 Power devices of the two-phase bidirectional power converter
VH High-side voltage for the DC-bus
VL Low-side voltage for UC, BES, or BES/UC dual-energy in series
VU UC voltage
VB BES voltage
iBus DC-bus current
iUc UC current
iBat BES current
iH High voltage side current
iL Low voltage side current
IL,BCM Low voltage side current under BCM condition
IH,BCM High voltage side current under BCM condition
Im1,rms, Im2,rms RMS value of the magnetizing currents of the coupled inductors
IT1,rms, IT2,rms RMS value of the primary-side currents of the coupled inductors
vN1 Voltage of the winding N1 of the T1
vN2 Voltage of the winding N2 of the T1
vN3 Voltage of the winding N3 of the T2
vN4 Voltage of the winding N4 of the T2
VS1,max~VS4,max Switch voltage stress of the multiport switch
VQ1,max~VQ4,max Switch voltage stress of the two-phase bidirectional power converter
iT1, iT2 The primary-side currents of the two-phase coupled inductors
iT The sum of the primary-side currents iT1 and iT2
iN2, iN4 The secondary-side currents of the two-phase coupled inductors
im1, im2 Magnetizing inductor currents of the coupled inductors T1 and T2
Im1, Im2 DC value of the magnetizing currents
imc,pk peak value of the magnetizing inductor current under BCM in the charge mode
imd,pk peak value of the magnetizing inductor current under BCM in the discharge mode
∆im1, ∆im2 Magnetizing ripple currents
IQ1,rms~IQ4,rms RMS current of the power switches Q1~Q4
ICH,rms~ICL,rms RMS current of the filter capacitors CL and CH
Dc, Dd Duty ratio of charge mode and discharge mode
Ts Switching period
τc,BCM Boundary time constant in the charge mode
τd,BCM Boundary time constant in the discharge mode
RL,BCM Low-side equivalent resistance under BCM condition
RH,BCM High-side equivalent resistance under BCM condition
Mc Static voltage conversion ratio in the charge mode
Md Static voltage conversion ratio in the discharge mode
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