T2FL: An Efficient Model for Wind Turbine Fatigue Damage Prediction for the Two-Turbine Case
Abstract
:1. Introduction
2. Methodology: Surrogate Model Development
2.1. Selection of Input Variables And Limits
2.1.1. Input Parameters
- Ambient wind speed (),
- Ambient wind direction (),
- Ambient wind turbulence intensity ().
- Derating percentage of Upstream WT (),
- Derating percentage of Downstream WT ().
2.1.2. Input Space
2.2. Definition of Training Set Data and Output
- Blade root flapwise () and edgewise () bending moments
- Tower base fore-aft () bending moment
- Tower top yaw () moment (nacelle yaw bearing)
- Electrical power ()
- Rotor speed ()
- Blade pitch angle ()
2.3. Simulation Platforms (HAWC2 and DWM)
2.4. Neural Network
3. Verification of the Surrogate Model
4. Applications
4.1. Power and Fatigue Studies of Two-Turbine Wind Farms
4.1.1. Power Production
4.1.2. Tower Fatigue Damage
4.1.3. Blade Fatigue Damage
4.2. Wind Farm Control: Synthesised Optimum Operation
Example
4.3. Wind Farm Layout Optimisation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IEC. International Standard IEC61400-1: Wind Turbines-Part 1: Design Guidelines; IEC: Geneva, Switzerland, 2005. [Google Scholar]
- Frandsen, S. Turbulence and Turbulence Generated Fatigue in Wind Turbine Clusters; Technical Report Risø-R-1188; Risø National Laboratory: Roskilde, Denmark, 2007. [Google Scholar]
- Keck, R.E.; de Maré, M.; Churchfield, M.J.; Lee, S.; Larsen, G.; Madsen, H.A. Two improvements to the dynamic wake meandering model: Including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines. Wind Energy 2013, 18, 111–132. [Google Scholar] [CrossRef]
- Larsen, G.C.; Madsen, H.A.; Thomsen, K.; Larsen, T.J. Wake meandering: A pragmatic approach. Wind Energy 2008, 11, 377–395. [Google Scholar] [CrossRef]
- Madsen, H.A.; Larsen, G.C.; Larsen, T.J.; Troldborg, N.; Mikkelsen, R.F. Calibration and Validation of the Dynamic Wake Meandering Model for Implementation in an Aeroelastic Code. J. Sol. Energy Eng. 2010, 132, 041014. [Google Scholar] [CrossRef]
- Larsen, T.J.; Madsen, H.A.; Larsen, G.C.; Hansen, K.S. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm. Wind Energy 2013, 16, 605–624. [Google Scholar] [CrossRef] [Green Version]
- Galinos, C.; Dimitrov, N.; Larsen, T.J.; Natarajan, A.; Hansen, K.S. Mapping Wind Farm Loads and Power Production-A Case Study on Horns Rev 1. J. Phys. Conf. Ser. 2016, 753, 032010. [Google Scholar] [CrossRef]
- Dimitrov, N. Surrogate models for parameterized representation of wake-induced loads in wind farms. Wind Energy 2019, 22, 1371–1389. [Google Scholar] [CrossRef]
- Mendez Reyes, H.; Kanev, S.; Doekemeijer, B.; van Wingerden, J.W. Validation of a lookup-table approach to modeling turbine fatigue loads in wind farms under active wake control. Wind Energy Sci. Discuss. 2019, 4, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.; Soltani, M.; Poulsen, N.; Niemann, H. Model based active power control of a wind turbine. In Proceedings of the American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 5037–5042. [Google Scholar] [CrossRef]
- Galinos, C.; Larsen, T.J.; Mirzaei, M. Impact on wind turbine loads from different down regulation control strategies. J. Phys. Conf. Ser. 2018, 1104, 012019. [Google Scholar] [CrossRef]
- Argyle, P.; Watson, S.; Montavon, C.; Jones, I.; Smith, M. Turbulence intensity within large offshore wind farms. In Proceedings of the European Wind Energy Association Annual Conference and Exhibition 2015, Ewea 2015-Scientific Proceedings, Paris, France, 10–12 March 2015; pp. 187–191. [Google Scholar]
- Göçmen, T.; Giebel, G. Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms. Renew. Energy 2016, 99, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Liu, J.; Wan, J.; Li, F.; Guo, Y.; Yu, D. The analysis of turbulence intensity based on wind speed data in onshore wind farms. Renew. Energy 2018, 123, 756–766. [Google Scholar] [CrossRef]
- Larsen, T.J.; Hansen, A.M. How to HAWC2, the User’s Manual; Technical Report R-1597(ver.12.7)(EN); Technical University of Denmark, Department of Wind Energy: Lyngby, Denmark, 2019. [Google Scholar]
- Matsuishi, M.; Endo, T. Fatigue of metals subjected to varying stress. Jpn. Soc. Mech. Eng. Fukuoka Jpn. 1968, 68, 37–40. [Google Scholar]
- Mirzaei, M.; Hansen, M.H.; Tibaldi, C.; Henriksen, L.C.; Hanis, T. Basic DTU Wind Energy Controller Version 2; Technical Report; Technical University of Denmark, Department of Wind Energy: Lyngby, Denmark, 2015. [Google Scholar]
- Larsen, T.; Larsen, G.; Aagaard Madsen, H.; Petersen, S. Wake effects above rated wind speed. An overlooked contributor to high loads in wind farms. In Proceedings of the Scientific Proceedings. EWEA Annual Conference and Exhibition 2015. European Wind Energy Association (EWEA), Paris, France, 10–12 March 2015; pp. 95–99. [Google Scholar]
- Wikipedia Contributors. Lillgrund Wind Farm—Wikipedia, The Free Encyclopedia. 2018. Available online: https://en.wikipedia.org/w/index.php?title=Lillgrund_Wind_Farm&oldid=867298522 (accessed on 21 August 2019).
- Available online: http://posspow.vindenergi.dtu.dk/ (accessed on 9 March 2020).
- IEC. International Standard IEC61400-3: Wind Turbines-Part 3: Design Requirements for Offshore Wind Turbines; IEC: Geneva, Switzerland, 2009. [Google Scholar]
- Larsen, T.J.; Larsen, G.C.; Madsen, H.A.; Thomsen, K.; Markkilde, P.S. Comparison of measured and simulated loads for the Siemens SWT 2.3 operating in wake conditions at the Lillgrund Wind Farm using HAWC2 and the dynamic wake meander model. In Proceedings of the EWEA Annual Conference and Exhibition, Paris, France, 17–20 November 2015. [Google Scholar]
- Madsen, H.A.; Sørensen, N.N.; Bak, C.; Troldborg, N.; Pirrung, G. Measured aerodynamic forces on a full scale 2MW turbine in comparison with EllipSys3D and HAWC2 simulations. J. Phys. Conf. Ser. 2018, 1037, 022011. [Google Scholar] [CrossRef]
- Mann, J. Wind Field Simulation. Probab. Eng. Mech. 1998, 13, 269–282. [Google Scholar] [CrossRef]
- Lio, W.H.; Mirzaei, M.; Larsen, G.C. On wind turbine down-regulation control strategies and rotor speed set-point. J. Phys. Conf. Ser. 2018, 1037, 032040. [Google Scholar] [CrossRef] [Green Version]
- Galinos, C.; Urbán, A.M.; Lio, W.H. Optimised de-rated wind turbine response and loading through extended controller gain-scheduling. J. Phys. Conf. Ser. 2019, 1222. [Google Scholar] [CrossRef]
- Lio, W.H.; Galinos, C.; Urban, A. Analysis and design of gain-scheduling blade-pitch controllers for wind turbine down-regulation. In Proceedings of the 15th IEEE International Conference on Control and Automation (IEEE ICCA 2019), Edinburgh, UK, 16–19 July 2019. [Google Scholar]
- MATLAB. Version 7.10.0 (R2018a); The MathWorks Inc.: Natick, MA, USA, 2019. [Google Scholar]
- MacKay, D.J. Bayesian interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training feed forward networks with the marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Kazda, J.; Merz, K.; Tande, J.O.; Cutululis, N.A. Mitigating Turbine Mechanical Loads Using Engineering Model Predictive Wind Farm Controller. J. Phys. Conf. Ser. 2018, 1104, 012036. [Google Scholar] [CrossRef] [Green Version]
- Kazda, J.; Cutululis, N. Model-optimised Dispatch for Closed-loop Power Control of Waked Wind Farms. IEEE Trans. Control Syst. Technol. 2019, 1–8. [Google Scholar] [CrossRef]
- Horvat, T.; Spudic, V.; Baotic, M. Quasi-stationary Optimal Control for Wind Farm with Closely Spaced Turbines. In Proceedings of the MIPRO, 35th International Convention, Opatija, Croatia, 21–25 May 2012; pp. 829–834. [Google Scholar]
- Soleimanzadeh, M.; Wisniewski, R.; Kanev, S. An Optimization Framework for Load and Power Distribution in Wind Farms. J. Wind Eng. Ind. Aerodyn. 2012, 107–108, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Tesauro, A.; Réthoré, P.E.; Larsen, G.C. State of the art of wind farm optimization. In Proceedings of the Ewea 2012-European Wind Energy Conference and Exhibition, Copenhagen, Denmark, 16–19 April 2012. [Google Scholar]
- Available online: https://gitlab.windenergy.dtu.dk/TOPFARM/ (accessed on 9 March 2020).
Variable | Unit | Lower Bound | Upper Bound | Number of Sampling Point |
---|---|---|---|---|
(m/s) | 4 | 24 | 11 | |
(deg) | 0 | 22 | 9 | |
(%) | 7 | 27 | 3 | |
(%) | 0 | 70 | 8 | |
(%) | 0 | 70 | 8 | |
l | (D) | 3 | 20 | 5 |
Model | Blade DEL (%) | Tower DEL (%) | El. Power (%) |
---|---|---|---|
BR | 1.145 | 1.253 | 0.029 |
LM | 1.132 | 1.186 | 0.045 |
Ensemble model | 1.054 | 1.118 | 0.028 |
Model | Blade DEL (%) | Tower DEL (%) | El. Power (%) |
---|---|---|---|
BR | 0.753 | 0.829 | 0.015 |
LM | 0.746 | 0.790 | 0.024 |
Ensemble model | 0.680 | 0.732 | 0.015 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galinos, C.; Kazda, J.; Lio, W.H.; Giebel, G. T2FL: An Efficient Model for Wind Turbine Fatigue Damage Prediction for the Two-Turbine Case. Energies 2020, 13, 1306. https://doi.org/10.3390/en13061306
Galinos C, Kazda J, Lio WH, Giebel G. T2FL: An Efficient Model for Wind Turbine Fatigue Damage Prediction for the Two-Turbine Case. Energies. 2020; 13(6):1306. https://doi.org/10.3390/en13061306
Chicago/Turabian StyleGalinos, Christos, Jonas Kazda, Wai Hou Lio, and Gregor Giebel. 2020. "T2FL: An Efficient Model for Wind Turbine Fatigue Damage Prediction for the Two-Turbine Case" Energies 13, no. 6: 1306. https://doi.org/10.3390/en13061306
APA StyleGalinos, C., Kazda, J., Lio, W. H., & Giebel, G. (2020). T2FL: An Efficient Model for Wind Turbine Fatigue Damage Prediction for the Two-Turbine Case. Energies, 13(6), 1306. https://doi.org/10.3390/en13061306