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Abstract: Kesterite-structured Cu2ZnSnSe4 (CZTSe) is considered as one of the Earth-abundant and
non-toxic photovoltaic materials. CZTSe films have been prepared using a single-step co-evaporation
method at a relatively low temperature (i.e., below 500 ◦C). Due to the volatile nature of tin-selenide,
the control over substrate temperature (i.e., growth temperature) is very important in terms of
the deposition of high-quality CZTSe films. In this regard, the effects of growth temperatures
on the CZTSe film morphology were investigated. The suitable temperature range to deposit
CZTSe films with Cu-poor and Zn-rich compositions was 380–480 ◦C. As the temperature increased,
the surface roughness of the CZTSe film decreased, which could improve p/n junction properties and
associated device performances. Particularly, according to capacitance-voltage (C-V) and derived-level
capacitance profiling (DLCP) measurements, the density of interfacial defects of CZTSe film grown
at 480 ◦C showed the lowest value, of the order of ~3 × 1015 cm−3. Regardless of applied growth
temperatures, the formation of a MoSe2 layer was rarely observed, since the growth temperature
was not high enough to have a reaction between Mo back contact layers and CZTSe absorber layers.
As a result, the photovoltaic (PV) device with CZTSe film grown at 480 ◦C yielded the best power
conversion efficiency of 6.47%. It is evident that the control over film growth temperature is a critical
factor for obtaining high-quality CZTSe film prepared by one-step process.

Keywords: earth-abundant; kesterite structure; CZTSe; growth temperature

1. Introduction

Climate changes induced by increased emission of greenhouse gases have become a global issue
in the past decades. Currently, solar energy is recognized as one of the most promising options to
address the issue [1,2]. Various photovoltaic (PV) solar cell technologies are currently being developed
in three formats: (1) crystalline silicon (c-Si)-based, (2) thin film-based, and (3) emerging material-based
technologies [3,4]. Even though the global PV market share of thin-film PV modules based on CdTe,
Cu(In,Ga)Se2 (CIGS), and a-Si solar cells is currently only less than 5%, while the c-Si-based market far
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exceeds a 90% share of the market [5], it is obvious that the market will noticeably grow according
to technology and industry trends in the near future. It is worth noting here that the CIGS solar cell
is the only technology that has recently increased its market share among the aforementioned thin
film technologies [5,6]. If Earth-abundant materials can be successfully applied into the absorber layer,
replacing In and Ga elements in a CIGS system for a stable and high-efficiency solar cell, it will be even
more meaningful for fabrication cost reduction and PV deployment expansion [7]. The Cu2ZnSn(S,Se)4

(CZTSSe) compound family is a potential source of materials among numerous Earth-abundant
element-based compounds that have been intensively explored for PV application [8–10]. Since the IBM
research group opened up a novel deposition method (i.e., hydrazine-based solution process), a power
conversion efficiency (PCE) record of 12.6% has been attained for a CZTSSe device [11]. However,
there has been no further improvement in the device’s efficiency, and so far it has been hard to scale
up the device size, even if the solution process is cost effective. In terms of uniform and large-area
CZTSSe film deposition, the vacuum-based processes are more suitable as a scalable method. In
this respect, DGIST has reported 11.3% PCE using sputter-deposition of a precursor followed by
post-annealing (denoted as a two-step process) [12]. National renewable energy laboratory (NREL) has
achieved the PCE of 9.15% for a Cu2ZnSnSe4 (CZTSe)-based PV device using a co-evaporation method
(denoted as a one-step process) [13]. Given that, among currently available processes, a one-step
process is the simplest way to produce CZTSSe absorbers, it may be considered as a feasible method
for commercializing CZTSSe solar cells. Nevertheless, details on the growth of co-evaporated CZTSSe
films and the optimization of devices have not been studied systemically. Presumably, the difficulty in
obtaining high-quality CZTSSe films could be associated with the volatile nature of Sn-Se compounds
and the narrow phase stability zone of the CZTSSe material system [14–16].

In this work, the effects of growth temperature on the morphological, structural, and electrical
properties of CZTSe films prepared by a single-step co-evaporation method were investigated.
The desirable temperature range to deposit high-quality CZTSe films with Cu-poor and Zn-rich
compositions was found. At the optimal temperature (480 ◦C), the surface roughness of CZTSe films
was decreased, leading to a reduction in the densities of bulk and interfacial defects. According to
derived-level capacitance profiling (DLCP) measurement, the estimated carrier density of the CZTSe
film is in the range of ~1 × 1016 cm−3. As a result, the best CZTSe-based solar cell yielded the PCE of
6.47%. This suggests that the control over film growth temperature is an important factor for obtaining
a high-quality CZTSe film prepared by the single-step process.

2. Experimental Details

The back electrode was prepared by depositing the molybdenum (Mo) on the 5 × 5 cm2 soda-lime
glass (SLG) with a 700 nm thickness using a direct-current magnetron spurting. A bilayer approach
for the deposition of Mo on soda-lime glass (SLG) was adopted with a 280-nm-thick bottom layer
at a high processing pressure for better adhesion and a 420-nm-thick top layer at a low pressure for
a low resistivity.

The growth of CZTSe absorber films on Mo/SLG substrates was carried out by single-stage
co-evaporation technique. CZTSe films were prepared on Mo-coated SLG substrates in a manner
previously described [17]. Note that the co-evaporator was also used to deposit a pure sulfur CZTS
film. CZTSe films were deposited at various growth temperatures by using four effusion cells for
Cu, Zn, Sn, and Se elements. The growth temperature during film deposition was adjusted from 380
to 480 ◦C. A film with approximately 1 µm thickness was produced by a 90-min deposition process.
When the substrate temperature was cooled down naturally, Zn, Sn, and Se elements were additionally
supplied while the shutter of the Cu source was closed. The purpose of adopting the abovementioned
conditions is to suppress Se vacancies in the film as well as the decomposition of the CZTSe film at
relatively high temperature [18,19]. The entire temperature profile for the CZTSe film deposition is
given as shown in Figure 1.
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Figure 1. Growth temperature profile for Cu2ZnSnSe4 (CZTSe) film deposition. 
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Figure 1. Growth temperature profile for Cu2ZnSnSe4 (CZTSe) film deposition.

The typical device structure for high-efficiency CIGS and CZTSSe PVs was employed throughout
the studies [17,20]. A 60-nm-thick CdS buffer layer (n-type) was deposited on the CZTSe/Mo/SLG by
using chemical bath deposition (CBD). The thickness of the CdS buffer layer was monitored via quartz
crystal microbalance (QCM). For the window layer, an intrinsic zinc oxide with a 50 nm thickness and
Al-doped zinc oxide with a 350 nm thickness were deposited by using a radio-frequency magnetron
spurting on the CdS/CZTSe/Mo/SLG. Finally, the Al front grid was prepared by a thermal evaporator.
The device area was 0.44 cm2.

The structural characterizations for CZTSe films were performed using an X-ray diffractometer
(Rigaku D/Max-2500, Japan) and Raman spectroscopy (N8 NEOS SENTERRA, USA). To verify the film
microstructure, scanning electron microscope (SEM) images were taken using a Hitachi S-4700
filed-emission SEM, Japan. Energy-dispersive X-ray spectroscopy (EDS) connected to SEM equipment
was used at an accelerating voltage of 20 KeV to estimate the chemical composition of CZTSe films.
Current-voltage measurements were carried out using a McScience K201-LAB 50, South Korea under
AM 1.5G illumination with an intensity of 100 mW/cm2. The spectral responses were measured using
a McScience K3100, South Korea. A calibrated Si solar cell was used as a reference for the device
measurement. To estimate the carrier density of CZTSe film, both capacitance-voltage (C-V) and
derived-level capacitance profiling (DLCP) were performed using a precision LCR meter (Agilent
4284A, USA) at 300 K.

3. Results and Discussion

The CZTSe films were grown at various temperatures ranging from 350 to 530 ◦C to determine
a suitable growth temperature range for high-quality CZTSe films. As seen in Figure 2a,b, when
the growth temperature was set to 530 ◦C, a continuous film was not formed. The CZTSe films grown
below 480 ◦C showed compact and continuous morphologies, even if few voids were formed. Actually,
there was no significant change in the grain sizes. However, as seen in Figure 2i,j, when the growth
temperature was less than 350 ◦C, the ratio of (Zn)/(Sn) concentrations was more than 2 and that of
(Cu)/((Zn)+(Sn)) was lower than 0.6, which are values outside of the optimal composition ranges
(e.g., for the CZTSSe-based record device, (Cu)/((Zn)+(Sn))~0.8 and (Zn)/(Sn)~1.1 [11]. Given that
high-quality films possess compact and large-grained morphologies with suitable Cu-poor and Zn-rich
compositions, the required growth temperatures to enable device-quality CZTSe films prepared by
one-step method seem to be in the temperature range of 380~480 ◦C, as depicted in Figure 2c,h.
The poor film coverage with island grains and unfavorable chemical composition could be associated
with the high volatility of Sn-Se compounds during CZTSe film deposition [21,22]. Moreover, it was
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observed that as the growth temperature was increased from 380 to 480 ◦C, the surface roughness of
the CZTSe films was reduced. The smoother surface could lead to an improvement in p/n junction
properties and associated device performance.
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To investigate the formation of secondary phases and the single-phase nature of CZTSe films,
X-ray diffraction patterns of CZTSe films grown at various growth temperatures were measured,
as shown in Figure 3. Regardless of various applied growth temperatures, all XRD peaks were
assigned to the phase of CZTSe material (JCPDS No. 52-0868) and the films were observed to have
(112)-preferred-orientation. This indicates that no secondary phases in the CZTSe films were observed.
Nevertheless, the presence of secondary phases, such as ZnSe and Cu2SnSe3, in the films cannot be
ruled out [23–26]. As seen in Figure 3b, the (112) peak was shifted toward a higher XRD diffraction



Energies 2020, 13, 1316 5 of 10

angle when the film was deposited at the higher growth temperature. Such a peak shift seems to be
related to the incorporation of sulfur residue from the co-evaporation chamber, since the co-evaporator
was used to deposit pure CZTS sulfide and the vaporizing temperature of sulfur is very low.
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Figure 3. (a) XRD patterns of CZTSe films prepared at various temperatures ranging from 380 to 480 ◦C
and (b) magnified view of the XRD (112) peak of CZTSe films.

To identify the formation of the secondary phases and impacts of various growth temperatures on
CZTSe film, Raman scattering measurement was performed at room temperature with a 532 nm laser
excitation. In literature, the A1 mode Raman peak of CZTSe and CZTS is located at 194–197 cm−1 and
322-327 cm−1, respectively [27–32]. Thus, as seen in Figure 4, the primary main peak of the films is
assigned to the Al peak for CZTSe and the second main peak seems to be assigned to the A1 peak for
CZTS. Furthermore, the Al peak for CZTSe films is shifted as a function of growth temperature and
the intensity of peak at ~324 cm−1 is increased without a peak shift. This observation is consistent with
the XRD result, as seen in Figure 3b. In general, high growth temperature could induce a small amount
of sulfur incorporation if a small amount of sulfur exists in the chamber. Actually, the incorporation of
sulfur can influence the bandgap of CZTSe films and voltage output of PV devices.
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To evaluate the PV device performance with CZTSe films grown at various temperatures,
the CZTSe film is incorporated as an absorber in the conventional structure for CIGS solar cells, for
instance, ITO/i-ZnO window/CdS buffer/absorber/Mo back contact. The current density-voltage (J-V)
characteristics of PV devices with a CZTSe film grown at various growth temperatures are shown in
Figure 5a. In addition, the photovoltaic parameters measured from the J-V curves are listed in Table 1.
Basically, all PV parameters and device efficiencies improved gradually with an increase in the growth
temperature for CZTSe film. The device efficiency prepared at the higher growth temperature of 480 ◦C
increased from 1.36% to 6.08% because of the improvement in both shunt resistance and saturated
recombination current density (J0), resulting in reduced VOC deficit (Table 1). Such improvements
seem to be associated with the formation of a sturdy p/n junction by the reduction in the film surface
roughness, as seen in Figure 2. In addition, the incorporated sulfur can affect device performance,
since the cutoff of EQE spectra in the long-wavelength (Figure 5b) is decreased as a function of growth
temperature. However, the current best cell is still lower than the highest value of 9.15% for a CZTSe
film prepared by one-step method [13].
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Table 1. Summary of photovoltaic parameters of photovoltaic (PV) devices based on the CZTSe films
prepared at various growth temperatures. The Voc deficit of Eg

q –Voc was calculated with an estimated
bandgap (Eg) from the EQE spectra fitting, as seen in Figure S1. The estimated bandgap (Eg) increased
from 1.14 to 1.23 eV as the growth temperature of CZTSe film increased from 380 to 480 ◦C.

Sample Effi.
(%)

VOC
(V)

Jsc
(mA/cm2)

Fill Factor
FF
(%)

RSh
(Ω)

RS
(Ω) A J0

(mA/cm2)
Voc deficit

(mV)

480 ◦C 6.08 0.425 30.77 46.48 4166.7 2.02 3.11 1.8 ×
10−4 805

440 ◦C 3.60 0.363 22.84 43.47 109.9 1.98 1.34 3.9 ×
10−3 827

380 ◦C 1.36 0.274 17.71 28.15 45.23 2.11 3.77 1.4 ×
10−3 873

To understand defect properties of CZTSe PV devices, CV and DLCP measurements were
performed. By fitting the CV and DLCP data (Figure S2a,c), various information such as free carriers,
interface, and bulk defect densities were estimated and summarized, as seen in Table 2. They indicate
that the density of interfacial defect was decreased, showing less than <1016 cm3 as the growth
temperature increased, while the density of bulk defects for all PV devices remained at a similar level.
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Additionally, the depletion width of the CZTSe film grown at 480 ◦C was relatively larger than one of
films grown at the lower temperatures. Consequently, this means that interface recombination was
more dominant compared to bulk recombination and may be related to surface roughness.

Table 2. Summary of the results derived from the CV and DLCP measurement of CZTSe PV devices.
(NA: Free carrier density, NIF: Interface defect density, NB: Bulk defect density).

Sample NA (cm3) NIF (cm3) NB (cm3) Depletion Width (nm)

480 ◦C 1.0 × 1016 3.0 × 1015 1.6 × 1016 119

440 ◦C 9.2 × 1016 2.2 × 1016 3.7 × 1016 64.7

380 ◦C 5.6 × 1016 1.5 × 1017 1.3 × 1016 70.5

Figure 6 shows that when MgF2 anti-reflection coating with a 100 nm thickness was applied,
the device efficiency was slightly increased from 6.04% to 6.47% due to an increase in the spectral
response at long wavelength, as shown in Figure 6b. Further studies may be needed to gain deeper
insights into defect passivation by post-deposition treatment of alkali elements (e.g., Na, K, Rb, and
Cs) [33–35]. Additionally, in order to increase the spectral response at the short wavelength region,
a Zn(O,S) buffer layer can be considered as a wide bandgap and Cd-free material [36–38].
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4. Conclusions

Earth-abundant Cu2ZnSnSe4 films were deposited on Mo-coated SLG substrates by using
a single-stage co-evaporation method. The films were grown at various growth temperatures to
determine a suitable growth temperature range for high-quality CZTSe films. When the films were
grown at 380~480 ◦C, XRD and Raman data indicate that all films adopted a kesterite structure
with I-4 space group without observation of secondary phase formation. Most of all, the surface
roughness of the CZTSe film grown at the higher temperature of 480 ◦C was significantly decreased. As
a result, the PV device efficiency was increased up to 6.47%, since both shunt resistance and saturated
recombination current density were improved, leading to a reduction in the Voc deficit. According
to C-V and DLCP measurements, the increase in the open circuit voltage of the device is consistent
with a reduction in the density of interfacial defects. Overall, our results suggest that control over film
growth temperature is a critical factor for obtaining high-quality CZTSe film prepared by one-step
process. Moreover, alkali post-deposition treatment may enable improved device efficiency through
defect passivation. By using a wider bandgap buffer layer (e.g., Zn(O,S)), spectral responses in the short
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wavelength region could be enhanced. Overall, such technologies may offer a pathway to higher
device efficiency.

Supplementary Materials: Supplementary materials to this article can be found online at: http://www.mdpi.com/
1996-1073/13/6/1316/s1.
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