

Supplementary

Fabrication and Characterization of Cu₂ZnSnSe₄ Thin-Film Solar Cells using a Single-Stage Co-Evaporation Method: Effects of Film Growth Temperatures on Device Performances

Muhammad Rehan ^{1,2}, Hyeonmin Jeon ^{1,3}, Yunae Cho ¹, Ara Cho ^{1,2}, Kihwan Kim ¹, Jun-Sik Cho ¹, Jae Ho Yun ^{1,2}, Seungkyu Ahn ¹, Jihye Gwak ^{1,2,*} and Donghyeop Shin ^{1,*}

- ¹ Photovoltaics Laboratory, Korea Institute of Energy Research (KIER), 152-Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea
- ² Department of Renewable Energy Engineering, Faculty of Environmental Technology, University of Science and Technology (UST), 217-Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- ³ Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- * Correspondence: bleucoeur@kier.re.kr (J.G.), donghyeop.shin@kier.re.kr (D.S.)

Figure S1. Estimated bandgap from EQE spectra of all the solar cell devices based on the CZTSe absorber layer prepared at different growth temperatures ranging from 380 to 480 °C.

Figure S2. (a) Capacitance voltage (C-V) at 300 k; (b) Drive level capacitance voltage (DLCP) at 300 k (c) DLCP at 120 k; of the all the solar cell devices based on the CZTSe absorber layer prepared at different growth temperatures.