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Abstract: The prediction of electricity generation is one of the most important tasks in the
management of modern energy systems. Improving the assertiveness of this prediction can support
government agencies, electric companies, and power suppliers in minimizing the electricity cost
to the end consumer. In this study, the problem of forecasting the energy demand in the Brazilian
Interconnected Power Grid was addressed, by gathering different energy-related datasets taken from
public Brazilian agencies into a unified and open database, used to tune three machine learning
models. In contrast to several works in the Brazilian context, which provide only annual/monthly
load estimations, the learning approaches Random Forest, Gradient Boosting, and Support Vector
Machines were trained and optimized as new ensemble-based predictors with parameter tuning
to reach accurate daily/monthly forecasts. Moreover, a detailed and in-depth exploration of
energy-related data as obtained from the Brazilian power grid is also given. As shown in the
validation study, the tuned predictors were effective in producing very small forecasting errors under
different evaluation scenarios.
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1. Introduction

Electricity is part of a composite market that involves generation, transmission, and consumption
agents. Such a free market has become highly competitive in recent years, leveraging the participation
of several investors, electric companies, and public agencies [1]. Once these stakeholders seek to
maximize their profits while minimizing their expenses, a suitable prediction of energy generation has
been mandatory for those who interact in this business, especially because of the competitive electricity
market, influenced by the supply and demand conditions. Moreover, as most system operational
decisions occur as a response to data gathered and processed at the control center, the use of data-driven
platforms are crucial to get useful information and make intelligent choices [2]. These data-guided
frameworks are particularly important in the Brazilian context—as the goal of our work—since the
national power grid is currently operated by a general grid operator that arbitrates when and how
much each power plant will produce from official computer models [3]. As the Brazilian electricity
matrix is mainly composed by renewable power sources, which vary in nature [2], the electricity
market prices may reflect the stochastic behavior of these sources. This means that, in most cases,
the wholesale market prices in Brazil are determined by the opportunity costs of these renewable
power plants, based on the acquired data and supply and demand tendencies [4].
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Techniques devoted to forecasting electricity demand aim at estimating the amount of energy
needed, over a historical time series, for transmission and later consumption by others. Despite
the adaptation of several machine learning models to properly address the problem [5–9], tracking
the progressive use of the electricity is not a straightforward task in practice. In fact, the electricity
dispatch is intrinsically related to the internal operations of the power systems such as the periodic
scheduling of power generation in hydroelectric plants, the preventive maintenance of the generators,
the reliability evaluation of power systems, etc. [10]. Moreover, the problem becomes even more
challenging and especially interesting when one has to deal with the highly nonlinear tendency of
power data, as it is mathematically modeled by highly-oscillating time series whose parameters can
be affected by exogenous variables such as weather/ambient conditions [11] and economy-related
factors [12].

Formally, the problem of predicting the power demand on time series can be described as follows:
given a time series of electric load X1, X2, . . . , Xt, in which Xi accounts for the historical energy load at
the instant i, i = 1, 2, ..., t, the goal is to predict the quantity X(t+h), where h establishes the forecast
horizon [13,14]. Taxonomically speaking, this kind of prediction usually comprises three categories of
planning horizons: (i) long-term (years/months); (ii) regular-term (days/weeks); and (iii) short-term
(minutes/hours). Since estimating the electricity demand becomes harder as the planning horizon
increases, the predictions can be strongly influenced by several nonuniform variables such as electric
consumption, temperature, air humidity, and socioeconomic aspects. Moreover, long- and regular-term
time series make the problem more difficult to be technically managed and solved, as obtaining a
computationally robust solution to act in real scenarios requires the integration of customized tuning
approaches and non-linear models as a unified framework to properly work [15–19]. Therefore, in this
paper, our main interest lies in designing well-behaved forecasters to assess and predict the electricity
demand in Brazil for both long- and regular-term time series.

Considering the recent advances in Machine Learning (ML) for electricity load forecasting, the
literature offers a variety of approaches, most of them specifically designed to solve a particular
case study of energy consumption. For instance, Qiu [20] proposed a Support Vector Regression
(SVR) variant based on Particle Swarm Optimization (PSO) to forecast the energy trade of the Taiwan
electricity market. Hybrid methods based on well-established ML models such as random forest,
neural networks, and fuzzy logic adjusted to gauge electric consumption were also given in [21],
where the authors monitored the amount of energy consumed in buildings located at the Polytechnic
University of Catalonia, in Spain. Hernandez et al. [22] described a hybrid decision-making tool to
analyze and inspect the energy consumption in an industrial park, also in Spain. They combined
self-organizing maps and k-means clustering into a cascade-based application to supervise the power
consumption flow in the evaluated industrial park.

In contrast to the above study cases, covering larger territories takes a lot of data from different
resources to produce meaningful results. As a consequence, studies dedicated to investigating larger
areas such as full countries only have contributed to the minority of literature in electricity demand.
This was the case faced by Zhao et al. [23], as their method integrates a grey forecasting model with
parameters optimization to assess the electricity consumption in Mongolia. Zhao’s method was later
modified by Liang and Liang [24] to cope with the electricity demand of China between 2016 and
2020. Their method divides the forecasting task into two steps: two prior single predictions, and the
combination of both forecasts as a new, more accurate, one to produce the definitive estimation. A rich
discussion comprising the energy demand for different sectors in U.S. was presented by Ameyaw and
Yao [25], through a Recurrent Neural Network (RNN) designed as an assumption-free-based predictive
model for regular-term predictions. RNN was also the learning strategy used by Bouktif et al. [26],
who faced the forecasting problem by applying an RNN architecture, namely Long Short-Term Memory
(LSTM), to predict the electric load in France.

Finally, concerning the core works devoted to covering the electricity demand in Brazil—as the
goal of our work—contributions were made towards assessing the energy consumption, but assuming
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as data source only global indicators such as Gross Domestic Product (GDP) and Population Growth
Rate (PGR). Maçaira et al. [27] presented different projections for the Brazilian energy consumption
taking the GDP—as an independent variable—and a dynamic regression approach. Despite predicting
consumption until 2050, their forecasts were only performed annually, giving no details for the
demanded energy during the months. Another long-term forecasting study was conducted by Torrini
et al. [28]. The authors used a fuzzy logic-based methodology, which was calibrated with GDP
and PGR indices, and compared their results with official projections for the sector, as provided
by the Brazilian Energy Research Office (EPE - Empresa de Pesquisa Energética, in Portuguese:
http://www.epe.gov.br/en). Similarly, a year-by-year estimation for the electric demand in Brazil was
also carried out by Trotter et al. [29], by modeling uncertainty in the estimates of weather variables.
Their approach relies on basic features such as population size and national income together with the
electricity demand so that a multiple linear regression model is obtained to yield annual forecasts.

Other studies have also been published concerning the electric demand in Brazil, most of them
focused on annual estimations [30–32], wherein no conclusive forecasts can be delivered if one intends
to predict the daily/monthly electricity load in a more detailed level of resolution. Moreover, the
literature lacks more comprehensive studies which consider a wider range of data resources to go
deeper into what kind of information is really a good match for energy demand predictability in
Brazil. As motivation, to cite a few works that can perform robust data exploration while improving
the predictability of ML approaches for energy demands in other countries, one may consider Dai
et al.’s work [33], which exploited the problem under the perspective of how to apply ensemble
models to improve Support Vector Machines (SVM) to get the energy consumption in China. Another
interesting study was conducted by Utterbäck [34], whose goal focused on answering how weather
data geographically vary in Scandinavia, and whether geographical properties are useful to give
relevant information to the predictors. Assessing the impact of weather conditions in the forecasting
task was also the goal of Zhang et al. [35], but in the sense of how photovoltaic power systems can be
drastically affected due to abrupt weather changes that occur during a whole day. Facing a similar
problem, Ceci et al. [36] applied entropy-based metrics for online training of artificial neural networks
to better exploit the non-linear dependencies between the feature space (weather conditions) and the
target space (observed power production). Finally, feature space analysis was the key point handled
by Sarhani and Afia [37] for load forecast, based on the combination of PSO and feature selection to
improve their SVM variant, and by Liang et al. [38], by means of a hybrid model which integrates
several tuning strategies such as empirical mode decomposition and minimal redundancy maximal
relevance into a regression neural network to produce the forecasts.

Contributions

In this study, the problem of predicting the electricity demand in Brazil is addressed for both long-
and regular-term time series. Different strategies to optimize the performance and accuracy of the
presented ML approaches are discussed in details so as to promote a comprehensive analysis of the
explored data while still elucidating how electricity load predictions can be achieved and driven by
data exploration and ensemble-based learning models. In contrast to other works that only provide
annual forecasting assessments for the Brazilian electricity demand, this paper establishes a solid
methodological pipeline for daily/monthly forecasts, by introducing several variables related to the
national electrical system instead of employing macro-indices, as previously discussed. As accurateness
in predicting the electric demand depends on the amount of available data and how to properly handle
the data to build well-behaved predictive models, a new database composed by two national (and
official) data repositories in Brazil is also given and discussed, thus filling the gap with respect to the
absence of a comprehensive and reliable dataset in the Brazilian context.

This paper is organized as follows. Section 2 introduces the data analysis apparatus, learning
pipelines, and the datasets utilized in our investigation, while Section 3 gives the results, main findings,
and their discussion. Finally, Section 4 summaries the conclusion of our research.

http://www.epe.gov.br/en
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2. Materials and Methods

2.1. Data Resources and Feature Description

Aiming at exploiting the energy-related data publicly available by Brazilian government agencies,
two specific data repositories were analyzed and then combined into a unique database, named here
as Brazilian Interconnected Power Grid Dataset (BRAIPG). The first data resource was obtained from the
National Electrical System Operator (ONS) [39], which is the core body responsible for coordinating
and controlling the operations of electricity generation and transmission in the Brazilian Interconnected
Power Grid (SIN). The ONS agency is under the supervision and regulation of the National Electric
Energy Agency (ANEEL) [40]. The interconnected grid of the Brazilian electrical system allows the
achievement of synergistic gains, as it takes into account the diversity of the hydrological regimes of
the country’s basins [41]. For a better readability, Table 1 lists the abbreviations used in this section.

Table 1. List of abbreviations for Brazilian agencies.

Acronyms Description (Portuguese) Description (English)

ONS Operador Nacional do Sistema Elétrico National Electrical System Operator
SIN Sistema Interligado Nacional Brazilian Interconnected Power Grid
ANEEL Agência Nacional de Energia Elétrica National Electric Energy Agency
INMET Instituto Nacional de Meteorologia National Institute of Meteorology
MAPA Ministério da Agricultura, Pecuária e Abastecimento Ministry of Agriculture, Livestock and Supply

ONS has developed a new way of making available historical results stemmed from the SIN,
based on the principle of transparency and information reliability. The data are tabulated in daily
and hourly time, by subsystems (Brazilian’s regions), or total demanded. In particular, eleven of
fifteen features available by the ONS for the years ranging from 2005 to 2018 were collected at national
level, stored, and then analyzed in a daily format (see Table 2). Notice that our choice in selecting
variables concerning water generation is due to the fact that Brazil has an electrical system in which
hydroelectric plants predominate, i.e., more than 60% of the national electricity generation comes from
water bodies [41].

Table 2. Main set of collected data (energy-related features).

Feature Description Unity

Energy Load Energy charge consumption GWh
Max Demand Electric load demand peak GWh
Stored Energy Amount of stored energy GWh
Generated Energy Total of all energy resources GWh
Border Power Power flow transmission at Brazil’s borders GWh
Date The day, month, and year -
Influent Flow Influent flow in all water reservoirs m3/s
Water Flow Water flow in all hydroelectric m3/s
Total Volume Total volume available in the water reservoirs %
Hydroelectric Gen. Total generated by hydroelectric GWh
Hydroelectric Gen. SE/CO Total generated by hydroelectric plants in SE/CO regions GWh

As mentioned above, a secondary data repository was also considered in our analysis:
the weather-related information, taken from the National Institute of Meteorology (INMET) [42].
The INMET agency is a federal branch under the supervision of Ministry of Agriculture, Livestock and
Supply (MAPA), which provides reliable information regarding the Brazilian climate and meteorology
conditions. Although the constituted database intends to cover the whole country whose data can
significantly range due to the large territorial extension and regional diversity of Brazil, only the most
representative states in terms of energy dispatch were selected in this study, more precisely: Bahia,
Goiás, Mato Grosso do Sul, Minas Gerais, Paraná, Rio Grande do Sul, São Paulo, and Tocantins. Indeed, these
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states concentrate high levels of agricultural activities, industrial production, and high capacity of
electric generation and transmission (see Figure 1).

Figure 1. Map of the National Interconnected System with main transmission trunks [43].

Therefore, to enrich our data collection with the features from INMET while keeping the number
of variables feasible to work with, the following weather measurements were acquired for each state
capital according to Table 3.

Table 3. Additional set of collected data (other features).

Feature Description Unity

Average Temperature Average temperature of all states considered ◦C
Average Relative Humidity Average relative humidity of all states considered %
Average Wind Speed Average wind speed of all states considered m/s

2.2. Predictive Models for Energy Demand Forecasting in Brazil

This section describes the ML models, parameters tuning, and the learning strategies used to
forecast the electricity load in the Brazilian Interconnected Power Grid. Three nonlinear learning
models were customized and then applied to yield the predictions: Random Forest, Gradient Boosting,
and Support Vector Machines. All of them were adjusted to perform regression. Notice that the use
of three distinct learning approaches to cope with the investigated problem is endorsed by Zhou’s
conjecture [44]. In fact, he postulated that, in real problems, there is no definitive ML model which
optimally solves the majority of the problems in a given solution space. As a result, each model may
reach different performances and accuracies when applied on a particular dataset, thus leading to the
use of various ML-based pipelines, especially in the context of time series, as addressed in this work.
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2.2.1. A Random Forest-Based Ensemble Model

Random Forest (RF) can be seen as an ensemble method, that is, a set of estimators which
induces the creation of its own learners and decision rules, wherein the primary learners are all
classification/regression trees (CARTs) [45]. In general, RF enables the use of two tuning strategies:
Bagging and the Random Subspace Technique. The main difference between the random subspace method
and bagging is that, on a given node, instead of using all variables, RF takes only a random subset to
pick up the variables in the division criteria. Moreover, it was observed that such a randomization
procedure allows for reducing the correlation between the regression trees so that the forecasting
performance can be substantially improved [46,47].

The RF-inspired pipeline as implemented in this work relies on three core steps:

• Generate n bootstrap sample sets from the training set (as discussed below).
• For each bootstrap sample, compute an unadjusted regression tree with the following modification:

on each node, generate a random sample p for the input variables from the training set, and choose
the best division for these variables, with p < m, where m represents the number of variables as
listed in our dataset.

• Predict the new output, by averaging the outputs of n regression trees when new variables are
entered into the model.

Mathematically, the obtained RF-based model is defined as a collection of random predictor trees:
Hγ = {h(x, θn, γ) : n = 1, ..., N}, where h(x, θn, γ) denotes the nth random predictor tree, i.e., it forms
the basis for the general forecaster h(x). It is important to highlight that the predictors are independent
and randomly distributed in quantities, allowing to embed the randomization process into the decision
trees, thus improving the end predictor. Notice also that θn is selected before tree growth, and it is
independent of the learning data, γ.

Finally, predictor trees are then combined so as to generate the following definitive forest-based
estimator of h(x):

h(x, θ1, ..., θN , γ) =
1
N

N

∑
n=1

h(x, θn, γ). (1)

2.2.2. A Gradient Boosting-Based Ensemble Model

As RF, the Gradient Boosting (GB) can also be formulated as a tree-based ensemble regression
method. Basically, it employs the boosting strategy instead of bagging. This learning strategy is an
improvement of the bagging, which consists in training several submodels with random samples and
combining them for a less “individualized” performance, hence diminishing overfitting. Moreover, in
the GB ensemble model, the constituent trees do not have the same weights in the voting, i.e., the goal
of GB is to find the optimal tree combination constrained to customized weights [48,49].

The GB ensemble model creates a prior regression tree and applies the stochastic variant of the
descending gradient method to optimize the trees during the iterations, according to a cost function.
Formally, the output of the GB is given in terms of the sum of tree estimates [50,51]. The classic
principle of this kind of formulation involves the analysis of two key factors [52]:

• Weak predictive models for making weak learner predictions (e.g., decision trees).
• An additional model of weak learners to minimize the cost function.

Considering its mathematical formulation [53], the GB takes the following additive form:

f (x) =
N

∑
n=1

γn hn(x), (2)

where hn(x) represent the basis functions, i.e., they are commonly viewed as weak learners. Notice
that the GB takes decision trees of a fixed size as weak learners. Decision trees bear several attractive
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properties which make them quite effective for boosting, as the capability of modeling complex
functions and handling data of mixed types. In practice, an additive model is built in a greedy fashion:

fn(x) = fn−1(x) + γn hn(x), (3)

where the newly added tree hn(x) aims to minimize the loss L, given the previous ensemble fn−1(x)
and the actual value yi of the time series:

hn = min
n

∑
i=1

L(yi, fn−1(xi) + h(xi)). (4)

Finally, Equation (4) is numerically solved by the method of steepest descent, given a differentiable
loss function L (for numerical details, see [53]).

2.2.3. Support Vector Regression Model

Support Vector Machine (SVM) is an ML approach that relies on decision surfaces to segregate
instances of different classes. The method generates an optimal hyperplane which maximizes the
margin, i.e., the distance between support vectors of different classes. These vectors received such a
denomination because of their proximity to the decision surfaces, contributing in a decisive way to the
definition of the surfaces. It is worth mentioning that, to create a decision surface for problems that
cannot be separated linearly, SVM makes use of kernel functions, which enable the method to perform
linear cuts in the attribute space in order to create larger dimensions wherein the classes are separated
by a hyperplane [54,55].

The SVM model can be easily reformulated to tackle regression problems, by managing a loss
function, minimized by means of a regularizer. Indeed, when SVM assumes its regression form
(e.g., to perform predictions in time series), it is commonly called SVR (Support Vector Regression).
In our study, SVR was adapted and applied on the Brazilian electricity demand context, wherein the
forecasting issue is modeled so as to determine a nonlinear function f which minimizes the prediction
error from the training set. First, the input x is mapped onto a n-dimensional feature space using some
fixed (nonlinear) mapping, and then a linear model is built in this space. Following SVR [56], function
f (x, y), which controls the prediction error in the feature space, can be written as:

f (x, y) =
n

∑
i=1

yigi(x) + ε, (5)

where gi(x) denotes a set of nonlinear transformations, while parameter ε regulates the error [47].

2.3. Tuning Hyperparameters with Random Search Strategy

One of the main drawbacks of ML methods is that they have several hyperparameters to
be adjusted so that the definitive predictor can reach better data fitting and adherence. Another
complication is that the number of valid hyperparameter settings can grow exponentially in
practice [57,58].

To address these issues while still making our RF and GB models more assertive, optimal
hyperparameters were computed by applying the Random Search strategy, whose the selected values
and the tuning universe are shown in Table 4. In contrast to the standard ML approaches that usually
apply grid search-based schemes to test all the possibilities to find out the best learning pipeline,
the Random Search verifies a much smaller number of cases to get the definitive pipeline [59], resulting
in a more effective scheme for parameter exploration. In the Random Search scheme, a fixed number of
iterations is defined, together with the candidates for the pipelines (tuning universe) with or without a
pre-specified selection criterion. As a result, the best pipeline constrained to the tuning universe is
computed more quickly than other search schemes.



Energies 2020, 13, 1407 8 of 21

Table 4. Optimal hyperparameters (last two columns) and their search spaces for the RF and GB
ensemble models.

Hyperparameter Description Tuning Universe RF GB

max_features Number of feats. when searching for the best division auto, sqrt, log2, none none none
max_depth Maximum depth of the tree 2, 3, 5, 10, 15 15 5
min_samples_leaf Minimum number of samples for a leaf node 1, 2, 4, 6, 8 2 8
min_samples_split Minimum number of samples to split an internal node 2, 4, 6, 10 2 8
N_estimators Number of trees to be generated 100, 500, 900, 1100, 1500 900 500
loss (only for GB) Loss function to be optimized ls, lad, huber - huber

As the implemented SVR-based forecaster is not precisely an ensemble method in essence, its
hyperparameters were chosen empirically from the following space of parameters (Table 5), similar to
the one given in [60].

Table 5. Optimal hyperparameters (last column) and their search spaces for the SVR model.

Hyperparameter Description Tuning Universe SVR

kernel Kernel function to be applied rbf, linear, poly rbf
degree Kernel degree (for kernel = poly) 1, 2, 3, 4, 5 1
C Error penalty parameter 1000, 2000, 5000, 10,000, 15,000 10,000

Considering the optimal settings as computed by the Random Search strategy for the trained
models (Tables 4 and 5), it can be observed that, for both RF and GB, none has been considered optimal
for the max_features attribute, i.e., without any kind of maximum restriction. Concerning the loss
function, the Random Search found huber as the best choice, which is basically a combination of “ls”
(Least Squares) and “lad” (Least Absolute Deviation). For the SVR model, the kernel selected was rbf,
which is the same as the default kernel. The only parameter that changed considerably was C (10,000),
i.e., the penalty criterion, since by default it assumes the unit constant.

2.4. Improving the Learning Task by Resource Engineering

To improve the predictability of the learning models, new variables were created from the
existing ones and then incorporated into our data collection. More specifically, three new categories of
variables were generated and introduced as new features to be handled by our forecasting models: the
log returns [61] on the daily horizon; the simple and exponential moving averages [62] for both the daily and
weekly horizons; and the Dummy Coding [63], to transform the day and week into vector features—as
part of a vectorization process—totalizing three additional continuous features and seventeen categorical
features, used by our learning approaches to increase accurateness.

The rationale behind the utilization of new variables is that if there are no sufficient
discriminative variables to train the models, they may not accomplish the forecast task satisfactorily.
On the other hand, if there are too many variables, or if most of them carry irrelevant/duplicate
information, the models tend to be more computationally expensive, as well as more complex to be
trained. Therefore, the new discriminative variables allow the deployed pipelines to significantly
improve predictability in time series as the ones handled in this work.

3. Results and Discussion

3.1. Knowledge Data Discovery (KDD Analysis)

To better understand the relationships among the collected data, a descriptive statistical analysis
was carried out, by computing several summarization metrics such as basic statistics, the coefficient of
variation [64], Pearson correlation [65], and energy load histogram Q-Q plot [66].
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The first calculated statistic was the Coefficient of Variation (CV), which gave us 13.39%. Such a
percentage indicates that the variation of electricity demand in Brazil is homogeneous, i.e., it basically
follows a stable distribution, as the CV establishes a measure of dispersion (the ratio) between the
standard deviation and the average. Maxima and minima of the target variable—the Energy Load—were
also collected, as exposed in Table 6. It was found that a variation between these scores (supposedly)
ranges 3–4 times the value of the standard deviation above or below the average. Furthermore, one
can verify that the average and the median (quartile 50%) are very close to each other, suggesting that
the explored data hold a symmetric distribution.

Table 6. Descriptive statistical analysis of the Brazilian energy demand.

Statistics Energy Load (GWh)

Average 1330.52
Standard deviation 178.25
Min value 856.56
Max value 1804.52
25% 1198.64
50% (median) 1320.01
75% 1467.63

The Pearson correlation was also computed to check how strongly the input variables are linearly
related (see Figure 2). From the tabulated scores, one may conclude that the features with the highest
positive (directly proportional) correlations for the Energy Load are those which delivery the highest
scores, such as the maximum consumption demand on a day (Max Demand), the electricity generated
from demand (Generated Energy), and the hydroelectric generation (Hydroelectric Gen.) Not surprisingly,
the last feature, Hydroelectric Gen., plays a central role in Brazil, as it is the main source of energy
production, corresponding around 60% of the country’s electricity. Among the variables with the
highest negative correlations (inversely proportional) with respect to Energy Load, Stored Energy was
revealed, which makes sense, as if there is too much potential energy stored in water reservoirs, then
the electricity consumption is low. In summary, all those observations can be visualized in Figure 3.

Figure 2. Pearson correlation, represented as a heat map for the original input variables.
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Figure 3. Pearson correlation for the Energy Load, only.

Figure 4 shows the normalized frequency distribution of the Energy Load, as a histogram during the
period from 2005 to 2018. Notice that this normalization is determined so that the total area under the
histogram is equal to 1 (see [67] for details). The Kernel Density Estimation (KDE), a continuous version
of the histogram obtained by summing the individual Kernel contributions (i.e., Gaussians) at every
data point [67], is also displayed. The plotted histogram indicates that the electricity consumption in
Brazil is more often found in two peaks of almost the same density, but with different dispersions. The
first peak is located close to the average and median values, as reported in Table 6, while the second
peak is close to the average value plus the standard deviation, which comprises the 75% quartile.
Between these peaks, there is also the presence of a gap, which corresponds to the region with the
lowest occurrence in consumption, i.e., a range of 120 GWh. This valley can be explained by the
expansion of the Brazilian industry during the period considered (2005–2018), as well as the climatic
seasonality between the regions of the country, which are co-integrated by the National Interconnected
Power System (SIN).

Figure 4. Energy Load histogram and the KDE curve. The x-axis groups the energy charge (in GWh) into
bins, while the y-axis quantifies the resulting probability density values, i.e., a normalized histogram.
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Statistical analysis to verify the existence of outliers in the BRAIPG dataset was also performed,
by inspecting the probability distribution plot with the QQ-Plot (see Figure 5). From the plotted curve,
one can see that there is a high linear relationship between the quartiles distributions, both visually
identified when one checks the values above the line, and through the coefficient of determination,
which is 0.9918. Statistically speaking, this means that the predictable variable (Energy Load) has no
discrepant values, not pointing to outliers that could lead to noise in the data distribution.

Figure 5. QQ-Plot computed for the target variable.

Finally, the graphs in Figures 6–8 show the average of the target variable over the weekly, monthly
and annual horizons. The resulting distributions confirm that working days have the highest electrical
consumption, while, on Sundays, it is smaller. The months of highest consumption are: February,
March, and April. Notice that these months correspond to the summer season, as well as the transition
to fall in Brazil, while the lowest consumptions are: June, July, and August (i.e., during the winter). It is
also possible to see in Figure 8 that some sheet-like bars are flatter and longer, while others are thicker
and shorter. This behavior comes from the data distribution in a given month so that the months of
highest consumption are those with the largest variations in their distributions.

Figure 6. Density plot of weekly average distribution for the Energy Load.
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Figure 7. Density plot of monthly average distribution for the Energy Load.

Figure 8. Average distribution of the Energy Load during a whole year (2018).

3.2. Data Preparation and Standardization

After performing the data exploration of our integrated dataset, around 90% of the collected data
were taken for training the leaning models (period: 2005–2017), while the remaining portion of the
data, around 10%, was used in the validation study (testing samples covering the whole year of 2018).
Following the well-established protocol of separating the data into training and testing subsets, the
normalization step was then computed for both subsets. More explicitly, this procedure consisted in
normalizing all variables on a common scale of 0–1 to decrease the effects of different units between
the variables, hence reducing the scalability bias naturally imposed by the variables.

The vectorization process of the categorical variables in the examined dataset was also carried out,
which comprises: the days of the week and the months of the year (for implementation details, see [68]).
Finally, the machine learning models were implemented using the Scikit-learn Python library, where
the default parameters setting for each model was initially taken. Next, the optimization of the
hyperparameters for each learning approach was performed to improve the forecasters in obtaining
the best possible precision for the predicted load values.
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3.3. Application of the Trained Models for Electricity Load Forecasting in Brazil

To assess the accuracy of the trained models in predicting the energy demand in the Brazilian
Interconnected Power Grid, two evaluation scenarios have been investigated: the use of standard
versions of the forecasting methods, as they are commonly applied in other related applications, and
the utilization of our optimized pipelines with parameter tuning. Additionally, the well-established
time-series based methods Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term
Memory (LSTM) were taken as baseline methods in our comparative analysis. ARIMA assumes
three parameters: ARIMA(p,d,q), where p, d, and q are the orders of the model for the number of
autoregressive, differences, and moving average parameters, respectively [69]. Its default parameters
are given by (2, 1, 0), and after tuning, by (7, 1, 0), where p ∈ [1, 15], d ∈ [0, 5] and q ∈ [0, 2]. LSTM
depends on two parameters: LSTM(w,n), where w is window used to split the training division in the
database, and n is the number of neurons in the input layer. MSE was taken as a loss function, while
ADAM as the optimizer and activation function. Finally, default parameters of LSTM are given by
(4,50), and after tuning, by (10,500), where w ∈ [1, 15] and n ∈ [50, 1000]. The codes were built based
on the Keras implementations, a high-level neural networks API, and TensorFlow, a popular and robust
open source deep learning tool designed by Google [70]. As the designed approaches, two parameter
settings were considered for the time-series methods: by default and after parameter tuning with
Random Search, similarly to what was done for our learning approaches.

In our experiments, the assessments were obtained from quality validation metrics as usually
employed in the Machine Learning field. More specifically, the Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) [71,72] were used to assess
the results:

MAE =
1
n

n

∑
i=1
|yi − ẏi| , (6)

RMSE =

√
1
n

n

∑
i=1

(yi − ẏi)2 , (7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣yi − ẏi
yi

∣∣∣∣∣× 100 , (8)

where yi and ẏi account for the actual and forecasted values of energy load, respectively.
The predictive performance of both standard and optimized models was first verified in monthly

horizons for the whole year of 2018, as shown in the left-side columns in Table 7. From the tabulated
scores, one can compare the implemented approaches under different perspectives. First, when
checking the individual performance of the standard models, one can observe that GB delivers the
smallest prediction errors, while the SVR the biggest ones. After optimizing the models, SVR becomes
very competitive, giving the best results for February and May-August. Moreover, both RF and
GB increase their performance after hyperparameter optimization in most of the months, allowing
the forecasters to be more effective in predicting the load demand in the Brazilian Interconnected
Power Grid. By analyzing all the results together, both implemented approaches, RF and GB, clearly
outperform the baseline time-series methods ARIMA and LSTM with/without parameter optimization.
The only exception occurs with SVR without a suitable hyperparameter treatment, which is surpassed
by the time-series models; however, the opposite holds when the SVR is properly optimized.

Now, if one checks the best and the worst months of predictions for each model individually
(as highlighted in orange and green in Table 7, respectively), July and August are the ones with the
lowest errors, which include the MAPEs close to zero for the tuned RF, GB, and SVR methods, while
February and March return the highest errors (in overall). Notice, however, there are nuances for
the worst results such as the months of January (optimized SVR), and May and December (ARIMA).
Finally, one can also observe that the SVR is notably improved after a more appropriate parameter
tuning, as the highest MAPE decreases drastically.
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Table 7. MAPE (%) monthly over the test data (2018) for all the evaluated models with default
(non-optimized) parameters against the optimized (tuned) pipelines.

Implemented Models Time-Series Based Models
Standard Optimized Standard Optimized

Months RF GB SVR RF GB SVR ARIMA LSTM ARIMA LSTM
1 1.208 0.862 15.753 0.924 0.931 1.687 6.643 8.272 3.632 6.037
2 1.197 0.877 18.318 0.681 0.769 0.597 5.864 10.878 2.603 7.903
3 2.212 1.481 15.947 1.699 1.242 1.331 5.664 8.208 2.796 8.148
4 1.587 1.423 12.487 1.204 1.024 1.239 5.851 7.575 3.331 4.813
5 1.441 1.129 11.114 1.367 1.072 0.796 7.233 8.301 3.371 5.447
6 1.257 1.055 9.634 1.004 1.013 0.961 6.305 7.468 3.541 6.146
7 1.070 0.880 8.206 0.571 0.507 0.418 6.537 7.017 4.384 5.757
8 0.760 0.646 9.365 0.566 0.682 0.559 5.555 6.636 2.438 4.114
9 1.068 0.776 10.888 0.862 0.746 0.859 6.524 7.726 4.023 5.422

10 0.977 1.017 11.875 1.058 0.911 0.932 6.280 8.409 2.496 6.913
11 1.640 1.374 11.128 1.255 1.324 1.410 6.556 7.367 2.891 6.345
12 0.850 0.849 14.435 0.825 0.753 0.762 6.587 7.427 4.608 4.472

Aiming at assessing which model delivers the best predictions, Table 8 summarizes the mean
values of MAPE and MAE over the whole year of 2018 (test data). In all evaluation scenarios, GB gives
the best results, with a MAPE, MAE, and RMSE of 0.918%, 13.832 GWh, and 19.798 GWh, respectively,
resulting in an accuracy of 99.082%, i.e., an improvement of 0.116% with respect to the predicted
values without parameter optimization (accuracy of 98.966%). Notice also that the SVR comes from a
MAPE of 12.567% to an error less than 1 with parameter tuning, leading to prediction errors very close
to the one generated by the GB. Concerning the time-series based approaches, ARIMA and LSTM,
there was a considerable gain after tuning their parameters, but still they were less effective when
compared against the implemented learning pipelines, especially the RF and GB ones, with/without
tuning. In summary, the three improved forecasters RF, GB, and SVR were able to produce the lowest
prediction errors. Such a high assertiveness can be explained due to the nature of the target variable
(Energy Load), as the QQ-Plot (Figure 5) has returned a coefficient of determination of 0.9928% between
the quartiles, demonstrating that the demand of electricity charge behaves well with respect to the
external factors, besides having a good correlation to the fundamental variables present in our dataset.

Table 8. Mean of MAPE (%), MAE (GWh), and RMSE (GWh) over the test data (2018) for all the
evaluated models with default and optimized parameters.

Implemented Models Time-Series Based Models
Standard Optimized Standard Optimized

Metrics RF GB SVR RF GB SVR ARIMA LSTM ARIMA LSTM

MAPE 1.279 1.034 12.567 1.006 0.918 0.962 6.255 7.137 3.317 4.707
MAE 19.279 15.576 189.313 15.160 13.832 14.497 94.196 107.316 49.957 70.821

RMSE 24.543 21.186 221.172 23.890 19.798 21.522 118.013 116.412 75.203 90.947

Since the GB has reached the best scores, its level of importance was calculated to rank the most
relevant variables in the regression task. Figure 9 brings such a feature analysis, where the artificially
created variable MME Weekly Energy Load was classified as the one with the highest weight in the GB
predictability (75%), followed by Energy Load log_return, another side variable generated via resource
engineering. This demonstrates the importance of setting new composite variables in the training step.

The prediction of Energy Load, as given by the trained models with parameter tuning, for the first
quarter of 2018 is shown in Figure 10. The difference (residue) between the real and predicted values is
also displayed (see Figure 11). Despite the high volatility usually found in energy load time series,
the predictions follow the actual data very closely, capturing the cyclical nature of the ground-truth
curve such as undulations and local extrema. The only exception occurs at two ill-behaved points,
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located after the 80th day (see the gap in Figure 11). Among the trained models, the best one in terms
of fitting data capability was the GB, since it produces residues closer to zero when compared to
the others.

Figure 9. Importance of variables when predicting the Energy Load by the tuned GB.

Figure 10. Energy Load predictions (obtained by the optimized forecasting models) × real values for
the first quarter of 2018.
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Figure 11. Energy Load residues, as obtained by the optimized models, for the first quarter of 2018.

The distributions of the prediction results, given by the optimized learning models, and the true
data are shown in Figure 12. One can observe that, in the valley of the learning curves (1300–1400 GWh),
the SVR underestimates the actual load, and, at the peak between 1400 and 1500 GWh, the opposite
holds, for all the trained models. In contrast, for load values less than 1300 GWh, both RF and GB
are able to produce highly accurate distribution curves with respect to real data, while SVR sightly
overestimates the original distribution.

Figure 12. Density plot for the true observed data and the predictions generated by the trained models.
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4. Conclusions

This study focused on the study of electricity load prediction in the Brazilian Interconnected
Power Grid by means of different machine learning strategies and data exploration tools. In contrast to
most existing works, which give only annual/monthly estimations for the electricity demand in Brazil,
here, three ML models were applied and then optimized as new ensemble-based predictors with
optimal hyperparameters to provide accurate daily/monthly forecasts. As verified in the evaluation
study, the predictive model with the best performance was the GB, surpassing the other methods
in terms of accuracy (tuned model: 99.082%) and MAPE/MAE (tuned model: 0.918% and 13.832%,
respectively), therefore attesting the efficacy of GB in the predictability of electricity load demand in
the Brazilian context.

The Knowledge Data Discovery (KDD), as conducted via the data analysis tools presented in
Section 3, was also of paramount importance to reveal the statistical behavior and other intrinsic
relationships of the collected data. Moreover, there was a substantial gain due to the creation of
new artificial variables, as the ones delivered by the resource engineering scheme, which was crucial
for weighing the ensemble-based models, as well as improving the SVR, since it did not achieve a
satisfactory performance without a proper adjustment of parameters.

Finally, in addition to establishing new methodological pipelines to forecast the energy demand
in Brazil and to go deeper into the acquired data, this work provides a full data collection of data taken
from official Brazilian agencies to the industry and those who are interested in studying load demand,
especially in the Brazilian context.
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