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Abstract: The assessment of engineering objects in terms of energy consumption is an important part
of sustainable development. Many materials, including those from the energy sector, need to undergo
earlier processing, e.g., grinding. Grinding processes still demand a significant amount of energy,
whereas current energy assessment methods do not take into account important parameters of the
process, which makes it difficult to choose their optimal values. The study presents the analysis,
testing, and assessment of mechanical engineering systems in terms of the energy consumption
involved in the grinding of biomass intended for energy production purposes. A testing methodology
was developed to improve the parameters of multi-disc grinding, including the reduction of energy
consumption, power input, product quality improvement, and process efficiency. An original model
of integrated energy consumption was developed. Tests were carried out on a five-disc grinder
for five programs to assess the programmable angular speeds of the grinder discs. Output values,
including specific energy demand, fragmentation degree, and integrated energy consumption, were
assigned to each testing program. The test results were subjected to statistical analysis. Based on
the authors’ own research, it was found that the angular speed of the discs and, consequently, the
linear speed of the grinding blades, have a significant influence on the values of the integrated energy
consumption of the preliminary process.

Keywords: energy consumption; comminution; grinding; multi-disc mill; energy consumption index;
energy assessment

1. Introduction

The simplest and the most common method of biomass utilization is its combustion, e.g., in the
boilers of a power station [1]. There are also other forms of energy production that are increasing in
popularity, including: gasification, biomethane production, esterification, the acquisition of bioethanol,
etc. [2,3]. Depending on the energy purpose and type of biomass, the comminution process will
vary—in particular, in terms of the desired final dimension of the comminution product [4,5]. In the
case of anaerobic digestion, biomass is comminuted to several millimeter fractions [4]. Pellets are
usually made of fibrous biomass ground to 2–4 mm or smaller, depending on the briquetting machine
design, while briquettes, from particles smaller than 10 mm [6]. In the production of biofuels, in turn,
biomass particles should be in the range of 100–500 µm, and for gasification and direct combustion
processes, below 100 µm [4]. Previous research has shown that the smaller the biomass particles are
used for energy purposes, the greater the efficiency and easier control of biomass thermochemical
transformation processes [5].
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Acquiring energy from biomass requires its earlier preparation: drying, grinding, palletizing,
etc. [7]. These procedures require certain energy inputs (costs) which significantly decrease the energy
and environmental balance in the entire lifecycle of the energy material (wood, grain biomass, etc.) [8–13].
According to the idea of sustainable development concerning the design of systems, devices, and
processes, in three areas—the environment, society, and economy—the biomass processing lines should
be characterized by the lowest possible energy consumption and environmental impact [14,15]. It also
aims to improve the competitiveness of biomass fuels in relation to conventional fossil fuels [16,17].

Before being used for energy purposes, energy media need to be properly prepared, e.g., their
dimensions need to be reduced by means of grinding [2]. Roller, drum, ball, hammer, and disc
mills are used to grind granular biomaterials (biomass grains) [7,18]. Tests have shown that the best
relations between product quality, yield, and grinding energy consumption occur for hammer and
disc mills [2,7]. The quality of the grinding product is most often determined by the grinding degree,
which is defined as the ratio of the characteristic dimensions of the particles before and after size
reduction [19,20]. Other indicators, e.g., bulk density, grain size distribution, specific surface area,
energy value, and their relationship with the comminution process, are also important from the point
of view of the final product quality [4,21–24]. Previous studies conducted by other researchers have
shown that the reduction of biomass particles’ sizes result in improved flowability and movement
properties; the material moves better, e.g., on feeders [25]. Grinding processes also increase the bulk
density of the product, which allows, among others, to reduce storage space [5]. In the case of biomass,
there was also a trend of increasing energy demand along with an increase in the particle size of the
grinding input material [26]. It has also been shown that the energy demand increases as the particle
size of the comminution product decreases; i.e., the smaller the particles we want to achieve, the
greater the energy input [5,27]. The conducted analyzes have shown that the smaller the particles after
comminution, the easier they are conducted; e.g., anaerobic digestion processes and the efficiency
of biomass conversion into biofuels increases, due to the increase in the specific surface area of the
particles in grinding processes [4,28,29].

Current legislation imposes requirements which are supposed to reduce the energy consumption
of technological lines, including energy material grinding. Unfortunately, currently used grinding
machines and devices consume much energy and are inefficient [2,30–32], which motivates researchers
to take up research in order to reduce the energy consumption of grinders and mills. Thus, upon
implementing innovative structural solutions, a multi-criteria analysis needs to be used. It should
take into consideration such parameters as efficiency, energy consumption, fragmentation degree,
and power consumption. The design of structural solutions should meet the criteria of sustainable
development. Criteria to be used for the structure assessment should be matched in such a way that
the choice of an optimal solution is possible.

Biomaterial grinding (e.g., granular biomass) is accompanied by many phenomena caused by the
impact of the material, the machine elements, the internal structure of biomaterials, and their strength
parameters [33]. Strength properties vary depending on the material and depend on, among others,
internal structure, humidity, and biological features [34], and in the case of biomass, a significant
diversification of properties is observed even within one species [35–37]. The increases in strength
and hardness increase the energy demand for fragmentation [38–40]. The increase in the humidity
of the input material also contributes to the increase in energy demand during the size reduction
process. The internal structure of biomass grains is not without significance—materials with greater
glassiness are characterized by increased energy demands in size reduction processes; however, the
fragmentation efficiency is greater, resulting in smaller particles [36,38,41,42]. Wiercioch et al. [35]
showed proportionality of the grinding energy demand and mass of material. Other studies, conducted
for single grains, have shown that the amount of grinding energy demand increases as grain thickness
increases [37]. Thus, the criteria for the assessment of the structure and process need to be formulated.
They must be adjusted both to the material and the grinding machine, as well as to the specificity of



Energies 2020, 13, 1417 3 of 26

the company. Hence, the identification of variables and factors affecting the process assessment in
terms of energy consumption, efficiency, and product quality seems to be of key importance [7,31].

Research on energy-related aspects involved in grinding has been ongoing since the end of the
20th century. Since that time, many theories link energy consumption with product quality and the
efficiency of the grinding process. These include the hypotheses of Rittinger, Kick, Holmes, Charles,
Rebinder, Mielnikow, and Bond, as well as the statistical hypothesis. They, however, are based on
certain simplifications regarding the similarity of particles and the failure to consider the forces of
grinding. In addition, there are restrictions involved in their applicability [30,43–46]. Polish experiences
in research on energy consumption include experiments conducted by: J. Flizikowski, Malewski,
Tomporowski, Zawada, Brach, and Sidor [47–55], who have been involved in modeling the grinding
process [56].

The literature provides but only a few studies, including a comprehensive energy assessment of
grinding machines and devices with a focus on the process parameters. A number of studies indicate
energy consumption and the degree of grinding as basic assessment criteria [57,58].

The criteria for energy assessment provided in the literature (Table 1) represent a machine-oriented
approach to the grinding process. They can be considered to belong to the group of efficiency criteria
proposed by M. Bielski [59], presenting the ratio of profits to expenditures [60]. Dependences (1)–(8)
indicate the energy “productivity” of the process; that is, they define the amount of energy needed to
grind the material unit (unit of mass, volume). The function of adaptation (Equation (9)) proposed
by J. Flizikowski [49] views many grinding factors as a machine process and is designed for global
assessment of the process in terms of biomass-processing for the needs of feeding animals. It combines
the effects of material grinding—an increase in the processed grain assimilability by living organisms
and the amount of energy used by the machine elements and power transmission system. Effectiveness
understood in terms of the energy exchange efficiency (Equation (10)) has been discussed in paper [30].

A criterion of a unit demand for energy is often used as an energy measure (dependence (6)).
Depending on the material properties and the required grain dimensions, energy demands can be:
from 20 kWh·Mg−1 to 130 kWh·Mg−1 for rough and medium grinding and up to 800 kWh·Mg−1 for
micro and nanogrinding.

For brittle materials such as glass, cement, and clinker, the energy required for very fine grinding is
much lower than for polymer and biological fibrous materials. The energy demand for these materials
is nearly two times higher, whereas the final particles are from 10 to 100 times larger. Hence, the
grinding efficiency of fibrous materials is lower than that of brittle materials [61].

An insufficient number and quality of grinding-process descriptions, ineffective technological
solutions, and unsatisfying attempts to improve grinding system efficiency means major problems
remain unsolved, such as the high energy costs of grinding, poor yield, and insufficient quality of the
product represented by granulometric parameters. These problems should be solved by monitoring and
supervising grinding parameters such as linear speed, the angular speed of discs, energy consumption,
power input, etc. In view of the above, taking up research on this subject can bring numerous benefits.

There is an urgent need to provide an explanation of the essence of engineering and the control of
granular biomass quasi-shearing by means of a multi-hole grinding unit with a focus on the process of
energy consumption.

Hence, the following research goals were established:
The development of a mathematical model of energy consumption and granular biomass grinding

for the needs of the integrated design of multi-hole (disc) grinding units. Experimental determination
of the impact of selected parameters of the multi-disc grinding process on the sustainable energy
consumption of granular biomass.
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Table 1. Energy assessment criteria of the grinding process presented in the literature.

Criterion Mathematical Model

Overall net energy for a grinding
unit of dry mass [2]

ET =

∫ T

0
(PT − P0) dt/mDM =

∫ T

0
∆Pt dt/mDM (1)

ET—Overall net energy for grinding unit of a dry biomass , kJ kgDM
−1;

PT—power consumed by the machine in time, t; W,—average power input of the
grinder neutral gear , W; ∆PT—net power input for biomass grinding in time t, W;

and mDM—mass of the ground dry feed mass, kg.

Specific grinding Energy [7]
Espec = 1/m

∫ T

0
(PT − P1) dt (2)

Espec—Specific energy of grinding, J·kg−1; PT—total power consumption, W; and
Pl —power consumed by the grinder without being loaded by the feed, W.

Specific energy consumption [20]
SEC = Etot/Q (3)

SEC—Specific energy consumption, kJ·kg−1; Etot—overall energy consumption,
kJ; and Q—productivity, kg.

Energy density [20]
Ed = SEC·ρ (4)

Ed—Energy density, kJ·m−3; ρ—bulk energy density of the ground material,
kg·m−3; and SEC—specific energy consumption, kJ·kg−1.

Specific energy of grinding [62]

Er = (Ec − Es)/m (5)
Er—specific energy of grinding, J·kg−1; m—mass of the ground sample of

material, kg; Ec—overall energy consumption, J; and Es—neutral gear energy
consumption, J.

Unit energy demand [63–65]
Ej = P/Q (6)

Ej—unit energy demand, kWh·kg−1; P—power on the grinder shaft, kW; and
Q—mass yield, kg·h−1.

Energy efficiency [58]
EE = Em(SP)/Em(Mill)·100 (7)

EE—energy efficiency, Em(SP)—specific energy used for grinding a single particle,
and Em(Mill) – specific energy net energy used for production of a given product.

Target energy efficiency [58]

EE = Em(SP)/Em(Mill)X50·100 (8)
EE—energy efficiency, Em(SP)—specific energy used to generate a product with a

given average dimension X50, and Em(Mill)X50—net specific energy used to
generate a product with average dimension X50.

Adjustment function
quasi-shearing [50]

eRP = ((ηq−s − ηo)·Ebrutto·ηs·ηp)/((kj·vr + τq−s·Fq−s + ε·FR
′

·vr
2)·Mk·vr·t) (9)

eRP—adjustment function for quasi-shearing; ηq−s—combustion efficiency of
ground energy carriers; ηo—efficiency of whole grain combustion of selected

energy carriers; Ebrutto—energy of processed grains, kJ·kg−1; ηs·ηp—efficiency of
the grinder drive; ηs—engine efficiency; ηp—transmission efficiency; kj—idle
motion coefficient, kJ·s−1; vr—speed of quasi-shear, m·s−1; τq−s—stress during
quasi-shearing, N·m−2; Fq−s—temporary cross-section of quasi-shearing, m2;

FR’—cross-section of secondary impacts during quasi-shearing, m2;
ε—proportionality coefficient, N·s−2

·m−4; and Mk—times indicator.

Energy change efficiency [30]
Ef ze = Eroz/Ew·100 (10)

Efze—energy change efficiency, %; Eroz—grinding energy, J; and Ew—energy
input, J.

Research problems were formulated in the form of questions in relation to the research goals
established herein:

1. Will the development of an adequate mathematical model of energy consumption considering
basic parameters of the process such as the yield, fineness degree, unit energy consumption, and
power input enable the integrated design of the structure, disc parameters, and hole movement
in shearing culvert discs?

2. What is the impact of deliberately changed characteristics and relations of the unit motion on the
yield, fineness degree, power input, unit energy consumption, and integrated index of sustainable
granular biomass grinding energy consumption in a multi-hole grinding unit?
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2. Materials and Methods

2.1. Integrated Energy Consumption Index

The introduction of energy and pro-environment-based assessment into the
construction–optimization process of the technology of energy biomass grinding leads to the
creation of new, better structural and process solutions. In a sense, it is a driving force for
biomass-processing competitiveness and innovativeness [66,67]. Paper [68] indicates that energy
efficiency assessments make it possible to improve the grinder process motion parameters and
indicates technologies which are the best for a given product. It has also been proven that the
developed efficiency models can be used not only for process verification but also for verification of
the whole structure of grinding, particularly the working unit.

Developing an adequate mathematical model and finding functional dependences between the
variables are important elements of each assessment (structural-optimization efficiency) [69]. The first
step should involve the identification of the assessed processes and subprocesses and the determination
of criteria [68].

The assumption of the model of integrated energy consumption for grinding takes into account
the most important grinding indexes, which are indirectly or directly connected with power and energy
demand. First of all, the criteria for power consumption assessment, unambiguously characterizing the
grinding device, were established. The following criteria were accepted as components of the model of
integrated energy consumption, in accordance with the desired states of the grinding process [70,71]:

• Yield of grinding KQr:
KQr = Qr, (11)

• Power demand KP:
KP = 1/Pr, (12)

• Unit energy demand KEj:
KEj = 1/Ej, (13)

• Fragmentation degree Ki:
Ki = i80, (14)

where Qr—yield of grinding, kg·h−1; Pr—average power consumption of grinding, kW; Ej—unit
of energy consumption, kWh·kg−1; and i80—80% fragmentation degree.

The yield of grinding is indirectly related to the power and energy consumption of grinding.
Increasing the yield is usually associated with an increase in the grinder dimensions and, subsequently,
an increase in the power of the drive unit, which involves a change of energy parameters. In the
machine conditions, grinding yield Qr can be determined on the basis of a dependence of grinding
product mass change ∆m in the intake hopper during the time of observation ∆t [19]:

Qr = ∆m/∆t, (15)

which can further be written:
Qr = dm/dt, (16)

Qr =

∫ t

0
m dt. (17)

Power consumption for grinding changes in time, which is caused by an irregularity in the
operation of the machine [72]. In the simplest way, it can be defined as a periodical occurrence of rises
and falls in power consumption as a result of variable amounts of materials between the working
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elements, which causes momentary periods of the machine running idle during grinding (with no
feed). In connection with this, the overall power consumption in time t Ptoti can be defined as [7,73]:

Ptoti = Pui + Pii, (18)

where Pui—power consumption for the medium grinding in a given moment t, kW and Pii—power
consumption of the idle gear in a given moment t, kW.

Then, the total grinding power consumption Pr in a certain time interval T is an average of the
momentary power consumption, according to the equation:

Qr =
T
Σ

i = 0
Ptoti/T. (19)

Grinding processes are characterized by the parameters of the unit energy demand; therefore, they
were accepted to be a component of the integrated energy consumption index model. Generally, a unit
energy demand is defined as the amount of energy per mass unit of the material (volume) [2,7,20,63,64].
For the grinding machine unit, demand Ej is expressed as a ratio of average power consumed by the
grinder Pr to yield Qr [19,63,73]:

Ej = Pr/Qr (20)

The last criterion of the model of integrated energy consumption was accepted to be the
fragmentation degree, being a determiner of the product quality and effectiveness of the grinding
process [20,74]. Most generally, the fragmentation degree is defined as a ratio of the material mean
dimensions before grinding to its mean dimensions after grinding [21,75]. So far, it has been proven
that increasing the frequency of the machine element contact (by increasing the rotational, angular,
and linear speeds of the grinding elements) and repetitions of grinding provides an output product
with smaller dimensions—that is, with a higher fragmentation degree [72,76]. Unfortunately, it causes
higher energy consumption [27,77,78]. The energy consumption model assumes a fragmentation
degree of 80% i80, defined as [19]:

i80 = D80/d80 (21)

where D80—dimension of the sieve hole through which 80% of the feed material passes and
d80—dimension of the sieve hole through which 80% of the grinding product passes.

The model of integrated energy consumption was constructed in the same way as the model of
efficiency described in paper [68]. This made it possible to establish a quantitative relation between the
most important grinding indexes in terms of energy consumption. Integrated energy consumption
was described in the criteria-based approach proposed by J. Zawada in the following way [79]:

Ezint = KQr· KP · KEj · Ki (22)

Bearing in mind dependences (11)–(14) and (22), integrated energy consumption depends, in
direct proportion, on the yield and fragmentation degree and, in an inverse proportion, to the power
consumption and unit energy demand. Assuming that the state to be desired is that in which Q→∞,
i80→∞, Pr→ 0, and Ej→ 0, then Ezint→∞. In the sustainable approach, a better process will be the one
with a higher integrated energy consumption index value (22).

2.2. Raw Materials

Rice and corn grains that are unsuitable for food purposes due to having been stored in
inappropriate conditions that were used for the production of pellets underwent grinding in the
experimental tests, verifying the correctness of the integrated energy consumption model. Both crops
are extensively grown, and both of them have found applications in the energy sector due to their
good energy characteristics, which make them suitable for the production of pellets whose calorific
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value is similar to that of a wooden biomass [80]. Grain moisture was determined on a moisture
balance MAC 210/NP (RADWAG, Radom, Poland) by means of the weight method. Rice grains were
characterized by moisture at the level of 13.47% ± 0.02%, whereas corn was at the level of 12.68% ±
0.02%. The characteristic dimension of grain D80 for corn was 8.15 mm and, for rice, 2.14 mm (Figure 1).
These values were obtained on the basis of a granulometric analysis carried out on a Camsizer (Retsch
Technology GmbH, Haan, Germany) design according to the ISO norm 13322-2:2006 [81].

Energies 2020, 13, x FOR PEER REVIEW 7 of 27 

value is similar to that of a wooden biomass [80]. Grain moisture was determined on a moisture 
balance MAC 210/NP (RADWAG, Radom, Poland) by means of the weight method. Rice grains were 
characterized by moisture at the level of 13.47%  0.02%, whereas corn was at the level of 12.68%  
0.02%. The characteristic dimension of grain D80 for corn was 8.15 mm and, for rice, 2.14 mm (Figure 
1.). These values were obtained on the basis of a granulometric analysis carried out on a Camsizer 
(Retsch Technology GmbH, Haan, Germany) design according to the ISO norm 13322-2:2006 [81]. 

 
(a) (b) 

Figure 1. Granulometric distribution of (a) rice grains (b) corn grains. 

2.3. Test Stand 

Verification of the model of integrated energy consumption was performed on a test stand for 
the intelligent monitoring of performance characteristics of a multi-disc grinder. The test stand was 
composed of: a five-disc mill, a control panel with a performance monitoring system, and an 
integrated system for analysis of the grinding product’s particle size (Figure 2).  

 
Figure 2. Test stand for the intelligent monitoring of granular mass characteristics: 1—five-disc 
grinder, 2—worm feeder, 3—hopper, 4—control unit, 5—reception basket of the product of grinding, 
6—weight of the product of grinding, and 7—integrated system for the analysis of the grinding 
product’s particle size [28]. 

A five-disc mill was equipped with a special integrated system for feed-dosing with a screw 
conveyor feeder, which makes it possible to control the feeding of the grain material into the grinding 
chamber. The grinding unit consists of five multi-hole discs fixed on the grinder shaft (Table 2). Each 
disc is powered individually by means of a dedicated motor which enables precise control of the 

xc_min [mm]0.5 1.0 1.5 2.0 2.50

10

20

30

40

50

60

70

80

90

Q3 [%]

Rice grains.rdf

xc_min [mm]1 2 3 4 5 6 70

10

20

30

40

50

60

70

80

90

Q3 [%]

Corn grains.rdf
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2.3. Test Stand

Verification of the model of integrated energy consumption was performed on a test stand for
the intelligent monitoring of performance characteristics of a multi-disc grinder. The test stand was
composed of: a five-disc mill, a control panel with a performance monitoring system, and an integrated
system for analysis of the grinding product’s particle size (Figure 2).
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Figure 2. Test stand for the intelligent monitoring of granular mass characteristics: 1—five-disc grinder,
2—worm feeder, 3—hopper, 4—control unit, 5—reception basket of the product of grinding, 6—weight
of the product of grinding, and 7—integrated system for the analysis of the grinding product’s particle
size [28].

A five-disc mill was equipped with a special integrated system for feed-dosing with a screw
conveyor feeder, which makes it possible to control the feeding of the grain material into the grinding
chamber. The grinding unit consists of five multi-hole discs fixed on the grinder shaft (Table 2). Each
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disc is powered individually by means of a dedicated motor which enables precise control of the
angular speed of each disc. The final product is collected in the intake hopper with a scale fixed
underneath, by means of which, the mass of the fragmented material is weighed. This makes it possible
to determine the actual yield of the process. The integrated system of the particle size analysis makes it
possible to assess the grinding product’s granulometric composition and to determine the degree of
fragmentation. The whole system is equipped with a set of sensors and archive modules. Control of
the grinder and data reading is included in the control panel by means of the authors’ own application
(MŁYN, 2019).

Table 2. Structural parameters of the five-disc grinder.

Parameter Unit Disc 1 Disc 2 Disc 3 Disc 4 Disc 5

Disc diameter Dn mm 274 274 274 274 274
Number of holes ln pcs. 14 22 27 33 39
Holes diameter dn mm 30 23 21 17,5 17,5

2.4. Research Methodology

Verification of the integrated energy consumption index model was carried out consistently with
the plan presented in Figure 3.
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Figure 3. Research plan. Vp—feed dosing capacity, Pi—power consumption on the i-th disc, ∆m—mass
increase in the intake hopper, d80—dimension of the sieve hole through which 80% of the grinding
product passes, i80—80% fragmentation degree, Ej—unit energy consumption, Qr—yield of grinding,
Pr—power consumed by the grinder, and Ezint—integrated energy consumption.

First, 20 one-kilogram samples of rice and corn were prepared. The moisture level was determined
for each of them on a moisture balance MAC 210/NP (RADWAG, Radom, Poland) in accordance
with ISO norm 1446 [82], and, additionally, average grain size before grinding on a CAMSIZER
(Retsch Technology GmbH, Haan, Germany) device was also determined in accordance with ISO norm
13322-2:2006 [81]. Next, the prepared material was subjected to grinding on a five-disc grinder for 20
different grinding disc angular speed settings in accordance with the accepted test program [28,79] in
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order to investigate the dependence of the integrated energy consumption index on the total increase
in the grinder disc angular speed S∆ω (Table 3). The minimal speed of the grinder discs accepted to be
the point of reference was 20 rad·s−1. The accepted settings of the disc angular speed were different
in terms of the angular speed gradient ∆ω. The feed was delivered by means of a screw conveyor
feeder with the speed of 112 kg·h−1. Changes in the time of parameters such as power consumption,
product mass in the intake hopper, angular speeds of the grinder discs, torques, and size of the product
particles were recorded (with a sampling frequency every 0.5 s) in order to determine the values of
the integrated energy consumption model criteria (components)—that is, power consumption, yield,
fragmentation degree, and unit energy consumption.

Table 3. Settings of the five-disc mill control parameters [28].

Test
Program

No. of
Configuration

S∆ω ∆ω ω1 ω2 ω3 ω4 ω5

rad·s−1 rad·s−1 rad·s−1 rad·s−1 rad·s−1 rad·s−1 rad·s−1

I

1 50 5 20 25 30 35 40
2 100 10 20 30 40 50 60
3 150 15 20 35 50 65 80
4 200 20 20 40 60 80 100

II

1 200 20 100 80 60 40 20
2 150 15 80 65 50 35 20
3 100 10 60 50 40 30 20
4 50 5 40 35 30 25 20

III

1 40 20 20 40 20 40 20
2 85 20 45 25 45 25 45
3 225 25 75 50 75 50 75
4 360 20 100 80 100 80 100

IV

1 40 20 20 40 20 40 20
2 80 40 20 60 20 60 20
3 120 60 20 80 20 80 20
4 160 80 20 100 20 100 20

V

1 240 80 100 20 100 20 100
2 280 60 100 40 100 40 100
3 320 40 100 60 100 60 100
4 360 20 100 80 100 80 100

RP—research program; ω1, ω2, ω3, ω4, and ω5—angular speeds of discs, rad·s−1; ∆ω—increase in angular speeds,
rad·s−1; and S∆ω—total increase in angular speeds, rad·s−1.

The next step involved both statistical and substantive analyses. The values of the integrated
energy consumption were determined for each setting of the grinder disc according to dependence
(22). Statistical analysis of the results was carried out by means of MS EXCEL (Microsoft, Redmond,
WA, USA) and Statistica software (TIBCO Software Inc., Palo Alto, CA, USA). A general statistical
analysis of the results, including the determination of the characteristics of the integrated energy
consumption distribution and its variable components, was performed. Tests of the distribution of
the normality of the variables were conducted by means of a Shapiro-Wilk test. This test is used to
assess the distribution of the results. The null hypothesis of this test is that the population is normally
distributed [83]. Thus, if the p-value is less than the chosen alpha level (in this study, p > 0.05), then
the null hypothesis is rejected, and it can be assumed that the data are not characterized by normal
distribution. When the p-value is greater than the chosen alpha level, it cannot be rejected that the data
are characterized by normal distribution [83]. A correlation analysis using the Pearson method was
performed for variables whose distribution was close to normal, while a Spearman correlation analysis
was applied for the remaining ones. Next, a regression analysis was used. The results of the statistical
analyses were found to be significant for p < 0.05.
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3. Results and Discussion

In this part of the study, the test results of the integrated energy consumption index variables are
described along with an analysis of their relations with the independent variable: the increase in the
grinder disc angular speed S∆ω. The results of the tests performed for the settings of the accepted
grinder disc angular speed configurations for rice grinding are presented in Table S1 and, for corn, in
Table S2.

3.1. Test Results of the Integrated Energy Consumption Model Variables and Their Analysis

The analysis included general descriptive characteristics of the resultant variables of power
consumption, fragmentation degree, unit energy consumption, yield, the Shapiro-Wilk test for the
normality of distribution, and correlation analysis with the Pearson method.

3.1.1. Power Consumption

Figure 4 shows the test results of the power consumption for rice and corn grinding on a five-disc
grinder. The results indicate that the disc angular speed changes do affect power consumption. An
increase in power consumption along with an increase in the grinder disc angular speed was observed.
It can also be noticed that the power consumption for each disc setting was different depending on
the material used (Figure 4). The power consumption for rice grinding was lower than the power
consumption for corn grinding for all cases, which is mostly connected with the differing properties
and internal structures of these materials [34].
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Figure 4. Test results of the power consumption for rice and corn grinding.

Earlier analyses of rice and corn strength indicated that higher forces are needed to grind
corn grains, which is reflected by the power demand of grinding machines, due to the necessity of
overcoming the higher resistance of moving elements [37]. An increased demand for power and
energy in the case of a higher-strength grinding material was confirmed by [38–40], among others. An
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increased demand for power for corn grinding is also the effect of differences in the internal structure
thereof [38–40]. Rice grains deprived of husks were used in the tests, whereas corn grains had the
seed coat. Moreover, corn grains differ from rice grains in terms of endosperm structure. Grains with
higher endosperm glassiness have been observed to need more energy and power in the process of
grinding [36,41,42].

On the basis of the Shapiro-Wilk test (Appendix A, Tables A1 and A2) and the values of skewness
and kurtosis (Appendix A, Tables A3 and A4) of the distribution of the power consumption test
results, it was found that this distribution is approximately normal. Subsequently, the Pearson method
was used for the analysis of correlation between the power consumption of grinding PR and total
speed increase S∆ω. Correlation analysis revealed that there was a strong relation between the power
consumption in grinding PR and a total speed increase S∆ω during both rice grinding (R = 0.9658,
Appendix A, Table A5) and corn grinding (R = 0.9847, Appendix A, Table A6).

On the basis of the linear regression analysis, equations describing the dependence of power
consumption as a function of total speed increase were determined. It was found that power
consumption for grinding can be described by means of a linear model with a high match (Figure 5).
Both the coefficient in the equations and the regression models themselves were statistically significant
(Tables 4 and 5).
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Table 4. Test results of significance of the coefficients of the linear regression model of power consumption.

- - Value Standard Error t-Value Prob > |t|

Rice
Intercept 0.73234 0.06115 11.97547 5.21551 × 10−10

Slope 0.00497 3.14735 × 10−4 15.80313 5.36891 × 10−12

Corn
Intercept 0.74508 0.05392 13.8175 5.05108 × 10−11

Slope 0.00666 2.77525 × 10−4 23.98018 4.11081 × 10−15

Table 5. Test results of the significance of the power consumption linear regression equation.

Sum of Squares Mean Square F-Value Prob > F

Rice 5.12697 5.12697 249.7388 5.36891 × 10−12

Corn 9.17894 9.17894 575.04915 4.11081 × 10−15
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3.1.2. Yield

Figure 6 shows the results of rice and corn grinding yield tests performed on a five-disc grinder.
The results indicate that the disc angular speed changes have an impact on this parameter change.
As in the case of power consumption, it was observed that grinding yields increased along with an
increase in the disc angular speeds. It could also be observed that, for the settings of the grinder disc
angular speeds at which the first disc speed was the lowest, the rice grinding yield was significantly
higher than that of the corn (Figure 6). For the remaining settings, the yield was similar though slightly
higher for corn. This might result from the relations between the structural characteristics of working
discs, speed, and the size of the grain used. The average size of rice grains was definitely lower than
that of corn; hence, more of them can be introduced into the open space of the grinding discs.
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Figure 6. Test results of rice and corn grinding.

On the basis of the Shapiro-Wilk test (Appendix A, Tables A1 and A2) and the values of skewness
and kurtosis (Appendix A, Tables A3 and A4) of the distribution of the performance test results, it was
found that this distribution is approximately normal. Subsequently, the Pearson method was used
in the analysis of correlation between grinding yield Qr and the total speed increase. A correlation
analysis showed that the correlation between the yield of grinding Qr and the total speed increase S∆ω
during both rice grinding (Appendix A, Table A5) and corn grinding was poor (Appendix A, Table A6).

Poor correlations between the disc total angular speed increased, and the yield might be the
result of the grain strength properties and their relations and interactions with the grinding unit.
The phenomena accompanying the flow of granular materials through the grinding chamber, the
inter-hole space, and inter-disc space of the quasi-shearing unit are not without importance. There
can occur, among other things, periods when the material lingers in the grinding chamber due to the
adhesion of wet grains, which can be observed, e.g., in the case of corn and the poor results in the
fourth test program.
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3.1.3. Unit Energy Consumption

Figure 7 shows the test results of the unit energy consumptions for rice and corn grain grinding.
For all the considered settings of the five-disc grinder angular speeds, the unit energy demand was
higher for corn grinding (Figure 7), which was mostly connected with a higher power consumption
during corn grinding, which, in turn, results from the grain strength properties which are discussed in
Section 3.1.1. Earlier research also indicated a higher unit energy consumption for corn grinding [19].
The results indicate that an increase in the angular speed of discs caused an increase in energy
consumption (Figure 7).
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Figure 7. Test results of the unit energy consumption for rice and corn grinding.

On the basis of the Shapiro-Wilk test (Appendix A, Tables A1 and A2) and the values of skewness
and kurtosis (Appendix A, Tables A3 and A4) of the distribution of the results of the unit energy
consumption tests, it was found that this distribution is approximately normal for the grinding of rice,
while for the grinding of corn, it deviated from normal. Subsequently, the Pearson method was used
in an analysis of correlation between unit energy consumption Ej for rice grinding and total speed
increase S∆ω; whereas, in the case of corn, the Spearman method was used to assess these relations.
Correlation analysis showed that there was a very strong positive correlation between the unit energy
consumption Ej and total speed increase S∆ω for rice grinding (R = 0.95332, Appendix A, Table A5). In
the case of corn grinding, the correlation of these two variables was moderate (R = 0.5963, Appendix A,
Table A8).

An equation describing the dependence of the unit energy consumption for rice grinding as a
function of the total speed increase was determined based on a linear regression analysis. It was found
that the unit energy demand can be described by means of a linear model with a high match (Figure 8a).

In the case of the unit energy consumption involved in corn grinding, after the removal of
outstanding values (results for settings IV3, IV4, and V1), it was the exponential model that provided
the best match (Figure 8b) when compared to the others. This model was chosen on the basis of
a ranking of the different nonlinear models. As a selection criterion, the value of the model match
coefficient R2 (the higher the value, the better the model) and the value of the standard error of the
model coefficients (the lower the error, the better the model) were used. Unfortunately, the chosen
model explained the variability of the unit energy consumption as a function of the total speed increase
merely partially—slightly over 46% of the variability was explained by means of the chosen function.
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Both the coefficients in the equations and the regression models were statistically significant (Tables 6
and 7). The standard error of the coefficients in the equations did not exceed 12%.
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Table 6. Test results of the significance of the coefficients of the unit energy consumption regression model.

- - Value Standard Error t-Value Prob > |t|

Rice
Intercept 0.02809 0.00235 11.93399 5.5149 × 10−10

Slope 1.62274 × 10−4 1.21157 × 10−5 13.39367 8.44112 × 10−11

Corn
a 0.10313 0.01227 8.40195 4.68401 × 10−7

b 0.9881 0.00401 246.4428 0

a, b—coefficients of regression model (Figure 8b).

Table 7. Test results of the significance of the equations of the unit energy consumption regression model.

- Sum of Squares Mean Square F-Value Prob > F

Rice 0.00546 0.00546 179.39049 8.44112 × 10−11

Corn 0.10853 0.05427 97.41927 2.55003 × 10−9

The unit (specific) energy consumption depend on two factors: the energy consumed for the
grinding process and the mass of grinded material, and it described the amount of energy needed for
grinding one kg of material. According to [19], the unit energy consumption can be expressed as the
ratio of power demand and grinding yield. For grinded materials, the dependence between the yield
and discs’ total speed increase was not specified, and as it is one of the unit energy components, it
influences the dependence between the unit energy consumption and the discs’ total speed increase.
For corn, the yield values spread was significant; that is why the fitting is very low. The problems
with the yield in the case of corn grinding was presented in Section 3.1.2 and was also reported in the
previous study [28].

3.1.4. Fragmentation Degree

Figure 9 shows the test results of rice and corn grain fragmentations at 80% after grinding on a
five-disc mill. A higher fragmentation degree was found for corn grain grinding for all analyzed disc
angular speed settings (Figure 9), which was connected with the ratio of the grain dimension and the
inter-disc gap. The grains of rice and corn had similar average dimensions in all tests, and this value
depended on the value of the inter-disc gap—the size of a particle after grinding will always be smaller
than the gap. Due to the fact that the characteristic size of corn grains was bigger before grinding than
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the size of rice grains (Table S1 and Table S2 in the Supplementary Materials) and their dimensions
decreased down to those comparable to rice grains, the fragmentation degree of the corn grains was
higher. It was observed, like in other studies [5,26], that for grinding bigger particles (corn has bigger
particles than rice), the energy consumption is higher. It was also reported that the higher the disc
speed (so the contacts between materials and cutting edges are more intensive), the grinding product
has smaller particles [4,84]. On the basis of the Shapiro-Wilk test (Appendix A, Tables A1 and A2)
and the values of the skewness and kurtosis (Appendix A, Tables A3 and A4) of the distribution of
the grinding results, it was found that this distribution is approximately normal for both rice and
corn grinding. Subsequently, the Pearson method was used in an analysis of the correlation between
the grain fragmentation degree i80 and summary speed increase S∆ω. Correlation analysis showed
that there was a very strong positive relation between the rice fragmentation degree i80 and the total
speed increase S∆ω (R = 0.93237, Appendix A, Table A5). In the case of corn grinding, the positive
correlation between these two variables was moderate (R = 0.6893, Appendix A, Table A6).
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Figure 9. Test results of an 80% fragmentation degree for rice and corn grinding.

The equation describing the dependence of an 80% degree of rice fragmentation as a function of
the total speed increase was determined based on an analysis of linear regression. It was found that an
80% fragmentation degree can be described with a high match by means of a linear model (Figure 10a).
The obtained linear model was able to provide a 90% explanation of the fragmentation degree as a
function of the total angular speed increase S∆ω.Energies 2020, 13, x FOR PEER REVIEW 16 of 27 
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For the case of the 80% fragmentation degree of corn, the linear model explained the fragmentation
degree changes as a function of the total speed increase S∆ω only to a small extent (R2 = 0.47513).
Thus, the decision was made to check nonlinear models. As in the case of the unit energy demand, a
ranking of models which took into account the value of the match coefficient R2 and the value of the
standard error of the model coefficients was used. It was the exponential model which best explained
the highest percent of the 80% corn fragmentation degree variability as compared to the other models
(Figure 10b). Unfortunately, the chosen model did not sufficiently explain the variability of the 80%
fragmentation degree as a function of the total speed increase. Both the coefficients in the equations
and the regression models themselves were statistically significant (Tables 8 and 9). The standard error
of the coefficients in the equations did not exceed 10%.

Table 8. Test results of the regression model coefficient significance for an 80% fragmentation degree.

- - Value Standard Error t-Value Prob > |t|

Rice
Intercept 1.02074 0.01376 74.17752 7.73924 × 10−24

Slope 7.74976 × 10−4 7.08224 × 10−5 10.94254 2.19489 × 10−9

Corn
a 4.46488 0.13804 32.34576 0

b 0.97486 0.00357 273.12834 0

a, b—coefficients of regression model (Figure 10b).

Table 9. Test results of the regression equation significance for an 80% fragmentation degree.

- Sum of Squares Mean Square F-Value Prob > F

Rice 0.12447 0.12447 119.73909 2.19489 × 10−9

Corn 335.73877 167.86938 864.38272 1.31021 × 10−18

3.2. Analysis of the Integrated Energy Consumption Results

The next step of the tests involved an analysis of the integrated energy consumption for rice and
corn grain comminution. Figure 11 shows the results of the integrated energy consumption tests for
both grains. In the case of corn, the highest values of the integrated energy consumption were found
for setting no. 4 with RP II and, next, for setting no. 1 with RP III and setting no. 1 with RP IV. For rice
grinding, the highest values of the integrated energy consumption were found for setting no. 1 in RP
IV and, next, for setting no. 1 in RP III, setting no. 4 in RP II, and setting no. 2 in RP IV.

An analysis of the relations between the integrated energy consumption made it possible to
determine the yield ranges, power consumption, unit energy consumption, and fragmentation degree
for which the integrated efficiency is the highest (Figures 12 and 13, red color). The integrated energy
consumption for rice grinding on a five-disc grinder assumes values within the interval (928–1420)
when the grinding yield is included in the range (25.2–30.6) kg·h−1, unit energy consumption in the
range (0.027–0.049) kWh·kg−1, power consumption in the range (0.88–1.02) kW, and fragmentation
degree in the range (1.04–1.13) (Figure 12). The integrated energy consumption of corn grinding on a
five-disc grinder assumes values in the range (1592–2640) when the grinding yield is within (19.8–32.4)
kg·h−1, unit energy consumption within (0.037–0.061) kWh·kg−1, power consumption within (0.91–1.31)
kW, and fragmentation degree in the range (2.75–4.21) (Figure 13).
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Figure 11. Test results of the integrated energy consumption for rice and corn grinding.

The results of the integrated energy consumption tests are characterized by a higher value scatter
for corn grinding, and the scatter of results for power consumption, yield, fragmentation degree, and
unit energy consumption were also higher for corn grinding than for rice grinding (Figures 12 and 13).
Thus, by knowing the components of the integrated energy consumption, its values can be predicted
with a higher accuracy for rice grinding than for corn grinding.

Next, a basic statistical analysis of the variable was performed. On the basis of the Shapiro-Wilk test
(Appendix A, Tables A1 and A2) and the values of the skewness and kurtosis (Appendix A, Tables A3
and A4) of the distribution of the results, it was found that the distribution of the integrated energy
consumption deviated from normal; therefore, in the correlation analysis, the Spearman coefficient was
used to describe the monotonic relationships between the variables. Correlation analysis showed that
there is a very strong negative correlation between the integrated energy consumption of rice grinding
and total speed increase S∆ω (R = −0.95554, Appendix A, Table A7). In the case of corn grinding, the
negative correlation of these two variables was moderate (R = −0.51131, Appendix A, Table A8).
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Nonlinear regression analysis was used to determine the equations describing the dependence of
the rice and corn grinding’s integrated energy consumption as a function of the total speed increase. In
this case, the best-matched model was determined on the basis of the value of matching coefficient R2

and the error values of the standard coefficients of the determined dependencies. It was found that
the integrated energy consumption of rice grinding is best explained, nearly 77%, by an exponential
model (Figure 14a). As regards corn, the best match was an exponential model, though it accounted
for only 46% of the integrated energy consumption variability (Figure 14b). Both coefficients in the
equations and the regression models themselves were statistically significant (Tables 10 and 11). The
standard error of coefficients did not exceed 11% in the rice grinding’s integrated energy consumption
equations, and, in the case of corn, it did not exceed 26%.
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The results of the analyses indicate that the rice and corn grinding processes differ in terms of
yield, power consumption, fragmentation degree, unit energy consumption, and integrated energy
consumption. In the case of corn, the process of grinding has more of a random character, which is
mostly the result of the large differentiation of the grains of one species, which was also observed in
other tests [20,28,85]. Hence, the match of models of unit energy consumption, yield, and fragmentation
degree as a function of corn grinding speed increases, and subsequently, the models of the integrated
energy consumption, which include the above-listed components, is rather poor.



Energies 2020, 13, 1417 20 of 26

Table 10. Results of significance tests for the coefficients of the integrated energy consumption
regression model.

- - Value Standard Error t-Value Prob > |t|

Rice
a 1325.48108 155.50266 8.52385 9.81711 × 10−8

b 0.99266 0.00124 802.86997 0

Corn
a 2895.65796 776.51222 3.72906 0.00154

b 0.98979 0.00339 292.34877 0

a, b—coefficients of regression model (Figure 14a,b).

Table 11. Results of the significance tests for the equations of the integrated energy consumption regression.

Sum of Squares Mean Square F-Value Prob > F

Rice 6,691,362.97097 3,345,681.48549 125.99749 2.60167 × 10−11

Corn 2.09017 × 107 1.04509 × 107 28.02063 2.96612 × 10−6

Analyzing the values of the integrated energy consumption for the two grain species considered
herein, it can be said that, from the point of view of the accepted criterion, a smaller increase in the
angular speeds in relation to the reference speed on each disc (20 rad·s−1) provides higher values
of integrated energy consumption; e.g., the process of grinding is characterized by a low power
consumption while maintaining the remaining parameters of grinding at a satisfactory level.

Verification of the integrated energy consumption model was performed for granular materials. It
should be expected that, for a different type of biomass, e.g., wooden biomass, the value of the energy
consumption index and its relations with the grinder disc total angular speeds would be different from
the materials used in the study.

The proposed index of the integrated energy consumption can successfully be used to assess the
grinding process and to select the grinder angular speeds to provide a low energy consumption, high
yield, and a high fragmentation degree of the product. This index can find applications in automatic
and control systems for industrial lines grinding energy materials, e.g., biomass, coal, and post-use
polymer materials.

4. Summary and Conclusions

The aim of the study was achieved by developing and verifying the model of integrated energy
consumption for grinding a biomass, which takes into account the fundamental parameters of the
process: power consumption, unit energy consumption, yield, and the determination of the impact of
changes in the grinding unit motion parameters on the values of the index developed herein.

The analyses of this study have proven that the index developed herein can be used successfully
to assess a biomass grinding’s energy consumption in an integrated approach—that is, one which
includes not only energy consumption but also other parameters important from the point of view of
the grinding process (yield, fragmentation degree, power consumption, and unit energy consumption).
The verification of the model on a real object—a five-disc grinder—made it possible to determine
the dependencies of the integrated energy consumption index and the motion parameters of the
grinder discs for the total increase in disc annular speeds. Based on the analyses, it was found that the
total speed increased, and thus, the increase in the disc angular speeds causes an increase in power
consumption, in the fragmentation degree, and the unit energy consumption for both rice and corn
grinding. In the case of rice grinding, these dependencies can be described with a high match by means
of linear models. In the case of corn, a linear dependence was found only for power consumption.
Nonlinear models were used for the unit energy consumption and fragmentation degree, though they
accounted for only 60% of the studied parameter variability. The yield did not correlate with the total
increase in angular disc speeds for either rice or corn grinding. This results mainly from physical
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mechanical properties of the grains and grain-grinding unit relations and confirms the variety and
variability of grains observed so far within one type of grain and, in addition, confirms the randomness
of the grinding process.

The test results prove that integrated energy consumption is negatively correlated with a total
increase in the grinder angular speeds. The models which best represent the variability of the integrated
energy consumption were exponential models; though, in the case of corn, this model was characterized
by a lower matching coefficient (R2 = 0.45896) than the energy consumption model for rice grinding
(R2 = 0.76749). Upon analyzing the values of the integrated energy consumption for two grain species,
it can be observed that, in terms of the criterion accepted herein, a smaller angular speed increase in
relation to the reference speed on each disc of the grinder (20 rad·s−1) causes higher values of integrated
energy consumption; that is, the process of grinding is characterized by a low power consumption
while sustaining the remaining parameters of grinding at a satisfactory level.

The model of integrated energy consumption considered in this study can be a useful tool for
integrated design and to select structural and process grinding parameters in preimplementation tests
for grinders. Moreover, it can find an application in the automation and control systems of industrial
lines’ grinding energy materials, such as biomass, coal, and post-use polymers.

Further research on the structures and operations of biomass grinders in terms of their energy
consumptions should be focused on finding the relations between selected structural characteristics
of the grinding unit and negative environmental factors such as CO2 emissions and natural resource
depletion, as well as operation potentials.
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Appendix A

Table A1. Tests results of the normality of the Shapiro-Wilk distribution of variables for the process of
rice comminution.

- DF Statistic p-Value Decision at Level (5%)

PR 20 0.93151 0.1651 Cannot reject normality

Qr 20 0.93426 0.18646 Cannot reject normality

Ej 20 0.93621 0.20316 Cannot reject normality

i80 20 0.92006 0.09935 Cannot reject normality

Ezint 20 0.85728 0.00708 Reject normality

S∆ω 20 0.91736 0.08817 Cannot reject normality

Pr—grinding power consumption, kW; Qr—grinding yield, kg·h−1; Ej—unit energy consumption, kWh·h−1; i80—80%
fragmentation degree; Ezint —integrated energy consumption; and S∆ω—total increase in angular speeds, rad·s−1.

http://www.mdpi.com/1996-1073/13/6/1417/s1
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Table A2. Test results of the normality of the Shapiro-Wilk distribution of variables for the process of
corn grinding.

DF Statistic p-Value Decision at Level (5%)

PR 20 0.93699 0.21026 Cannot reject normality

Qr 20 0.91059 0.06541 Cannot reject normality

Ej 20 0.65731 1.22879 × 10−5 Reject normality

i80 20 0.95111 0.38428 Cannot reject normality

Ezint 20 0.83526 0.00305 Reject normality

S∆ω 20 0.91736 0.08817 Cannot reject normality

Pr—power consumption for grinding, kW; Qr—grinding yield, kg·h−1; Ej—unit energy consumption, kWh·h−1;
i80—80% fragmentation degree; Ezint—integrated energy consumption; and S∆ω—total angular speed
increase, rad·s−1.

Table A3. Results of the descriptive statistical analysis of variables for the process of rice grinding.

- Mean Standard
Deviation Sum Skewness Kurtosis Minimum Median Maximum Range

(Max.–Min.)

PR 1.5555 0.53786 31.11 0.31892 −1.15303 0.84 1.425 2.48 1.64

Qr 28.165 1.69528 563.3 −0.02646 −1.28024 25.2 28.3 30.6 5.4

Ej 0.05495 0.01778 1.099 0.2127 −1.26079 0.027 0.052 0.083 0.056

i80 1.149 0.08681 22.98 0.50272 −0.89842 1.04 1.14 1.31 0.27

Ezint 505.65 328.92877 10113 1.32281 1.62855 190 422 1417 1227

S∆ω 165.5 104.43961 3310 0.60399 −0.72265 40 150 360 320

Pr—power consumption for grinding, kW; Qr—yield of grinding, kg·h−1; Ej—unit energy consumption, kWh·h−1;
i80—80% fragmentation degree; Ezint—integrated energy consumption; and S∆ω – total increase in angular
speeds, rad·s−1.

Table A4. Results of the descriptive statistical analysis of variables for the process of corn grinding.

- Mean Standard
Deviation Sum Skewness Kurtosis Minimum Median Maximum Range

(Max.–Min.)

PR 1.8465 0.70585 36.93 0.41186 −0.92384 0.91 1.755 3.11 2.2

Qr 21.725 8.82627 434.5 −0.74904 −0.4979 4.3 24 32.4 28.1

Ej 0.118 0.11051 2.36 2.23553 4.35658 0.037 0.0905 0.422 0.385

i80 4.0685 0.65617 81.37 −0.77544 1.47486 2.29 4.125 5.11 2.82

Ezint 872.15 807.93116 17443 1.12497 0.13387 24 511.5 2639 2615

S∆ω 165.5 104.43961 3310 0.60399 −0.72265 40 150 360 320

Pr—power consumption for grinding, kW; Qr—yield of grinding, kg·h−1; Ej—unit energy consumption, kWh·h−1;
i80—80% fragmentation degree; Ezint—integrated energy consumption; and S∆ω—total increase in angular
speeds, rad·s−1.

Table A5. Results of the analysis of variable correlation using the Pearson method for the process of
rice grinding.

PR Qr Ej i80

S∆ω
r-Pearson 0.9658* 0.37153 0.95332* 0.93237*

p-value 5.36891 × 10−12 0.10676 8.44112 × 10−11 2.19489 × 10−9

Two-tailed test of significance is used and * correlation is significant at the 0.05 level. Pr—power consumption
for grinding, kW; Qr—yield of grinding, kg·h−1; Ej—unit energy consumption, kWh·h−1; i80—80% fragmentation
degree; and S∆ω—total angular speed increase, rad·s−1.
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Table A6. Results of the analysis of variable correlation using the Pearson method for the process of
corn grinding.

PR Qr i80

S∆ω
r-Pearson 0.98471* 0.25495 0.6893*

p-value 4.11081 × 10−15 0.27801 7.741 × 10−4

Two-tailed test of significance is used and * correlation is significant at the 0.05 level. Pr—power consumption
for grinding, kW; Qr—yield of grinding, kg·h−1; i80—80% fragmentation degree; and S∆ω—total angular speed
increase, rad·s−1.

Table A7. Results of the correlation analysis with the Spearman method for the process of rice grinding.

- - Ezint

S∆ω
Spearman Corr. −0.95554*

p-value 5.48274 × 10−11

Two-tailed test of significance is used and * correlation is significant at the 0.05 level. Ezint—integrated energy
consumption and S∆ω—total angular speed increase, rad·s−1.

Table A8. Results of the analysis of variable correlation with the Spearman method for corn grinding.

- - Ej Ezint

S∆ω
Spearman Corr. 0.5963* −0.51131*

p-value 0.00552 0.02121

Two-tailed test of significance is used and * correlation is significant at the 0.05 level. Ej—unit energy consumption,
kWh·h−1; Ezint—integrated energy consumption; and S∆ω—total angular speed increase, rad·s−1.
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biomass for pelletisation [Nakłady energetyczne podczas mielenia biomasy przygotowywanej do procesu
peletowania]. Prz. Elektrotech. 2017, 93, 229–232.

7. Eisenlauer, M.; Teipel, U. Comminution of biogenic materials. Can. J. Chem. Eng. 2017, 95, 1236–1244.
[CrossRef]

8. Yılmaz, S.; Selim, H. A review on the methods for biomass to energy conversion systems design. Renew.
Sustain. Energy Rev. 2013, 25, 420–430. [CrossRef]

9. Nnaemeka, N.; MacManus, N. Measurement of energy requirements for size reduction of palm kernel and
groundnut shells for downstream bioenergy generation. J. Eng. Technol. Res. 2016, 8, 47–57. [CrossRef]

10. Hess, J.R.; Wright, C.T.; Kenney, K.L.; Searcy, E.M. Uniform-Format Solid Feedstock Supply System: A
Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass–Executive
Summary; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2009.

11. Cundiff, J.S.; Grisso, R.D. Containerized handling to minimize hauling cost of herbaceous biomass. Biomass
Bioenergy 2008, 32, 308–313. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2015.11.027
http://dx.doi.org/10.1016/j.indcrop.2010.12.016
http://dx.doi.org/10.3390/bioengineering5020041
http://www.ncbi.nlm.nih.gov/pubmed/29865229
http://dx.doi.org/10.3390/bioengineering6010012
http://dx.doi.org/10.1002/cjce.22792
http://dx.doi.org/10.1016/j.rser.2013.05.015
http://dx.doi.org/10.5897/JETR2016.0593
http://dx.doi.org/10.1016/j.biombioe.2007.10.009


Energies 2020, 13, 1417 24 of 26

12. Kruszelnicka, W.; Bałdowska, P.; Tomporowski, A.; Piasecka, I.; Mroziński, A. Analiza korzyści
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