Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review
Abstract
:1. Introduction
2. Biodiesel and Renewable Diesel
- The hydrogenation process makes the renewable diesel devoid of oxygen. Hence, the problem related to freezing temperature and storage, which are faced by biodiesel, will be avoided.
- Due to hydrogenation, the combustion of renewable diesel is cleaner than biodiesel.
- The engines that are designed for conventional diesel fuel are also compatible with renewable diesel, with no blending necessary since they are chemically the same.
- Along with the above, since the process is not a transesterification reaction, there will be no production of waste glycerol. Hence, the crude glycerol issue, which is the major concern of biodiesel production, will be eliminated.
3. Crude Glycerol – By-product of Biodiesel Production
4. Glycerol Carbonate
5. Existing Production Routes for Synthesis of Glycerol Carbonate
6. Microwave Assisted Conversion of Glycerol/Glycerol Derivatives to Organic Carbonates
7. Dimethyl Carbonate
8. Kinetic Model of Transesterification of Glycerol with Dimethyl Carbonate
9. Summary and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- US Department of Commerce, N.E.S.R.L. Recent Global CO2 Trend; US Department of Commerce: Washington, DC, USA, 2020.
- Office of YB Wong Chen. Oil and Gas and Then? Pusat Khidmat P104 Kelana Jaya: Subang Jaya, Malaysia, 2017. [Google Scholar]
- Perea-Moreno, M.A.; Samerón-Manzano, E.; Perea-Moreno, A.J. Biomass as renewable energy: Worldwide research trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef] [Green Version]
- Federation of Malaysian Manufacturers. Implementation of Biodiesel B10 & B7 and Procedure for Exemption; Federation of Malaysian Manufacturers: Kuala Lumpur, Malaysia, 2019. [Google Scholar]
- Heo, S.; Choi, J. Potential and environmental impacts of liquid biofuel from agricultural residues in Thailand. Sustainability 2019, 11, 1502. [Google Scholar] [CrossRef] [Green Version]
- Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Dharma, S.; Kusumo, F.; Siswantoro, J.; Milano, J.; Daud, K.; Mahlia, T.M.I.; et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 2018, 159, 1075–1087. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Natsios, I.; Dimaratos, A.; Katsaounis, D.; Samaras, Z.; Bezergianni, S.; Lehto, K. Evaluation of a Hydrotreated Vegetable Oil (HVO) and effects on emissions of a passenger car diesel engine. Front. Mech. Eng. 2018, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Heikkilä, J.; Happonen, M.; Murtonen, T.; Lehto, K.; Sarjovaara, T.; Larmi, M.; Keskinen, J.; Virtanen, A. Study of miller timing on exhaust emissions of a Hydrotreated Vegetable Oil (HVO)-fueled diesel engine. J. Air Waste Manag. Assoc. 2012, 62, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD/FAO. OECD-FAO Agricultural Outlook, Edition 2019; OECD: Paris, France, 2020. [Google Scholar]
- Demirbas, A.; Karslioglu, S. Biodiesel production facilities from vegetable oils and animal fats. Energy Sources, Part A Recover. Util. Environ. Eff. 2007, 29, 133–141. [Google Scholar] [CrossRef]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaheri, H.; Chen, W.H. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Ong, H.C.; Cheah, M.Y.; Chen, W.H.; Yu, K.L.; Mahlia, T.M.I. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renew. Sustain. Energy Rev. 2019, 107, 59–74. [Google Scholar] [CrossRef]
- Douvartzides, S.L.; Charisiou, N.D.; Papageridis, K.N.; Goula, M.A. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies 2019, 12, 809. [Google Scholar] [CrossRef] [Green Version]
- Ilham, Z.; Saka, S. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. Springerplus 2016, 5, 923. [Google Scholar] [CrossRef] [Green Version]
- Garlapati, V.K.; Shankar, U.; Budhiraja, A. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol. Rep. 2016, 9, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, P.; Saxena, R.K. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. N. Biotechnol. 2012, 29, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Sorda, G.; Banse, M.; Kemfert, C. An overview of biofuel policies across the world. Energy Policy 2010, 38, 6977–6988. [Google Scholar] [CrossRef]
- Roschat, W.; Kacha, M.; Yoosuk, B.; Sudyoadsuk, T.; Promarak, V. Biodiesel production based on heterogeneous process catalyzed by solid waste coral fragment. Fuel 2012, 98, 194–202. [Google Scholar] [CrossRef]
- Rastegari, H.; Ghaziaskar, H.S. From glycerol as the by-product of biodiesel production to value-added monoacetin by continuous and selective esterification in acetic acid. J. Ind. Eng. Chem. 2015, 21, 856–861. [Google Scholar] [CrossRef]
- Abdul Raman, A.A.; Tan, H.W.; Buthiyappan, A. Two-step purification of glycerol as a value added by product from the biodiesel production process. Front. Chem. 2019, 7, 774. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.W.; Abdul Aziz, A.R.; Aroua, M.K. Glycerol production and its applications as a raw material: A review. Renew. Sustain. Energy Rev. 2013, 27, 118–127. [Google Scholar] [CrossRef]
- Rodrigues, A.; Bordado, J.C.; Dos Santos, R.G. Upgrading the glycerol from biodiesel production as a source of energy carriers and chemicals-A technological review for three chemical pathways. Energies 2017, 10, 1817. [Google Scholar] [CrossRef] [Green Version]
- Pal, P.; Chaurasia, S.P.; Upadhyaya, S.; Agarwal, M.; Sridhar, S. Glycerol purification using membrane technology. In Membrane Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 431–463. [Google Scholar]
- Gomes, M.C.S.; Pereira, N.C.; de Barros, S.T.D. Separation of biodiesel and glycerol using ceramic membranes. J. Memb. Sci. 2010, 352, 271–276. [Google Scholar] [CrossRef]
- Saifuddin, N.; Refal, H.; Kumaran, P. Rapid purification of glycerol by-product from biodiesel production through combined process of microwave assisted acidification and adsorption via Chitosan immobilized with yeast. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 593–602. [Google Scholar] [CrossRef]
- Shen, Z.; Jin, F.; Zhang, Y.; Wu, B.; Kishita, A.; Tohji, K.; Kishida, H. Effect of alkaline catalysts on hydrothermal conversion of glycerin into lactic acid. Ind. Eng. Chem. Res. 2009, 48, 8920–8925. [Google Scholar] [CrossRef]
- Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem. 2008, 10, 13–30. [Google Scholar] [CrossRef]
- Malyaadri, M.; Jagadeeswaraiah, K.; Sai Prasad, P.S.; Lingaiah, N. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Appl. Catal. A Gen. 2011, 401, 153–157. [Google Scholar] [CrossRef]
- Zhou, C.H.; Zhao, H.; Tong, D.S.; Wu, L.M.; Yu, W.H. Recent advances in catalytic conversion of glycerol. Catal. Rev. 2013, 55, 369–453. [Google Scholar] [CrossRef]
- Bagheri, S.; Julkapli, N.M.; Yehye, W.A. Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sustain. Energy Rev. 2015, 41, 113–127. [Google Scholar] [CrossRef]
- Nguyen, N.; Demirel, Y. Economic analysis of biodiesel and glycerol carbonate production plant by glycerolysis. J. Sustain. Bioenergy Syst. 2013, 3, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. From glycerol to value-added products. Angew. Chemie Int. Ed. 2007, 46, 4434–4440. [Google Scholar] [CrossRef]
- Sonnati, M.O.; Amigoni, S.; Taffin de Givenchy, E.P.; Darmanin, T.; Choulet, O.; Guittard, F. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications. Green Chem. 2013, 15, 283–306. [Google Scholar] [CrossRef]
- Tudorache, M.; Protesescu, L.; Coman, S.; Parvulescu, V.I. Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger. Green Chem. 2012, 14, 478. [Google Scholar] [CrossRef]
- Jagadeeswaraiah, K.; Kumar, C.R.; Prasad, P.S.S.; Loridant, S.; Lingaiah, N. Synthesis of glycerol carbonate from glycerol and urea over tin-tungsten mixed oxide catalysts. Appl. Catal. A Gen. 2014, 469, 165–172. [Google Scholar] [CrossRef]
- Teng, W.K.; Ngoh, G.C.; Yusoff, R.; Aroua, M.K. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Convers. Manag. 2014, 88, 484–497. [Google Scholar] [CrossRef]
- Gade, S.M.; Munshi, M.K.; Chherawalla, B.M.; Rane, V.H.; Kelkar, A.A. Synthesis of glycidol from glycerol and dimethyl carbonate using ionic liquid as a catalyst. Catal. Commun. 2012, 27, 184–188. [Google Scholar] [CrossRef]
- Ang, G.T.; Tan, K.T.; Lee, K.T. Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production. Renew. Sustain. Energy Rev. 2014, 31, 61–70. [Google Scholar] [CrossRef]
- Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Maestro-Madurga, B.; Pesquera-Rodríguez, A.; Ramírez-López, C.; Lorenzo-Ibarreta, L.; Torrecilla-Soria, J.; Villarán-Velasco, M.C. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Appl. Catal. A Gen. 2009, 366, 315–324. [Google Scholar] [CrossRef]
- Wang, J.; Yong, T.; Yang, J.; Ouyang, C.; Zhang, L. Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries. RSC Adv. 2015, 5, 17660–17666. [Google Scholar] [CrossRef]
- Hu, J.; Li, J.; Gu, Y.; Guan, Z.; Mo, W.; Ni, Y.; Li, T.; Li, G. Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI. Appl. Catal. A Gen. 2010, 386, 188–193. [Google Scholar] [CrossRef]
- Stark, J. Recent advances in the field of cement hydration and microstructure analysis. Cem. Concr. Res. 2011, 41, 666–678. [Google Scholar] [CrossRef]
- Pan, S.; Zheng, L.; Nie, R.; Xia, S.; Chen, P.; Hou, Z. Transesterification of glycerol with dimethyl carbonate to glycerol carbonate over Na–based Zeolites. Chinese J. Catal. 2012, 33, 1772–1777. [Google Scholar] [CrossRef]
- Bai, R.; Wang, Y.; Wang, S.; Mei, F.; Li, T.; Li, G. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by NaOH/γ-Al2O3. Fuel Process. Technol. 2013, 106, 209–214. [Google Scholar] [CrossRef]
- Arzamendi, G.; Campo, I.; Arguiñarena, E.; Sánchez, M.; Montes, M.; Gandía, L.M. Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chem. Eng. J. 2007, 134, 123–130. [Google Scholar] [CrossRef]
- Mizuno, T.; Nakai, T.; Mihara, M. New synthesis of glycerol carbonate from glycerol using sulfur-assisted carbonylation with carbon monoxide. Heteroat. Chem. 2010, 21, 99–102. [Google Scholar] [CrossRef]
- Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Ramírez-López, C.A.; Nieto-Mestre, J.; Maestro-Madurga, B.; Belsué, M. Synthesis of glycerol carbonate from 3-chloro-1,2-propanediol and carbon dioxide using triethylamine as both solvent and CO2 fixation–activation agent. Chem. Eng. J. 2011, 175, 505–511. [Google Scholar] [CrossRef]
- Gómez-Jiménez-Aberasturi, O.; Ochoa-Gómez, J.R.; Pesquera-Rodríguez, A.; Ramírez-López, C.; Alonso-Vicario, A.; Torrecilla-Soria, J. Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonate. J. Chem. Technol. Biotechnol. 2010, 85, 1663–1670. [Google Scholar] [CrossRef]
- Ezhova, N.N.; Korosteleva, I.G.; Kolesnichenko, N.V.; Kuz’min, A.E.; Khadzhiev, S.N.; Vasil’eva, M.A.; Voronina, Z.D. Glycerol carboxylation to glycerol carbonate in the presence of rhodium complexes with phosphine ligands. Pet. Chem. 2012, 52, 91–96. [Google Scholar] [CrossRef]
- Cho, H.-J.; Kwon, H.-M.; Tharun, J.; Park, D.-W. Synthesis of glycerol carbonate from ethylene carbonate and glycerol using immobilized ionic liquid catalysts. J. Ind. Eng. Chem. 2010, 16, 679–683. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; De Frutos, P.; Iborra, S.; Noy, M.; Velty, A.; Concepción, P. Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. J. Catal. 2010, 269, 140–149. [Google Scholar] [CrossRef]
- Tan, K.T.; Lee, K.T.; Mohamed, A.R. Optimization of supercritical dimethyl carbonate (SCDMC) technology for the production of biodiesel and value-added glycerol carbonate. Fuel 2010, 89, 3833–3839. [Google Scholar] [CrossRef]
- Ilham, Z.; Saka, S. Production of biodiesel with glycerol carbonate by non-catalytic supercritical dimethyl carbonate. Lipid Technol. 2011, 23, 10–13. [Google Scholar] [CrossRef]
- Ilham, Z.; Saka, S. Optimization of supercritical dimethyl carbonate method for biodiesel production. Fuel 2012, 97, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Seong, P.-J.; Jeon, B.W.; Lee, M.; Cho, D.H.; Kim, D.-K.; Jung, K.S.; Kim, S.W.; Han, S.O.; Kim, Y.H.; Park, C. Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil and dimethyl carbonate. Enzyme Microb. Technol. 2011, 48, 505–509. [Google Scholar] [CrossRef]
- Min, J.Y.; Lee, E.Y. Lipase-catalyzed simultaneous biosynthesis of biodiesel and glycerol carbonate from corn oil in dimethyl carbonate. Biotechnol. Lett. 2011, 33, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Park, C.-H.; Lee, E.Y. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent. Bioprocess Biosyst. Eng. 2010, 33, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Iwatani, K.; Nishimura, S.; Takagaki, A.; Ebitani, K. Promotion effect of coexistent hydromagnesite in a highly active solid base hydrotalcite catalyst for transesterifications of glycols into cyclic carbonates. Catal. Today 2012, 185, 241–246. [Google Scholar] [CrossRef]
- Bai, R.; Wang, S.; Mei, F.; Li, T.; Li, G. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by KF modified hydroxyapatite. J. Ind. Eng. Chem. 2011, 17, 777–781. [Google Scholar] [CrossRef]
- Takagaki, A.; Iwatani, K.; Nishimura, S.; Ebitani, K. Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chem. 2010, 12, 578. [Google Scholar] [CrossRef]
- Li, J.; Wang, T. Chemical equilibrium of glycerol carbonate synthesis from glycerol. J. Chem. Thermodyn. 2011, 43, 731–736. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X. Enzymatic synthesis of fatty acid ethyl esters by utilizing camellia oil soapstocks and diethyl carbonate. Bioresour. Technol. 2011, 102, 10173–10179. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Plíšková, M.; Segarra, A.M.; Medina, F.; Figueras, F. Synthesis of glycerol carbonates by transesterification of glycerol in a continuous system using supported hydrotalcites as catalysts. Appl. Catal. B Environ. 2012, 113–114, 212–220. [Google Scholar] [CrossRef]
- Alvarez, M.G.; Segarra, A.M.; Contreras, S.; Sueiras, J.E.; Medina, F.; Figueras, F. Enhanced use of renewable resources: Transesterification of glycerol catalyzed by hydrotalcite-like compounds. Chem. Eng. J. 2010, 161, 340–345. [Google Scholar] [CrossRef]
- Kim, D.-W.; Park, M.-S.; Selvaraj, M.; Park, G.-A.; Lee, S.-D.; Park, D.-W. Catalytic performance of polymer-supported ionic liquids in the synthesis of glycerol carbonate from glycerol and urea. Res. Chem. Intermed. 2011, 37, 1305–1312. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Wang, Y.; Liu, S.; Deng, Y. Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. Catal. Commun. 2011, 12, 1458–1462. [Google Scholar] [CrossRef]
- Hammond, C.; Lopez-Sanchez, J.A.; Hasbi Ab Rahim, M.; Dimitratos, N.; Jenkins, R.L.; Carley, A.F.; He, Q.; Kiely, C.J.; Knight, D.W.; Hutchings, G.J. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalt. Trans. 2011, 40, 3927. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Marcos, F.; Calvino-Casilda, V.; Bañares, M.A.; Fernandez, J.F. Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. J. Catal. 2010, 275, 288–293. [Google Scholar] [CrossRef]
- Shukla, K.; Srivastava, V.C. Synthesis of organic carbonates from alcoholysis of urea: A review. Catal. Rev. 2017, 59, 1–43. [Google Scholar] [CrossRef]
- Li, J.; Wang, T. Coupling reaction and azeotropic distillation for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Chem. Eng. Process. Process Intensif. 2010, 49, 530–535. [Google Scholar] [CrossRef]
- Su, X.; Lin, W.; Cheng, H.; Zhang, C.; Wang, Y.; Yu, X.; Wu, Z.; Zhao, F. Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate. Green Chem. 2017, 19, 1775–1781. [Google Scholar] [CrossRef]
- Ozorio, L.P.; Mota, C.J.A. Direct carbonation of glycerol with CO2 catalyzed by metal oxides. ChemPhysChem 2017, 18, 3260–3265. [Google Scholar] [CrossRef] [Green Version]
- Lertlukkanasuk, N.; Phiyanalinmat, S.; Kiatkittipong, W.; Arpornwichanop, A.; Aiouache, F.; Assabumrungrat, S. Reactive distillation for synthesis of glycerol carbonate via glycerolysis of urea. Chem. Eng. Process. Process Intensif. 2013, 70, 103–109. [Google Scholar] [CrossRef]
- Kondawar, S.E.; Mane, R.B.; Vasishta, A.; More, S.B.; Dhengale, S.D.; Rode, C.V. Carbonylation of glycerol with urea to glycerol carbonate over supported Zn catalysts. Appl. Petrochemical Res. 2017, 7, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Lanjekar, K.; Rathod, V.K. Utilization of glycerol for the production of glycerol carbonate through greener route. J. Environ. Chem. Eng. 2013, 1, 1231–1236. [Google Scholar] [CrossRef]
- Kwon, E.E.; Yi, H.; Jeon, Y.J. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure. Chemosphere 2014, 113, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Syamsuddin, Y.; Hameed, B.H. Synthesis of glycerol free-fatty acid methyl esters from Jatropha oil over Ca–La mixed-oxide catalyst. J. Taiwan Inst. Chem. Eng. 2016, 58, 181–188. [Google Scholar] [CrossRef]
- Okoye, P.U.; Abdullah, A.Z.; Hameed, B.H. Glycerol carbonate synthesis from glycerol and dimethyl carbonate using trisodium phosphate. J. Taiwan Inst. Chem. Eng. 2016, 68, 51–58. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A. Carbon dioxide as building block for the synthesis of organic carbonates: Behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins. J. Mol. Catal. A Chem. 2002, 182–183, 399–409. [Google Scholar] [CrossRef]
- Tamboli, A.H.; Chaugule, A.A.; Kim, H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem. Eng. J. 2017, 323, 530–544. [Google Scholar] [CrossRef]
- George, J.; Patel, Y.; Pillai, S.M.; Munshi, P. Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. J. Mol. Catal. A Chem. 2009, 304, 1–7. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Nocito, F.; Pastore, C. A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions. J. Mol. Catal. A Chem. 2006, 257, 149–153. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Nocito, F.; Ferragina, C. Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. J. Catal. 2009, 268, 106–114. [Google Scholar] [CrossRef]
- De La Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Review on non-thermal effects of microwave irradiation in organic synthesis. J. Microw. Power Electromagn. Energy 2006, 41, 45–66. [Google Scholar] [CrossRef]
- de la Hoz, A.; Loupy, A. Microwaves in Organic Synthesis; Wiley-VCH: Hoboken, NJ, USA, 2012; ISBN 3527331166. [Google Scholar]
- Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Nomanbhay, S.; Ong, M.Y. A Review of microwave-assisted reactions for biodiesel production. Bioengineering 2017, 4, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bookong, P.; Ruchirawat, S.; Boonyarattanakalin, S. Optimization of microwave-assisted etherification of glycerol to polyglycerols by sodium carbonate as catalyst. Chem. Eng. J. 2015, 275, 253–261. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Meeldijk, J.D.; Kuipers, B.W.M.; Ernø, B.H.; Weckhuysen, B.M. Glycerol etherification over highly active CaO-based materials: New mechanistic aspects and related colloidal particle formation. Chem. Eur. J 2008, 14, 2016–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaych, K.; Dumarçay, S.; Fredon, E.; Gérardin, C.; Lemor, A.; Gérardin, P. Microwave-assisted synthesis of polyglycerol from glycerol carbonate. J. Appl. Polym. Sci. 2011, 120, 2354–2360. [Google Scholar] [CrossRef]
- Teng, W.K.; Ngoh, G.C.; Yusoff, R.; Aroua, M.K. Microwave-assisted transesterification of industrial grade crude glycerol for the production of glycerol carbonate. Chem. Eng. J. 2016, 284, 469–477. [Google Scholar] [CrossRef]
- Hu, S.; Li, Y. Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: Effects of crude glycerol impurities. Ind. Crops Prod. 2014, 57, 188–194. [Google Scholar] [CrossRef]
- Mhanna, A.; Chupin, L.; Brachais, C.-H.; Chaumont, D.; Boni, G.; Brachais, L.; Couvercelle, J.-P.; Lecamp, L.; Plasseraud, L. Efficient microwave-assisted synthesis of glycerol monodecanoate. Eur. J. Lipid Sci. Technol. 2018, 120, 1700133. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Jessop, P.G. Searching for green solvents. Green Chem. 2011, 13, 1391. [Google Scholar] [CrossRef]
- Jin, S.; Hunt, A.J.; Clark, J.H.; McElroy, C.R. Acid-catalysed carboxymethylation, methylation and dehydration of alcohols and phenols with dimethyl carbonate under mild conditions. Green Chem. 2016, 18, 5839–5844. [Google Scholar] [CrossRef] [Green Version]
- Bian, J.; Xiao, M.; Wang, S.; Lu, Y.; Meng, Y. Direct synthesis of DMC from CH3OH and CO2 over V-doped Cu–Ni/AC catalysts. Catal. Commun. 2009, 10, 1142–1145. [Google Scholar] [CrossRef]
- Bruno, T.J.; Wolk, A.; Naydich, A. Composition-explicit distillation curves for mixtures of gasoline and diesel fuel with γ-Valerolactone. Energy Fuels 2010, 24, 2758–2767. [Google Scholar] [CrossRef]
- Zhu, R.; Cheung, C.S.; Huang, Z. Particulate emission characteristics of a compression ignition engine fueled with diesel–DMC blends. Aerosol Sci. Technol. 2011, 45, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.S.; Cho, B.K.; Nam, I.-S.; Choung, J.W. Bifunctional Ag-based catalyst for NOx reduction with E-diesel fuel. ChemCatChem 2014, 6, 1570–1574. [Google Scholar] [CrossRef]
- Kiadó, A.; Vol, B. Microwave-Assisted Synthesis of Dimethyl Carbonate; Kluwer Academic Publishers: London, UK, 2001; Volume 74. [Google Scholar]
- Wada, S.; Oka, K.; Watanabe, K.; Izumi, Y. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism. Front. Chem. 2013, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Ilham, Z.; Saka, S. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method. Bioresour. Technol. 2009, 100, 1793–1796. [Google Scholar] [CrossRef] [Green Version]
- Esteban, J.; Domínguez, E.; Ladero, M.; Garcia-Ochoa, F. Kinetics of the production of glycerol carbonate by transesterification of glycerol with dimethyl and ethylene carbonate using potassium methoxide, a highly active catalyst. Fuel Process. Technol. 2015, 138, 243–251. [Google Scholar] [CrossRef]
- Zheng, L.; Xia, S.; Hou, Z.; Zhang, M.; Hou, Z. Transesterification of glycerol with dimethyl carbonate over Mg-Al hydrotalcites. Chinese J. Catal. 2014, 35, 310–318. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Cui, P.; Cheng, W.; Zhang, S. Glycerol carbonate synthesis from glycerol and dimethyl carbonate using guanidine ionic liquids. Chin. J. Chem. Eng. 2017, 25, 1182–1186. [Google Scholar] [CrossRef]
- Waghmare, G.V.; Vetal, M.D.; Rathod, V.K. Rathod Ultrasound assisted enzyme catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Ultrason. Sonochem. 2015, 22, 311–316. [Google Scholar] [CrossRef]
- Algoufi, Y.T.; Hameeda, B.H. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash. Fuel Process. Technol. 2014, 126, 5–11. [Google Scholar] [CrossRef]
- Esteban, J.; Fuente, E.; Blanco, A.; Ladero, M.; Garcia-Ochoa, F. Phenomenological kinetic model of the synthesis of glycerol carbonate assisted by focused beam reflectance measurements. Chem. Eng. J. 2015, 260, 434–443. [Google Scholar] [CrossRef]
- Herseczki, Z.; Marton, G.; Varga, T. Enhanced use of renewable resources: Transesterification of glycerol, the byproduct of biodiesel production. Hungarian J. Ind. Chem. 2011, 39, 183–187. [Google Scholar]
- Almquist, J.; Cvijovic, M.; Hatzimanikatis, V.; Nielsen, J.; Jirstrand, M. Kinetic models in industrial biotechnology–Improving cell factory performance. Metab. Eng. 2014, 24, 38–60. [Google Scholar] [CrossRef] [PubMed]
- Sabbe, M.K.; Reyniers, M.-F.; Reuter, K. First-principles kinetic modeling in heterogeneous catalysis: An industrial perspective on best-practice, gaps and needs. Catal. Sci. Technol. 2012, 2, 2010. [Google Scholar] [CrossRef] [Green Version]
- Smadbeck, P.; Kaznessis, Y. Stochastic model reduction using a modified Hill-type kinetic rate law. J. Chem. Phys. 2012, 137, 234109. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, T. On the deactivation of alkali solid catalysts for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. React. Kinet. Mech. Catal. 2011, 102, 113–126. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Kang, M.; Yin, N.; Wang, X.; Tan, Y.; Zhu, Y. Synthesis of glycerol carbonate by transesterification of glycerol and dimethyl carbonate over KF/γ-Al2O3 catalyst. J. Braz. Chem. Soc. 2014, 25, 152–160. [Google Scholar]
- Argyle, M.D.; Bartholomew, C.H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef] [Green Version]
- Boga, D.A.; Liu, F.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Aqueous-phase reforming of crude glycerol: Effect of impurities on hydrogen production. Catal. Sci. Technol. 2016, 6, 134–143. [Google Scholar] [CrossRef] [Green Version]
Steps | Methods | Description |
---|---|---|
1 | Neutralization |
|
2 | Methanol removal |
|
3 | Vacuum distillation |
|
Ion exchange resins |
|
Properties | Unit | Glycerol Carbonate | Pure Glycerol |
---|---|---|---|
Molecular weight | g/mol | 118.09 | 92.094 |
Density at 25 °C | g/ml | 1.4 | 1.261 |
Boiling point | °C | 354 | 290 |
Melting point | °C | −69 | 17.8 |
Vapour pressure at 177 °C | bar | 0.008 | 0.003 |
Flash point | °C | 190 | 177 |
Dielectric constant at 20 °C | ESU | 111.5 | 42.5 |
Hansen solubility parameter delta D at 25 °C | MPa1/2 | 17.9 | 17.4 |
Hansen solubility parameter delta P at 25 °C | MPa1/2 | 25.5 | 12.1 |
Hansen solubility parameter delta H at 25 °C | MPa1/2 | 17.4 | 29.3 |
Hildebrand solubility parameter at 25 °C | MPa1/2 | 34.1 | 36.1 |
Viscosity at 25 °C | cP | 85.4 | 1500 |
Chemical | Industry Application | References |
---|---|---|
Glycerol Carbonate |
| [38] |
| [33] | |
| [39] | |
| [36] | |
| [40] | |
| [41] | |
| [42] |
Reference | Reactants Mole Ratio | Solvent | Temperature (°C) | Pressure (MPa) | Reaction Time (h) | GC Yield (%) | Catalyst |
---|---|---|---|---|---|---|---|
Glycerol + CO | |||||||
[46] | 5 : 1 : 5 (K2CO3 toSe to glycerol) | Dimethylformamide | 20 | 0.1 | 6 | 83 | None |
[46] | 5 : 1.5 : 3 : 1 (Et3N to CuBr to S to glycerol) | Dimethylformamide or Dimethyl sulfoxide | 80 | 1 | 21 | 92 | None |
[41] | Excess CO and O2 | Dimethylformamide | 140 | 3 | 2 | 85 | 0.25 mol% PdCl2(phen) + 2.5 mol% KI |
Glycerol + CO2 | |||||||
[47] | 1.5 : 1 : 1 (N(CH2CH3)3 to HCl to glycerol) | Free | 100 | 2.5 | 1 | 90 | - |
[48] | 1 : 3 : 3 (K2CO3 to HCl to glycerol) | Free | 80 | 0.1 | 30 | 80 | KOH then HCl |
[49] | Excess CO2 | Methanol | 140 | 5.0 | 59 | 0.24 | RhCl3 + PPh3 + KI |
Glycerol + EC | |||||||
[50] | 2 : 1 (EC to glycerol) | Free | 80 | 0.1 | 1.5 | 92 | RNX-MCM41 |
[51] | 2 : 1 (EC to glycerol) | Free | 50 | 0.1 | 5 | 82 | 7 wt% Al/MgO hydrotalcite |
[51] | 2 : 1 (EC to glycerol) | Free | 50 | 0.1 | 5 | 78 | 7 wt% MgO |
[51] | 2 : 1 (EC to glycerol) | Free | 50 | 0.1 | 5 | 68 | 7 wt% Al/Mg hydrotalcite |
Glycerol + DMC | |||||||
[52] | 39 : 1 (DMC to corn oil) | Supercritical DMC | 380 | 15-25 | 0.5 | By-product | None |
[53,54] | 42 : 1 (DMC to rapeseed Oil) | Supercritical DMC | 350 | 20 | 0.2 | By-product | None |
[55] | 6 : 1 (DMC to soybean oil) | tert-Butanol | 60 | 0.1 | 48 | 92 | 10 wt% lipase (Novozyme 435) |
[56] | 10 : 1 (DMC to corn oil) | Free | 60 | 0.1 | 15 | 62 | 10 wt% lipase (Novozyme 435) |
[34] | 10 :1 (DMC to glycerol) | Free | 60 | 0.1 | 4 | 59 | 12 wt% lipase (Aspergillus niger) |
[57] | 10 : 1 (DMC to glycerol) | Free | 70 | 0.1 | 48 | 90 | Lipase (Novozyme 435) |
[58] | 5 : 1 (DMC to glycerol) | Dimethylformamide | 100 | 0.1 | 0.5 | 79 | Calcined hydrotalcite-hydromagnesite |
[28] | 5 : 1 (DMC to glycerol) | Free | 75 | 0.1 | 1.5 | 95 | Mg/Al/Zr |
[59] | 2 : 1 (DMC to glycerol) | Free | 78 | 0.1 | 1 | 99 | 3 wt% KF/hydroxyapatite |
[60] | 5 : 1 (DMC to glycerol) | Dimethylformamide | 100 | 0.1 | 1 | 75 | Uncalcined Mg–Al hydrotalcite |
[61] | 2.5 : 1 (DMC to glycerol) | Benzene | 60 | 0.1 | 2 | 95 | 4 mol% CaO |
Glycerol + DEC | |||||||
[62] | 3 : 1 (DEC to camellia oil) | Free | 50 | 0.1 | 24 | 95 | Lipases (Lipozyme TL IM and Novozym 435) |
[63] | 21 : 1 (DEC to glycerol) | Dimethyl sulfoxide | - | 0.1 | 8 | 84 | Hydrotalcites supported on Al2O3 |
[64] | 17 : 1 (DEC to glycerol) | Free | 130 | 0.1 | 60 | 97 | Mg/Al hydrotalcite-like |
Glycerol + Urea | |||||||
[65] | 1 : 1 (urea to glycerol) | Free | 140 | 1.4 × 10−2 | 6 | 46 | Ionic liquids immobilized onto a structurally modified Merrifield peptide resin |
[66] | 1 : 3 (urea to glycerol) | Free | 140 | 3.0 × 10−3 | 1 | 91 | 0.5 wt% calcined La2O3 |
[67] | 1.5 : 1 (urea to glycerol) | Free | 150 | 0.1 | 4 | 55 | Gold, gallium, and zinc supported on oxides and zeolite ZSM-5 |
[68] | 1 : 1 (urea to glycerol) | Free | 145 | 0.1 | 4 | 69 | Co3O4/ZnO nanodispersion |
[51] | 1 : 1 (urea to glycerol) | Free | 145 | 3.9 × 10−3 | 5 | 72 | Calcined Zn hydrotalcite |
Synthesis Methods | Merit | Demerit | References |
---|---|---|---|
Direct Carbonation
|
|
| [46,69,70] |
|
|
| [69,71,72] |
Transcarbonation
|
|
| [33,51] |
|
|
| [29,67,73,74] |
|
|
| [33,75] |
|
|
| [76,77,78] |
Model Number | Reaction Type | Potential Catalyst Deactivation | ||
---|---|---|---|---|
1 | Irreversible | Excluded | ||
2 | Reversible | |||
3 | Irreversible | Included | ||
4 | Reversible |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomanbhay, S.; Ong, M.Y.; Chew, K.W.; Show, P.-L.; Lam, M.K.; Chen, W.-H. Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review. Energies 2020, 13, 1483. https://doi.org/10.3390/en13061483
Nomanbhay S, Ong MY, Chew KW, Show P-L, Lam MK, Chen W-H. Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review. Energies. 2020; 13(6):1483. https://doi.org/10.3390/en13061483
Chicago/Turabian StyleNomanbhay, Saifuddin, Mei Yin Ong, Kit Wayne Chew, Pau-Loke Show, Man Kee Lam, and Wei-Hsin Chen. 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review" Energies 13, no. 6: 1483. https://doi.org/10.3390/en13061483
APA StyleNomanbhay, S., Ong, M. Y., Chew, K. W., Show, P. -L., Lam, M. K., & Chen, W. -H. (2020). Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review. Energies, 13(6), 1483. https://doi.org/10.3390/en13061483