Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Slurry Preparation
2.3. Experimental Procedures
- PN–EN ISO 10426-2. Petroleum and natural gas industries. Cements and materials for well cementing. Part 2: Testing of well cements. The tests include the following measurements: slurry density, filtration, and thickening time.
- PN–EN 196-1: 2006 Methods of testing cement. Determination of Strength. Compressive strength was tested according to this standard.
2.3.1. Slurry Density
2.3.2. Slurry Filtration
2.3.3. Rheological Properties
2.3.4. Thickening Time
2.3.5. Non-Destructive Compressive Strength Test
3. Results and Discussion
3.1. Slurry Density
3.2. Slurry Filtration
3.3. Rheological Properties
3.4. Thickening Time
3.5. Compressive Strength (Ultrasonic Cement Analyzer—UCA)
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
CBL | the cement bond logging documents the evaluation of the integrity of cement work performed on an oil well |
pH | in chemistry, it is a scale used to specify how acidic or basic a water-based solution is |
BET | the specific surface area is a property of solids defined as the total surface area of a material per unit of mass (with units of m2/kg or m2/g) or solid or bulk volume (units of m2/m3 or m−1). It is determined by adsorption isotherm analysis. The test is carried out using a BET isotherm (isothermal Brunauer–Emmett–Teller), which is a particular form of a linear equation |
Bc | the pumpability or consistency of cement slurry, measured in Bearden units of consistency (Bc), a dimensionless quantity with no direct conversion factor to more common units of viscosity |
UCA | Ultrasonic Cement Analyzer. |
HTHP | High Temperature High Pressure |
w/c | water–cement ratio—expresses the amount of water per cement unit |
Css | the liquid is described by Casson’s rheological model |
HB | the liquid is described by the Herschel–Bulkley rheological model |
References
- Dohnalik, M.; Zalewska, J. Korelacja wyników laboratoryjnych uzyskanych metodą rentgenowskiej mikrotomografii, jądrowego rezonansu magnetycznego i porozymetrii rtęciowej. Nafta-Gaz 2013, 69, 735–743. [Google Scholar]
- Kremieniewski, M.; Stryczek, S.; Wiśniowski, R.; Gonet, A. Zmniejszanie porowatości stwardniałych zaczynów wiertniczych poprzez wprowadzenie dodatków drobnoziarnistych. Cem. Lime. Concr. 2016, 21, 325–335. [Google Scholar]
- Alber, M.; Ehringhausen, N. Petrophysical properties of casing cement while curing. Int. Soc. Rock Mech. Rock Eng. 2017, 191, 164–171. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Malhotra, V.M. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Compos. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Ahdaya, M.; Imqam, A. Fly ash Class C based geopolymer for oil well cementing. J. Pet. Sci. Eng. 2019, 179, 750–757. [Google Scholar] [CrossRef]
- Boukhelifa, L.; Moroni, N.; James, S.; Le Roy-Delage, S.; Thiercelin, M.J.; Lemaire, G. Evaluation of Cement Systems for Oil and Gas Well Zonal Isolation in a Full-Scale Annular Geometry. SPE Drill. Complet. 2005, 20. [Google Scholar] [CrossRef]
- Kulakofsky, D.S.; Paredes, J.L.; Rivera, J.A. Ultralightweight Cementing Technology Sets World’s Record for Liner Cementing With a 5.4 lb/gal Slurry Density. Presented at IADC/SPE Drilling Conference, Miami, FL, USA, 21–23 February 2006. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Abd Elrahman, M.; Stephan, D.; Kamm, P.H. The influence of different concrete additions on the properties of lightweight concrete evaluated using experimental and numerical approaches. Constr. Build. Mater. 2018, 189, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Garbalinska, H.; Strzałkowski, J. Thermal and strength properties of lightweight concretes with variable porosity structures. J. Mater. Civ. Eng. 2018, 28, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Sadowski, Ł.; Popek, M.; Czarnecki, S.; Mathia, T.G. Morphogenesis in solidification phases of lightweight concrete surface at early ages. Constr. Build. Mater. 2017, 148, 96–103. [Google Scholar] [CrossRef]
- Formica, J.J.; Davis, R.J. Lightweight Cement, Ultrasonic Cement Evaluation, and Cased-Hole Dynamics Formation Pressure Tester Combine to Enhance Infill-Drilling Opportunities in Shallow Marine Shelf Deposits, Kern County, California. Presented at the SPE Western Regional Meeting, Irvine, CA, USA, 30 March–1 April 2005. [Google Scholar] [CrossRef]
- Crook, R.; Heathman, J. Predicting potential gas-flow rates to help determine the best cementing practices. Drill. Contr. 1998, 11, 40–43. [Google Scholar]
- Brown, D.L.; Ferg, T.E. The Use of Lightweight Cement Slurries and Downhole Chokes on Air-Drilled Wells. SPE Drill. Complet. 2005, 20, 123–132. [Google Scholar] [CrossRef]
- Kremieniewski, M. Receptury zaczynów do uszczelniania kolumn rur posadowionych w otworach wierconych w skałach chłonnych. Nafta-Gaz 2019, 75, 451–457. [Google Scholar] [CrossRef]
- Liu, X.; Nair, S.; Aughenbaugh, K.; Van Oort, E. Mud-to-cement conversion of nonaqueous drilling fluids using alkali-activated fly ash. J. Pet. Sci. Eng. 2019, 182, 106242. [Google Scholar] [CrossRef]
- Shabbar, R.; Nedwell, P.; Wu, Z. Mechanical properties of lightweight aerated concrete with different aluminum powder content. MATEC Web Conf. 2017, 120, 02010. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.-Y.; Han, T.-S.; Yun, T.S.; Yeom, K.S. Evaluation of the anisotropy of the void distribution and the stiffness of lightweight aggregates using CT imaging. Constr. Build. Mater. 2013, 48, 998–1008. [Google Scholar] [CrossRef]
- Abd Elrahman, M.; Chung, S.Y.; Sikora, P.; Rucinska, T.; Stephan, D. Influence of nanosilica on mechanical properties, sorptivity, and microstructure of lightweight concrete. Materials 2019, 12, 3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Yami, A.S.; Nasr-El-Din, H.A.; Al-Humaidi, A.S.; Al-Saleh, S.H.; Al-Arfaj, M.K. Evaluation and Optimization of Low-Density Cement: Laboratory Studies and Field Application. SPE Drill. Complet. 2010, 25, 70–89. [Google Scholar] [CrossRef]
- Curtis, J.A.; Dajani, M.R. Guidelines for Appropriate Application of Non-Foamed Ultralightweight Cement Slurries. Presented at the SPE/IADC Drilling Conference and Exhibition, Amsterdam, The Netherlands, 17–19 March 2009. [Google Scholar] [CrossRef]
- Nehdi, M.; Rahman, M.A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gas, and surface friction. Cem. Concr. Res. 2004, 34, 1993–2007. [Google Scholar] [CrossRef]
- Kremieniewski, M. Poprawa wczesnej wytrzymałości mechanicznej płaszcza cementowego powstałego z zaczynu lekkiego. Nafta-Gaz 2018, 74, 599–605. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Narayanan, N. Factors influencing the density and compressive strength of aerated concrete. Mag. Concr. Res. 2000, 52, 163–168. [Google Scholar] [CrossRef]
- Aguilar, A.S.; Melo, J.P.; Olivares, F.H. Microstructural analysis of aerated cement pastes with fly ash, metakaolin and Sepiolite additions. Constr. Build. Mater. 2013, 47, 282–292. [Google Scholar] [CrossRef]
- Bonett, A.; Pafitis, D. Getting to the root of gas migration. Oilfield Rev. 1996, 8, 36–49. [Google Scholar]
- Vlachou, P.-V.; Piau, J.-M. Physicochemical study of the hydration process of an oil well cement slurry before setting. Cem. Concr. Res. 1999, 29, 27–36. [Google Scholar] [CrossRef]
- Abbas, G.; Irawan, S.; Kumar, S.; Memon, R.K.; Khalwar, S.A. Characteristics of Oil Well Cement Slurry using Hydroxypropylmethylcellulose. J. Appl. Sci. 2014, 14, 1154–1160. [Google Scholar] [CrossRef]
- Berger, R.L.; Arnon, B.; Milestone, N.B.; Kung, J.H. Structural Properties of Calcium Silicate Pastes Pt. 2: Effect of Curing Temperature. J. Am. Ceram. Soc. 1979, 62, 362–366. [Google Scholar] [CrossRef]
- Carathers, K.; Crook, R. Surface Pipe Cement Gives High Early Strength With New Cement Additive; South-wester Petroleum Short Course: Lubbock, TX, USA, 1987; pp. 12–19. [Google Scholar]
- Khalil, M.; Jan, B.M.; Raman, A.A.A. Rheological and statistical evaluation of nontraditional lightweight completion fluid and its dependence on temperature. J. Pet. Sci. Eng. 2011, 77, 27–33. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Stryczek, S. Zastosowanie cementu wysokoglinowego do sporządzania zaczynów uszczelniających w technologiach wiertniczych. Cem. Lime Concr. 2019, 22/84, 215–226. [Google Scholar] [CrossRef]
- Bellotto, M. Cement paste prior to setting: A rheological approach. Cem. Concr. Res. 2013, 52, 161–168. [Google Scholar] [CrossRef]
- Chougnet, A.; Palermo, T.; Audibert, A.; Moan, M. Rheological behaviour of cement and silica suspensions: Particle aggregation modelling. Cem. Concr. Res. 2008, 38, 1297–1301. [Google Scholar] [CrossRef]
- Thiercelin, M.J.; Dargaud, B.; Baret, J.F.; Rodriquez, W.J. Cement Design Based on Cement Mechanical Response. SPE Drill. Complet. 1998, 13. [Google Scholar] [CrossRef]
- Medley, G.H.; Maurer, W.C.; Garkasi, A.Y. Use of Hollow Glass Spheres for Underbalanced Drilling Fluids. Presented at SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 22–25 October 1995. [Google Scholar] [CrossRef]
- Pang, X.; Boul, P.J.; Cuello Jimenez, W. Nanosilicas as Accelerators in Oilwell Cementing at Low Temperatures. In Proceedings of the IADC/SPE Drilling Conference and Exhibition, Fort Worth, TX, USA, 4–6 March 2014. [Google Scholar] [CrossRef]
- Wang, G.; Cao, C.; Pu, X.; Zhao, Z. Experimental investigation on plugging behavior of granular lost circulation materials in fractured thief zone. Part. Sci. Technol. 2016, 34, 392–396. [Google Scholar] [CrossRef]
- Bogas, J.A.; Brito, J.; Figueiredo, J.M. Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete. J. Clean. Prod. 2015, 89, 187–195. [Google Scholar] [CrossRef]
- Yu, R.; van Onna, D.V.; Spiesz, P.; Yu, Q.L.; Brouwers, H.J.H. Development of Ultra-Lightweight Fibre Reinforced Concrete applying expanded waste glass. J. Clean. Prod. 2016, 112, 690–701. [Google Scholar] [CrossRef]
- Blanco, F.; García, P.; Mateos, P.; Ayala, J. Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem. Concr. Res. 2000, 30, 1715–1722. [Google Scholar] [CrossRef]
- Huang, Z.; Padmaja, K.; Li, S.; Richard Liew, J.Y. Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures. Constr. Build. Mater. 2018, 164, 760–774. [Google Scholar] [CrossRef]
- Du, H. Properties of ultra-lightweight cement composites with nano-silica. Constr. Build. Mater. 2019, 199, 696–704. [Google Scholar] [CrossRef]
- Daou, F.; Piot, B.M. Cement-Slurry Performance and Set-Cement Properties vs. Microsilica Densification. Presented at the IADC/SPE Drilling Conference, Orlando, FL, USA, 4–6 March 2008. [Google Scholar] [CrossRef]
- Jordan, A.; Pernites, R.; Albrighton, L.; Services, B.J. Low-density, lightweight cement tested as alternative to reduce lost circulation, achieve desired top of cement in long horizontal wells. Drill. Contract. 2018, 62–64. Available online: https://www.drillingcontractor.org/low-density-lightweight-cement-tested-as-alternative-to-reduce-lost-circulation-achieve-desired-top-of-cement-in-long-horizontal-wells-48355 (accessed on 1 March 2020).
- Kremieniewski, M. Wpływ drobnoziarnistej krzemionki na parametr czasu oczekiwania na cement – WOC. Nafta-Gaz 2019, 75, 683–690. [Google Scholar] [CrossRef]
- Colombo, A.; Geiker, M.; Justnes, H. The effect of calcium lignosulfonate on ettringite formation in cement paste. Cem. Concr. Res. 2018, 107, 188–205. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, W. Nano-mechanical behavior of a green ultra-high performance concrete. Constr. Build. Mater. 2014, 63, 150–160. [Google Scholar] [CrossRef]
- Mbessa, M.; Péra, J. Durability of high-strength concrete in ammonium sulfate solution. Cem. Concr. Res. 2001, 31, 1227–1231. [Google Scholar] [CrossRef]
- Barvinok, M.S.; Komokhov, P.S.; Bondareva, N.F. Effect of Temperature and Additives on the Early Stage of Hardening. In Proceedings of the 6th International Congress on the Chemistry of Cement, Moscow, Russia, 1976; section II, (II-7, II-8). pp. 1–12. [Google Scholar]
- Collepardi, M.; Marchese, B. Morphology and Surface Properties of Hydrated Tricalcium Silicate Pastes. Cem. Concr. Res. 1972, 2, 57–65. [Google Scholar] [CrossRef]
- Robertson, R.E.; Stiff, H.A. An Improved Mathematical Model for Relating Shear Stress to Shear Rate in Drilling Fluids and Cement Slurries. Soc. Pet. Eng. J. 1976, 16. [Google Scholar] [CrossRef]
- Banfill, P.F.G.; Kitching, D.R. 14 Use of a Controlled Stress Rheometer to Study the Yield Stress of Oilwell Cement Slurries. In Rheology of Fresh Cement and Concrete: Proceedings of an International Conference, Liverpool, 1990; CRC Press: Boca Raton, FL, USA, 1990; p. 125. [Google Scholar]
- Velayati, A.; Tokhmechi, B.; Soltanian, H.; Kazemzadeh, E. Cement slurry optimization and assessment of additives according to a proposed plan. J. Nat. Gas Sci. Eng. 2015, 23, 165–170. [Google Scholar] [CrossRef]
- Tao, C.; Kutchko, B.G.; Rosenbaum, E.; Wu, W.-T.; Massoudi, M. Steady Flow of a Cement Slurry. Energies 2019, 12, 2604. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Yang, Y.; Tang, X.; Xie, Y. A starting pressure prediction of thixotropic cement slurry: Theory, model and example. J. Pet. Sci. Eng. 2015, 133, 108–113. [Google Scholar] [CrossRef]
- PN–EN ISO 10426-2. Petroleum and Natural Gas Industries. Cements and Materials for Well Cementing. Part 2: Testing of Well Cements; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Ferens, W. Parametry reologiczne świeżych zaczynów uszczelniających w zależności od czasu ich sporządzania. Wiertnictwo Nafta Gaz 2009, 26, 369–382. [Google Scholar]
- Wiśniowski, R.; Skrzypaszek, K. Komputerowe wspomaganie wyznaczania modelu reologicznego cieczy - program Flow-fluid Coef. Nowocz. Tech. i Technol. Bezwykopowe 2001, 2–3, 72–77. [Google Scholar]
- Wiśniowski, R.; Stryczek, S.; Skrzypaszek, K. Kierunki rozwoju badań nad reologią płynów wiertniczych. Wiertnictwo Nafta Gaz 2007, 24, 595–607. [Google Scholar]
- Struble, L.; Sun, G.-K. Viscosity of Portland cement paste as a function of concentration. Adv. Cem. Based Mater. 1995, 2, 62–69. [Google Scholar] [CrossRef]
- Liu, L.; Fang, Z.; Qi, C.; Zhang, B.; Guo, L.; Song, K.I.-I.L. Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects. Powder Technol. 2019, 343, 454–464. [Google Scholar] [CrossRef]
- British Standards Institution. BS EN 196-1:2016 Methods of testing cement. Determination of strength. Available online: https://www.thenbs.com/PublicationIndex/documents/details?Pub=BSI&DocID=314246 (accessed on 1 March 2020).
- Kremieniewski, M. Lekkie zaczyny cementowe do uszczelniania technicznych kolumn rur okładzinowych. Nafta-Gaz 2010, 6, 477–480. [Google Scholar]
Composition | Action | 1 | 2 | 3 |
---|---|---|---|---|
Water–cement ratio | - | 0.85 | 0.60 | 0.55 |
Plasticizer | Cement slurry liquefies | 0.2 | 0.7 | 0.3 |
Latex | Lowers filtration, prevents gas migration through hardened cement slurry | 5.0 | 5.0 | 5.0 |
Stabilizer | Provides good, even and durable latex dispersion | 0.5 | 0.5 | 0.5 |
Bentonite | Is used to increase the viscosity of mixing water | 1.5 | 1.5 | 1.5 |
Defoaming agent | Prevents foam formation | 0.5 | 0.5 | 0.5 |
Antifiltrating agent | Reduces cement slurry filtration | 0.3 | 0.3 | 0.3 |
Setting accelerator | Accelerates the cement hydration process in cement slurry | 1.0 | 1.0 | 1.0 |
Microcement | Seals the matrix of hardened cement slurry | 10.0 | 10.0 | 10.0 |
Cenospheres | Reduces cement slurry density | 0.0 | 15.0 | 15.0 |
Nanosilica | Supplements the pore microstructure of hardened cement slurry | 2.0 | 0.0 | 0.0 |
Microsilica | Seals the matrix of hardened cement slurry and has pozzolanic properties | 13.0 | 15.0 | 0.0 |
Strengthening agent | Increases mechanical strength | 0.0 | 0.0 | 1.5 |
Sodium hydrooxide | Accelerates cement hydration and increases the value of mechanical parameters | 0.0 | 0.0 | 1.5 |
Cement CEM I 42.5R | It sets the cement slurry | 100.0 | 100.0 | 100.0 |
Composition no. | w/c | Density (g/cm3) | Filtration, (cm3) After 30 min of Measurement | Thickening Time (h:min) | Time in which Strength Was Achieved 3.5 MPa (h:min) | Compressive Strength Tested with the Ultrasonic Cement Analyzer, (MPa) | ||||
---|---|---|---|---|---|---|---|---|---|---|
6 h | 12 h | 24 h | 48 h | |||||||
30Bc * | 100Bc * | |||||||||
1 | 0.85 | 1.58 | 733.0 | 5:55 | 7:10 | 10:04 | 1.04 | 4.35 | 7.29 | 9.18 |
2 | 0.60 | 1.54 | 85.0 | 6:30 | 7:20 | 4:54 | 4.24 | 6.93 | 9.45 | 11.32 |
3 | 0.55 | 1.57 | 174.0 | 5:10 | 6:00 | 6:13 | 3.07 | 13.04 | 20.98 | 25.36 |
Rheological Properties | Temperature of Measurement (°C) | Composition of Cement Slurry | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Yield stress value Css (Pa) | 22 | 8.7696 | 76.5356 | 19.7906 |
Consistency index HB (Pa·sn) | 22 | 0.0861 | 29.8990 | 2.8613 |
Flow index HB [n](-) | 22 | 0.8464 | 0.2484 | 0.5771 |
Apparent viscosity at 1022 s−1 (mPa·s) | 22 | 4.4984 | 189.9930 | 170.9930 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremieniewski, M. Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath. Energies 2020, 13, 1583. https://doi.org/10.3390/en13071583
Kremieniewski M. Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath. Energies. 2020; 13(7):1583. https://doi.org/10.3390/en13071583
Chicago/Turabian StyleKremieniewski, Marcin. 2020. "Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath" Energies 13, no. 7: 1583. https://doi.org/10.3390/en13071583
APA StyleKremieniewski, M. (2020). Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath. Energies, 13(7), 1583. https://doi.org/10.3390/en13071583