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Abstract: The new generation of fast charging systems faces a formidable technological challenge,
aiming to drastically reduce the time needed to recharge an electric vehicle as a way to tackle the
range anxiety issue. To achieve this, high power (up to 350 kW) is transferred from the grid to the
vehicle, leading to potentially high values of low frequency magnetic fields. This study presents
the results of measurements of magnetic flux density (B-field) emitted by two different high power
charging systems. The electric vehicle used for the recharge was able to digest up to 83 kW of delivered
power. The test procedure was designed to identify the locations where the maximum B-field levels
were recorded and to measure the exposure indices according to reference levels for general public
exposure defined in the Council Recommendation 1999/519/EC. Measurements in close proximity to
the power cabinets during the recharge revealed that, at some points, exposure indices were higher
than 100%, leading to the identification of a distance from the system components at which the value
was lower than the reference level. In the worst case, this distance was 31 cm.

Keywords: electro-mobility; magnetic flux density; high-power charging

1. Introduction

Range anxiety is one of the main issues to be tackled to promote a massive deployment of electric
vehicles (EVs). One of the approaches consists in increasing battery capacities and building a sufficiently
dense network of high-power charging systems (HPCSs) in urban and rural areas. Even though higher
driving ranges are still associated with luxury EVs and “supercars”, the new generation of HPCSs is
already a reality, with 400 charging points foreseen in Europe by the Ionity Consortium no later than
2020 [1]. A HPCS of 350 kW for instance, typically allows recharging a fast chargeable EV’s battery
pack of 35 kWh in 10 min. However, this power corresponds to 100 times a normal household power
supply, and is supplied in a few minutes and concentrated in a few square meters. Such levels of
power imply currents up to approximately 250 Axc and 500 Apc, and produce a magnetic field in the
surroundings that should be evaluated to prevent magnetic field exposures exceeding the reference
levels (RLs) established for health protection. In Europe, the Council Recommendation 1999/519/EC [2]
ensures respect of RLs indicated within the guidelines published by the International Commission on
Non-ionizing Radiation Protection (ICNIRP) for general public exposure in 1998 [3]. RLs take into
account the evidence of health effects, such as the electrostimulation of nerves at low frequencies
(1-10 MHz), and heating within human tissues at higher frequencies (100-300 GHz) [2—4]. Possible

Energies 2020, 13, 1594; doi:10.3390/en13071594 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-8657-1546
http://www.mdpi.com/1996-1073/13/7/1594?type=check_update&version=1
http://dx.doi.org/10.3390/en13071594
http://www.mdpi.com/journal/energies

Energies 2020, 13, 1594 20of 11

long-term effects related to a prolonged exposure are not scientifically proven, as confirmed by the
World Health Organization [5,6].

The European Interoperability Centre for Electric Vehicles, Smart Homes and Smart Grids (Joint
Research Centre (JRC), Ispra, Italy) conducts pre-normative research in line with the European
Commission policy priorities in the field of sustainable mobility, including EVs and their recharging
infrastructure. In this framework, different investigations of EVs and their interoperability with
charging infrastructure are currently conducted, in collaboration with industry, academia, and other
research institutions. In 2018, the JRC and the Italian national agency for new technologies, energy,
and sustainable economic development (ENEA) began collaboration on these topics with the main
objective of contributing to the definition of measurement procedures to assess low frequency magnetic
fields emitted by new technologies related to e-mobility. In [7], we presented the results of a test
campaign conducted on five 50 kW DC fast chargers, highlighting the lack of specific measurement
procedures for the assessment of magnetic fields generated during conductive recharge within the
standard IEC 61851-23 [8]. Magnetic flux density (B-field) peaks at a frequency of 50 Hz up to above
100 uT were recorded during the recharge at full load in close proximity to the charger, while, beyond
a distance of 7.5 cm from the center of the probe, exposure indices were below 50% of RLs for general
public exposure. Furthermore, we highlighted how the approach of the Recommendation 1999/519/EC
(based on 1998 ICNIRP guidelines) in the calculation of exposure indices, considering harmonics
additive in their effects, is conservative compared to the Weighted Peak Method (WPM) introduced
in [9] and implemented within the Directive 2013/35/EU [10], which takes into account the phase and
the amplitude of the complex waveforms by weighting with a filter function, based on RLs [9-12].
Two different HPCSs were tested at power levels up to 83 kW, using a vehicle selected among the few
that, at the time, were designed to be charged with power above 50 kW. A new joint test campaign,
JRC-ENEA, was organized with the aim to improve and refine the procedure already developed to
provide reliable data about magnetic fields emitted by these systems during high-power charging,
with experimental knowledge about this topic still limited to vehicles and wireless charging [13-19].

2. Materials and Methods

Two different HPCSs were tested, while connected to the same fast-chargeable EV, in stand-by and
charging conditions. Measurements were performed in the VeLA9 facility (Vehicle electric Laboratory
9), which is part of the Interoperability Center. VeLA9 is a semi-anechoic chamber designed to
test electromagnetic compatibility/emissions of vehicles and their charging infrastructure within the
frequency range 14 kHz-18 GHz. It is equipped with a shielded chassis dynamometer (four wheels
driven) that can reach speeds up to 210 km/h, with accelerations and regenerative breaking up to
10 m/s?. The chassis dynamometer is embedded in a turntable with a diameter of 11 m, which allows
a 360 degree rotation while the vehicle is driven on the roller bench. In this way; it is possible to test
electromagnetic emissions produced by vehicles, as well as their immunity against interference from
every position. The facility can also be used to assess the emissions of charging systems during the
re-charge by means of a high-power filter of up to 200 A/phase and up to 440 V 5c.

HPC technology allows DC fast charging up to 350 kW even if only few EVs currently available on
the market are able to digest such high powers. HPCSs support the CCS standard (Combined Charging
System) with the possibility to add the option for the CHAdeMO standard in multi-plug devices.
The substantial change in the HPC technology, compared to the old generation of 50 kW fast chargers,
consists of the modularity in the power cabinets, which allows customizable charging scenarios. In fact,
the transformer and rectification circuitry are generally located in a rack or shielded housing (power
unit) separated from the user interface unit, which in turn delivers the converted DC current to the
vehicle. Figure 1 shows a scheme typical of this architecture, constituting two power units and the
user interface unit. The user interface unit is equipped with adequate connectors and flexible charging
cables characterized by an integrated advanced liquid-cooling system, to avoid overheating due to the
delivered currents. A single power unit can charge a 400 V vehicle battery at 150 kW with an output
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current of 375 A, while two-power cabinet systems can deliver up to 350 kW and 500 A, being even
able to simultaneously charge two EVs. The infrastructure can be enlarged at a later stage, adding
more charging points. Furthermore, this dynamic management of the DC output power contributes to
saving costs by optimizing the connection to the grid.

User inferface unit
Power modules

S

Figure 1. Scheme of a high-power charging system (HPCS).

The main technical specifications of the two tested charging systems are described in Table 1.

Table 1. HPCS main specifications.

Electrical Efficiency and V\{elght 2 nd .
HPCSs Specifications Power Factor Dimensions Operating
p (WxD x H) Temperatures
400 Ve = 10%, .
50 Hz, 277 A 2 power cabinets
nominal @ 400 V,, (1340 kg, 20303X
1 (160 KW); DC >94% at full load 1170 >< 770 mm>~) .+ _35°C to + 55 °C
output: 500 A PF > 0.97 User interface unit
put: ’ (250 kg, 2390 X 620
150-920 V (up to » 240 mm®)
350 kW)
400 Ve = 10%, 2 power cabinets
50 Hz 248 A @172 (1100 kg, 1000 x B o
) KVA; DC output:  >95% @ full power 800 x 1800 mm?) + _3522 é": i050€/(:
500 A up to 640 V; PF:0.98 User interface unit (cold (? tion)
nominal power (260 kg, 600 x 300 P
322kW @920V x 2400 mm?)

The HPCSs under test were equipped with CCS charging options and connected to the JRC grid
providing 440 V¢, max 200 A. The HPCSs were tested by connecting them to an EV with a declared
charging capability up to 100 kW. The distances inside the anechoic chamber between the vehicle
under charge, the user interface column, and the two power cabinets, were respectively at least 1
m and 3 m. Measurements were conducted while charging the vehicle from 10% to 50% of its state
of charge (SoC), in order to reach a stable delivered power close to maximum achievable charging
power (83 kW). Electrical parameters, such as currents, voltages, and power from the grid and to the
EV, were recorded by means of power analyzers (WT 1800, YOKOGAWA lItalia srl, Nova Milanese
MB, Italy, Sirius-PWR-MCTS2, Dewesoft srl, Roma, Italy). A tri-axial isotropic probe (EHP50G, Narda
Safety Test Solutions Cisano sul Neva SV, Italy) was used to detect the B-field within the frequency
range 1Hz—400 kHz, with a declared resolution of 0.1 nT. The instrument is compliant with the standard
IEC 61786-1 [20]. Its total declared expanded uncertainty varies between 3% and 5.3%, depending on
the frequency range and on the B-field range (coverage factor k = 2, confidence level 95%). This takes
into account linearity, anisotropy, frequency response, temperature, and relative humidity and includes
the contribution of calibration uncertainty [21]. However, the anisotropy contribution measured under
our measurement conditions stands around 13%, leading to an expanded uncertainty of around 19%.
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Compared to the model used in [7], this model allows the WPM to be applied according to the RLs
indicated for general public exposure by ICNIRP 1998 guidelines and implemented in the Council
Recommendation 1999/519/EC.

Measurements were performed in the frequency domain within the range from 25 Hz to 2 kHz,
aiming to perform a spectrum evaluation considering harmonics additive in their effects (ICNIRP 1998
approach) and, in the time domain, with the WPM accountable for the frequency range 1Hz-400 kHz.
Both methods lead to the calculation of an index, hereinafter referred to as exposure index (EI) and
weighted peak index (WPI), respectively, according to the following Equations (1) and (2).

X;
o ]
El = 2 RLj <1 1)
]

A.
WPI = Z R_I; cos(2nfit +0; + ;) <1 @)
1

where, in Equation (1), Xj is the field amplitude at frequency j, and RL(X]) is the field RL at frequency j;
in Equation (2), t is time, A; is the amplitude of the ith harmonic component of the field, RL; is the
RL at the ith harmonic frequency f;, 0; is the phase angle of the field, and ¢; is the phase angle of the
filter at the harmonic frequencies. Both indexes were calculated considering RLs of Recommendation
1999/519/EC. If the index value is > 100 (if expressed in percentage terms), the exposure will be
considered not compliant. The measurement procedure, developed in [7], was adopted and improved
during the test campaign. Briefly, the B-field actual values and the Els were measured at a distance of
10 cm (between the center of the probe and the unit’s surface) on a grid of measurement points on
each side of the units. The grid was evenly spaced according to the geometry of the unit under test.
Figure 2 shows, as an example, the measurement grid used for the two power units and for the user
interface unit of HPCS 1.
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Figure 2. Measurement grid used for HPCS 1.
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In order to ensure maximum repeatability and consistency, all the measurements were performed
keeping the same axis direction of the probe with respect to the surface of the system. The positions
where Els values were higher than 100% were recorded and identified for each unit, and WPIs were
measured in each of them. Then, further measurements were executed with a smaller and denser grid
surrounding the point where the highest value was measured in order to identify the exact position of
the maximum. Once the exact position of the maximum emission point was identified for each unit,
additional measurements at a distance of 20 cm from the maximum were performed. In case of Els and
WPIs > 100%, measurements were repeated to assess the distance at which the indexes were below
100%.

3. Results

Different behaviors were observed in terms of power distribution between the two HPCS power
cabinets during the recharge. The two units, hereinafter called “master” and “slave”, supplied
power to the user interface unit and consequently to the recharge either alternately or, in some cases,
simultaneously. For HPCS 2, the AC power from the grid was equally distributed between the two
power units, and was then converted and transferred to the user interface unit. Regarding HPCS 1,
the power was either concentrated in only one power unit or equally shared between the two power
units. According to the manufacturer of HPCS 1, for recharges above 50 kW, the power distribution
between the two units depended on internal algorithms, which involved different variables, such as
service hours and temperature, and was not easily predictable. Figure 3 shows the measured power
and current on the AC and DC side of HPCS 1 slave during a recharge at full load from 10% to 57% of
the vehicle SoC, related to data of Table 2. AC current values were between 127 and 132 A, while DC
current was stable, close to 200 A. As shown, this part of the recharge (10%-50% of SoC), where values
were stable, lasted more than 20 min. In order to guarantee similar conditions, measurements were
performed within this 20 min time interval, keeping the AC current stable within the range 127-132 A
and the delivered power above 80 kW.

The following tables show the measurements for each HPCS during full load recharges on the
two power cabinets at a distance of 10 cm from the center of the probe according to the defined grid.
The values are displayed in terms of wideband values of the B-field within the frequency range from
25 Hz to 2 kHz and, in terms of Els, calculated according to the Recommendation 1999/519/EC. Tables 2
and 3 refer to the case when the two power units (slave and master) of HPCS 1 operated alternately.
Els > 100% are displayed in bold.

= AC power; RMS (kW) === DC power; RMS (kW) 250 lac (A) —Idc (A)
100
— —~ N
80 | Ny 200 -\
S <
E_‘. 60 = 150
5 o
2 40 5 100
a o
20 50
0 'J 0
0 500 1000 1500 2000 0 500 100 1500 2000
Time [s] Tlme?SI

Figure 3. AC and DC power and current during a recharge (HPCS 1 slave, Table 2 measurements).
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Table 2. B-field and exposure indexes (EIs) according to the measurement grid for the power unit slave,

HPCS 1.
Side A B C D

Positions B (uT) WideBand EI% B (uT) WideBand EI% B (uT)WideBand EI% B (uT) Wide Band EI%
1 3.40 19.86 4.56 36.06 4.64 21.10 421 13.84
2 3.35 19.22 5.78 40.31 4.46 19.93 438 12.96
3 4.10 22.74 8.41 57.81 4.68 23.78 8.96 26.21
4 7.11 36.05 12.99 77.62 14.45 59.23 9.51 25.89
5 6.31 38.55 23.03 121.6 12.50 46.64 2091 61.15
6 7.79 4243 46.26 213.9 10.62 51.7 21.29 67.38
7 21.11 150.9 26.13 162.5 64.59 308.5 27.55 132.2
8 31.41 269.8 38.29 305.5 61.92 251.0 27.22 122.5
9 26.49 208.3 31.21 128.3 33.23 230 39.86 146.2
10 28.75 313.2 34.18 159.9 56.76 578.2 28.83 98.9
11 48.74 382.6 44.81 390.2
12 30.13 351.4 37.02 464.4
13 39.24 240.9 61.17 3225
14 58.75 237.2 60.53 2444
15 24.74 176.4 46.03 404.2

Table 3. B-field and Els according to the measurement grid for the power unit master, HPCS 1.

Side A B C D

Positions B (uT) WideBand EI% B (uT) Wide Band EI % B (uT) WideBand EI% B (uT) WideBand EI%
1 3.53 20.33 423 40.45 494 27.59 3.44 15.54
2 4.00 22.24 5.34 45.39 4.70 25.76 3.88 16.65
3 420 22.99 10.07 60.95 4.67 27.32 6.91 26.46
4 10.13 54.63 17.06 77.2 14.73 63.56 7.59 26.63
5 11.25 73.22 30.59 138.2 13.50 51.48 23.10 64.14
6 11.12 69.30 57.10 2184 12.25 56.60 23.07 64.0
7 26.66 202.9 28.71 153.5 75.28 309.4 24.60 1189
8 43.88 383.4 3591 200.5 70.54 258.6 23.48 114.1
9 25.31 318.6 44.05 158.8 33.12 219.2 35.08 136.0
10 39.42 418.2 49.45 201.5 64.14 551.6 21.39 110.9
11 45.89 382.8 52.11 455.8
12 39.74 454.2 43.25 400.4
13 34.52 255.0 64.38 326.0
14 36.31 205.6 83.83 312.6
15 28.00 215.5 49.87 440.9

Tables 4 and 5 are related to HPCS 2 whose behavior consisted of an equal sharing of the power
between the two units.

Table 4. B-field and Els according to the measurement grid for the power unit master, HPCS 2.

Side A B C D
Positions B (uT) WideBand EI% B (uT) Wide Band EI % B (uT) Wide Band EI% B (uT) Wide Band EI %
1 2.57 10.51 1.56 6.65 2.163 6.96 1.36 5.28
2 1.53 6.78 1.40 6.28 1.86 5.50 1.97 6.86
3 1.81 7.26 1.45 791 2.49 10.56 2.44 7.76
4 2.74 12.98 3.10 9.92 4.20 13.76 3.24 17.45
5 2.89 11.58 2.16 5.99 3.38 10.26 6.85 22.75
6 3.44 10.61 2.81 10.41 391 15.52 411 14.33
7 3.38 8.69 6.44 19.26 20.27 57.22 11.09 42.43
8 8.41 24.65 8.78 16.53 20.53 53.14 9.17 54.74
9 9.09 24.87 8.80 26.90 22.55 73.13 7.44 29.31
10 20.40 60.68 13.14 30.52 38.09 92.98 20.54 5491
11 16.33 43.95 40.11 72.16 28.44 57.60 25.71 68.58
12 12.57 40.40 30.09 77.47 30.74 80.89 15.19 34.26
13 14.90 56.36 16.93 40.00 35.32 92.59 13.93 37.76
14 18.17 63.60 26.68 53.76 48.63 115.3 29.34 69.51

15 14.52 49.64 25.9 70.83 44.79 130.9 15.44 49.70
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Table 5. B-field and Els according to the measurement grid for the power unit slave, HPCS 2.

Side A B C D
Positions B (uT) WideBand EI% B (uT) Wide Band EI % B (uT) WideBand EI% B (uT) WideBand EI%
1 1.93 8.59 1.78 6.14 2.20 6.16 1.34 9.42
2 1.31 6.25 1.6 6.16 1.81 5.12 2.41 11.68
3 1.55 5.70 1.5 7.60 1.96 6.49 1.66 7.07
4 2.78 12.46 4.01 11.52 3.96 12.51 2.88 13.90
5 343 12.22 3.10 7.77 3.51 8.87 4.81 15.35
6 3.67 9.55 3.97 15.25 3.45 11.28 3.26 11.71
7 17.47 43.22 9.86 24.06 17.79 51.82 10.9 36.83
8 11.36 28.51 11.72 21.23 17.16 45.01 9.82 54.90
9 10.38 23.90 11.98 36.70 21.79 60.71 9.83 31.20
10 13.82 41.31 12.84 28.96 27.97 74.14 23.94 60.22
11 12.66 36.88 34.61 67.98 20.0 56.39 19.07 42.94
12 11.54 28.77 23.49 71.29 26.54 72.37 12.06 40.44
13 7.82 35.14 15.64 39.12 46.9 123.3 28.60 81.26
14 8.94 31.86 37.99 79.04 34.04 101.5 31.94 73.73
15 9.03 32.11 35.13 82.98 35.02 117.0 12.34 47.13

The B-field had its highest peaks at a frequency of 50 Hz but measured values were always below
100 uT (RL for general public exposure at 50 Hz, established in the Recommendation 1999/519/EC).
Even though each spectral component is below the RL curve, Els higher than 100% were recorded.
Furthermore, the point where the maximum EI was recorded does not always correspond to the point
of maximum B-field (e.g., Table 2 side C, position 7, max B: 64.59 uT, EI: 308.5%; position 10, max EI
578.2%, B: 56.76 uT). Among these occurrences, there were points where Els exceeded the RLs by up to
five times (e.g., Tables 2 and 3, position 10).

Table 6 refers to the further analysis performed according to the protocol, in the positions where
RLs were exceeded for HPCS 1 power unit master. It shows a comparison between Els and WPIs.
In these points, WPIs are lower than the Els, confirming that the approach of the EI, recommended
in [2] for the assessment of general public exposure, is rather conservative.

Table 6. HPCS 1 power unit master: comparison between Els and weighted peak indexes (WPISs).

Side A B C D
Positions EI% WPI% EI/WPI EI% WPI% EI/WPI EI% WPI% EI/WPI EI% WPI% EI/WPI

5 138.2 67.5 2.05

6 218.4 98.8 221

7 202.9 92.6 2.19 153.5 753 2.04 309.4 153.8 2.01 118.9 68.0 1.75
8 383.4 201.2 191 200.5 96.3 2.08 258.6 106.0 2.44 114.1 55.1 2.07
9 318.6 168.8 1.89 158.8 77.8 2.04 219.2 97.7 2.24 136.0 91.2 1.49
10 418.2 291.6 1.43 201.5 93.1 2.16 551.6 319.8 1.72 110.9 50.2 221
11 382.8 160.4 2.39 455.8 263.9 1.73

12 454.2 288.9 1.57 400.4 185.6 2.16

13 255.0 152.5 1.67 326.0 153.7 212

14 205.6 113.0 1.82 312.6 139.2 2.25

15 215.5 148.1 1.46 440.9 226.3 1.95

In some cases, (e.g., side B and side D), EIs were above the RLs, while WPIs were below. However,
for side A (positions 8-15) and C (positions 7-15) WPIs were between one and three times greater than
the compliance value (position 10).

The ratios between El and WPI (EI/WPI) give the impression of how much the Els were conservative
compared to WPI. Values are between 2.44 (Side C, position 8) and 1.43 (Side A, position 10). These
values depend on the harmonic content of the resulting field in that position and demonstrate the
importance of taking into account phase angles of the field at the harmonic frequencies in case of
a complex waveform.
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Table 7 shows the characterization of the points where maximum emission was assessed in both
HPCSs at different distances between the power unit surface and the center of the probe (10 cm and
20 cm). In the case of HPCS 1, the point of maximum emission is located on the left of side C in the
surroundings of position 10 for both power units. In case of power equally distributed between the
two cabinets (same current flowing into the master and the slave), the B-field proportionally decreases.
Both EIs and WPIs also decrease, but remain above 100%. For HPCS 2, a single point of maximum was
identified close to position 15 of side C for both the power units master and slave. Els were slightly
higher than 100%, while WPIs were always below.

Table 7. Characterization of the points of maximum emissions for HPCSs 1 and 2.

Power Unit Distance B (uT) Wide Band EI % WPI %
10 cm 64.68 576.89 346.86
HPCS1POWER 10 cm (power
UNIT MASTER equally shared) 36.95 347.1 197.23
20 cm 24.67 220.6 110.22
10 cm 57.51 611.16 381.46
HPCS 1 POWER 10 cm (power
UNIT SLAVE equally shared) 34.09 325.53 186.14
20 cm 29.28 255.58 174.16
HPCS 2 POWER 10 cm 55.11 127.24 73.88
UNIT MASTER 20 cm 16.23 44.77 31.99
HPCS 2 POWER 10 cm 45.63 108.34 65.53
UNIT SLAVE 20 cm 16.23 49.67 32.66

The difference in behavior between the two systems could be explained analyzing their internal
circuitry architecture and composition, but this is out of the scope of this article. Table 8 indicates the
distance at which the Els and WPIs became lower than 100%.

Table 8. Distance of compliance according to WPI and EI.

Power Unit Distance of Compliance (cm)
WPI EI
Master 23 31
Slave 22.5 31.5
HPCS 1 Master
(power equally shared) 14 26
Slave
(power equally shared) 10 23
Master <10 13
HPCS 2
Slave <10 14

The compliance distances presented in Table 8 are affected by the measurement uncertainty
(about 19%) and by the geometry of the measurement probe. Unfortunately, it is not possible to
quantitatively assess the weight of these elements on the compliance distance uncertainty, due to the
high non-uniformity of the magnetic field in the near field condition. For this reason, it may be correct
to consider a safe margin of a few centimeters, if a zoning of the charger become necessary.

Concerning the user interface unit, the delivered current was DC, so that B-field values within the
investigated frequency range were not expected to be high. Indeed, the wideband maximum value
measured with dedicated measurement grids according to the geometry of the columns at a distance
of 10 cm from the center of the probe during the 83 kW recharge for HPCS 1 did not exceed 3 uT, with
associated EI and WPI equal to 22.7% and 12.9%, respectively. These values were measured on the
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back part of the column (side C). For HPCS 2, values were extremely low: the maximum wideband
B-field (25 Hz to 2 kHz) was 0.6 uT, recorded on side B, and the EI and WPI were 1.6% and of 7.3%,
respectively. Table 9 summarizes the results for HPCS 1 side C and HPCS 2 side B. Standby values
were below 0.2 uT for both HPCSs.

Table 9. User interface unit: Els and WPIs for HPCS 1 side C and HPCS 2 side B.

HPCS 1 Side C HPCS 2 Side B
Positions EI % WPI % EI % WPI %

1 0.44 1.36 1.00 7.84
2 - 1.16 1.60 7.27
3 3.36 2.84 0.02 1.99
4 1.07 2.82 1.70 2.02
5 5.44 3.45 0.99 1.77
6 8.67 5.14
7 14.59 7.22
8 22.73 12.89
9 21.22 6.34
10 15.76 8.88
11 347 3.13
12 0.44 3.90

4. Conclusions

The new generation of HPCSs promises recharging times of about 10 min, the possibility of
simultaneous recharges of more than one EV, modularity, high efficiency, and optimization of the
grid connection and, consequently, of the costs of overall energy consumption. The new architecture
of the tested systems already shows its remarkable potential in terms of flexibility and modularity.
In this paper, the procedure, already developed within the framework of the JRC-ENEA collaboration,
was refined and improved to provide reliable data about low frequency magnetic fields emitted by
these systems to pave the way for future normative development. An EV, theoretically chargeable up
to 100 kW and commercially available, was charged with two HPCSs. During the recharge at full load,
the B-field was measured around the power units and the user interface unit according to a defined
grid. Once the location at which the maximum recorded value was identified, further measurements
were performed at a distance of 20 cm from the maximum, and, in the case of values above RLs,
a compliance distance derived. Results obtained for HPCS 2 do not give rise to safety concerns, as the
majority of the B-field values were below RLs, especially in the surroundings of the user interface
column, where the maximum encountered value was less than 0.1 uT. However, for one of the two
HPCSs, 28 out of 50 measurement points at a distance of 10 cm from the center of the probe recorded Els
more than two times greater than 100%. At 16 of these points, the WPI was also above 100%. For HPCS
2, the distance from the power cabinet surface at which EIs were all below 100% was 14 cm, while for
HPCS 1 the compliance distance was 23 cm considering WPI, and 31 cm considering EI, in the case of
power units operating alternately. It is worth highlighting that the maximum achievable power in our
study was 83 kW for a recharge of a single vehicle, while each power unit was able to singularly supply
up to 175 kW for a total of 350 kW for the HPCS. More powerful and higher performance vehicles with
higher battery capabilities, and the possibility of multiple simultaneous recharges may lead to different
possible future scenarios that should be fully explored. However, under these conditions, the new
architecture comes in handy considering that a carefully planned arrangement of power cabinets
may avoid potential safety issues, especially for people wearing electronic medical devices. Future
scenarios may include urban recharge stations with hundreds of HPCSs. These spaces should be
properly designed by isolating power cabinets in separated areas and by guaranteeing an appropriate
safety distance from public areas.
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