The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions
Abstract
:1. Introduction
2. Concept of the New Test Rig
- Excellent optical access to the combustion chamber (“see through” configuration).
- Variability: Easy exchangeable cylinder heads that are optimized for specific experimental requirements (diffusion, premixed and dual fuel/multi fuel combustion).
- Flexibility: Able to vary operating parameters (i.e., cylinder charge properties at the time of the experiment) over a wide range.
- Realize engine-like end of compression pressures/temperatures (>100 bar/≥1000 K) and peak combustion pressures (>200 bar).
- Provide flow velocities and turbulence levels at the time of the experiment comparable to conditions found in real engines.
- No continuous operation required (single cycle experiments/limited cycle sequences only).
- Processes and properties related to the late combustion phase (e.g., overall engine/combustion efficiency, or exhaust gas emissions)
3. Design of the Flex-OeCoS
3.1. Gas Exchange Valves
3.2. Optical Access, Experimental Configurations
3.3. Standard Instrumentation
3.4. Technical Data of the Flex-OeCoS
3.5. Structure of Experiment Sequences
- Each sequence type has its own, separate gas exchange valve timing and experimental trigger setting.
- Each sequence type can be repeated several times if desired.
- In some sequence types, the valves for adding gaseous fuels into the air intake can be activated as well.
- More trigger outputs are available in the actual experiment sequence type to control measurement devices and, if needed, fuel injection and/or ignition systems.
4. Characterization of the Flex-OeCoS Test Rig
4.1. Cylinder Pressure Measurements
Pegging of the Cylinder Pressure
4.2. Gas Temperature Measurements
4.3. Flow Field Measurements using PIV
- Flow velocity and turbulence intensity magnitude scale with engine speed.
- The pressure level has little influence on the flow structure and flow velocity or turbulence intensity magnitude.
5. Outlook
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, L.; Geng, P. A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Process. Technol. 2016, 142, 264–278. [Google Scholar] [CrossRef]
- Costa, M.; Piazzullo, D. Biofuel powering of internal combustion engines: Production routes, effect on performance and CFD modeling of combustion. Front. Mech. Eng. 2018, 4, 9. [Google Scholar] [CrossRef]
- Cernat, A.; Pana, C.; Negurescu, N.; Lazaroiu, G.; Nutu, C.; Fuiorescu, D.; Toma, M.; Nicolici, A. Combustion of preheated raw animal fats-diesel fuel blends at diesel engine. J. Therm. Anal. Calorim. 2019, 1–7. [Google Scholar] [CrossRef]
- Reitz, R.D.; Duraisamy, G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog. Energy Combust. Sci. 2015, 46, 12–71. [Google Scholar] [CrossRef] [Green Version]
- CCEM: CCEM Home. Available online: http://www.ccem.ch/index.html (accessed on 10 December 2019).
- Schneider, B.M. Experimentelle Untersuchungen zur Spraystruktur in transienten, verdampfenden und nicht verdampfenden Brennstoffstrahlen unter Hochdruck. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2003. [Google Scholar]
- Margari, O.-N. Optical Investigation of Soot Evolution in Spray Combustion Influence of Fuel Composition and Injection Parameters. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2007. [Google Scholar]
- Wright, Y.M.; Margari, O.-N.; Boulouchos, K.; De Paola, G.; Mastorakos, E. Experiments and simulations of n-Heptane spray auto-ignition in a closed combustion chamber at diesel engine conditions. Flow. Turbul. Combust. 2010, 84, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.; Schneider, B.; Boulouchos, K.; Mojtabi, M.; Wigley, G. Experimental investigation on the spray behaviour for a hollow cone piezo injector with a multiple injection strategy. In Proceedings of the 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, 6 September 2010; pp. 1–9. [Google Scholar]
- Herrmann, K.; Schulz, R.; Weisser, G. Development of a reference experiment for large diesel engine combustion system optimization. In Proceedings of the CIMAC Congress 2007, Vienna, Austria, 21–24 May 2007; p. 15. [Google Scholar]
- Von Rotz, B.; Herrmann, K.; Weisser, G.; Cattin, M.; Bolla, M.; Boulouchos, K.; Box, P.O.; Zürich, C. Impact of evaporation, swirl and fuel quality on the characteristics of sprays typical of large 2-stroke marine diesel engine combustion systems. In Proceedings of the ILASS–Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal, 5–7 September 2011; pp. 1–8. [Google Scholar]
- Von Rotz, B.; Herrmann, K.; Boulouchos, K. Experimental Investigation on the Characteristics of Sprays Representative for Large 2-Stroke Marine Diesel Engine Combustion Systems; SAE Technic Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Schmid, A.; Yamada, N. Spray Combustion Chamber: History and Future of a Unique Test Facility. In Proceedings of the ILASS–Europe 2017. 28th Conference on Liquid Atomization and Spray Systems, Valencia, Spain, 6–8 September 2017; Universitat Politècnica València: Valencia, Spain, 2017. [Google Scholar]
- Vera-Tudela, W.; Kyrtatos, P.; Schneider, B.; Boulouchos, K.; Willmann, M. An experimental study on the effects of needle dynamics on the penetration of a high-pressure methane jet. Fuel 2019, 253, 79–89. [Google Scholar] [CrossRef]
- Brückner, C.; Kyrtatos, P.; Boulouchos, K. Extending the NO x reduction potential with miller valve timing using pilot fuel injection on a heavy-duty diesel engine. SAE Int. J. Engines 2014, 7, 1838–1850. [Google Scholar] [CrossRef]
- Kyrtatos, P.; Zivolic, A.; Brückner, C.; Boulouchos, K. Cycle-to-cycle variations of NO emissions in diesel engines under long ignition delay conditions. Combust. Flame 2017, 178, 82–96. [Google Scholar] [CrossRef]
- Parravicini, M.; Barro, C.; Boulouchos, K. Compensation for the differences in LHV of diesel-OME blends by using injector nozzles with different number of holes: Emissions and combustion. Fuel 2020, 259, 116166. [Google Scholar] [CrossRef]
- Dimopoulos, P. Experimentelle Untersuchung des Strömungsfeldes in motorischen Brennräumen. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1996. [Google Scholar]
- Mitakos, D.; Blomberg, C.; Vandersickel, A.; Wright, Y.; Schneider, B.; Boulouchos, K. Ignition delays of different homogeneous fuel-air mixtures in a rapid compression expansion machine and comparison with a 3-stage-ignition model parameterized on shock tube data. SAE Int. J. Engines 2013, 6, 1934–1952. [Google Scholar] [CrossRef]
- Mitakos, D.A.; Blomberg, C.; Wright, Y.M.; Obrecht, P.; Schneider, B.; Boulouchos, K. Integration of a Cool-Flame Heat Release Rate Model into a 3-Stage Ignition Model for HCCI Applications and Different Fuels; SAE Technical. Paper Series; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Kammermann, T.; Giannakopoulos, G.K.; Koch, J.; Soltic, P.; Boulouchos, K. Early flame propagation of hydrogen enriched methane-air mixtures at quasi laminar conditions in a rapid compression expansion machine. Int. J. Hydrogen Energy 2019, 44, 27107–27122. [Google Scholar] [CrossRef]
- Schlatter, S.; Schneider, B.; Wright, Y.M.; Boulouchos, K. N-heptane micro pilot assisted methane combustion in a rapid compression expansion machine. Fuel 2016, 179, 339–352. [Google Scholar] [CrossRef]
- Srna, A. Experimental Characterization of Pilot-Fuel Ignition, Combustion, and Soot Formation in Dual-Fuel Combustion Systems. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2018. [Google Scholar]
- Kammermann, T.; Koch, J.; Wright, Y.M.; Soltic, P.; Boulouchos, K. Generation of turbulence in a RCEM towards engine relevant conditions for premixed combustion based on CFD and PIV investigations. SAE Int. J. Engines 2017, 10, 2176–2190. [Google Scholar] [CrossRef] [Green Version]
- Kammermann, T. Optical Diagnostics of Ignition and Early Flame Kernel Formation in Premixed Hydrogen-Enriched Methane-Air Flames. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2019. [Google Scholar]
- da Silva, M.J.; de Oliveira, A.; Sodré, J.R. Analysis of processing methods for combustion pressure measurement in a diesel engine. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 282. [Google Scholar] [CrossRef] [Green Version]
- Humair, D. Acquisition of the Dynamic Gas Temperature in a Test Rig for the Examination of Combustion Processes. P8 Thesis, University of Applied Science Northwestern Switzerland, Windisch, Switzerland, 2018. [Google Scholar]
- Kar, K.; Swain, A.K.; Raine, R. Identification of time-varying time constants of thermocouple sensors and its application to temperature measurement. J. Dyn. Syst. Meas. Control 2009, 131. [Google Scholar] [CrossRef]
- Tagawa, M.; Shimoji, T.; Ohta, Y. A two-thermocouple probe technique for estimating thermocouple time constants in flows with combustion: In situ parameter identification of a first-order lag system. Rev. Sci. Instrum. 1998, 69, 3370–3378. [Google Scholar] [CrossRef]
- Bargende, M. Ein Gleichungsansatz zur Berechnung der instationären Wandwärmeverluste im Hochdruckteil von Ottomotoren. Ph.D. Thesis, Technische Hochschule Darmstadt, Darmstadt, Germany, 1990. [Google Scholar]
- Herzig, S. Erfassung des Strömungsfeldes eines Versuchsträgers zur Untersuchung von Brennverfahren mit Hilfe des berührungslosen optischen Messverfahren PIV. Master’s Thesis, University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland, 2018. [Google Scholar]
- Sirovich, L. Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures. Q. Appl. Math. 1987, 45, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.-T.; Guibert, P. Proper orthogonal decomposition analysis for cycle-to-cycle variations of engine flow. Effect of a control device in an inlet pipe. Exp. Fluids 2012, 52, 1519–1532. [Google Scholar] [CrossRef]
- Bailly, C.; Comte-Bellot, G. Turbulence; Experimental Fluid Mechanics; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-16159-4. [Google Scholar]
- Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2018; ISBN 9781260116106. [Google Scholar]
Dimension, Operating Parameter | Value |
---|---|
Cylinder bore | Ø130 mm |
Stroke length | 150 mm |
Connecting rod length | 237.1 mm |
Displacement per cylinder | 1990 cm3 |
Gap height | 1.25 mm 1 |
Max. engine speed | 1800 rpm 2 |
Max. cylinder pressure | 230 bar |
Operating temperature of water and oil | 80 °C 3 |
Dimension, Operating Parameter | Value |
---|---|
Chamber bore diameter | Ø60 mm |
Chamber and neck depth | 20 mm |
Neck width | 60 mm |
Neck length | 45 mm 1 |
Cylinder head heating temperature: | ≤200 C 2 |
Total Internal volume: | 155,600 mm3 |
Compression ratio: | 13.8 |
Component, Operating Parameter | Value |
---|---|
Engine valves | 2 × intake, 2 × exhaust valves Ø16 mm |
Engine valve operation | Pneumatic valve actors, fully variable timing |
Valve lift curve | Trapezoid, fully open in ≈ 5 ms, closed in ≈ 8 ms |
Intake pressure range | p ≤ 7 bar |
Intake air temperature range | >200 °C |
Intake valve heating temperature | ≤200 °C |
Operating Parameter | Value |
---|---|
Engine speed (motored) | 600 rpm |
Peak compression pressure | 100 bar 1 |
Intake valve timing | Open –370° CA, close –180° CA |
Exhaust valve timing | Open 180° CA, close –370° CA |
Cylinder head/intake valve temperature | 150 °C |
Intake manifold air temperature | 150 °C 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, B.; Schürch, C.; Boulouchos, K.; Herzig, S.; Hangartner, M.; Humair, D.; Wüthrich, S.; Gossweiler, C.; Herrmann, K. The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions. Energies 2020, 13, 1794. https://doi.org/10.3390/en13071794
Schneider B, Schürch C, Boulouchos K, Herzig S, Hangartner M, Humair D, Wüthrich S, Gossweiler C, Herrmann K. The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions. Energies. 2020; 13(7):1794. https://doi.org/10.3390/en13071794
Chicago/Turabian StyleSchneider, Bruno, Christian Schürch, Konstantinos Boulouchos, Stefan Herzig, Marc Hangartner, David Humair, Silas Wüthrich, Christoph Gossweiler, and Kai Herrmann. 2020. "The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions" Energies 13, no. 7: 1794. https://doi.org/10.3390/en13071794
APA StyleSchneider, B., Schürch, C., Boulouchos, K., Herzig, S., Hangartner, M., Humair, D., Wüthrich, S., Gossweiler, C., & Herrmann, K. (2020). The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions. Energies, 13(7), 1794. https://doi.org/10.3390/en13071794