Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade
Abstract
:1. Introduction
1.1. Small Wind Turbines—Interest and Research
1.2. Basic Mathematical Formulations
2. Object of the Study
3. Methodology
3.1. Preprocessing
3.2. Solution and Convergence
3.3. Fluid Flow Simulation Results
4. Fluid–Structure Interaction—Structural Assessment
4.1. Operational Cases and Boundary Conditions
4.2. Mesh Creation and Choice
- Sweep method—this mesh parameter forces the software to sweep the elements across the whole length of the blade;
- Face sizing—face sizing of the cross-section enables to create required size element throughout the thickness of the blade;
- Edge sizing of the trailing edge is set in order to obtain in this place at least three elements throughout the blade thickness.
4.3. Stresses and Deformations—Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
FRM | Fully-resolver Rotor Model | |
FSI | Fluid–Structure Interaction | |
GUST | Generative Urban Small Turbine | |
HAWT | Horizontal-Axis Wind Turbine | |
NREL | National Renewable Energy Laboratory | |
SST | Shear Stress Transport (turbulence model) | |
SWT | Small Wind Turbine | |
VAWT | Vertical-Axis Wind turbine | |
Cp | - | Power coefficient |
E | GPa | Young modulus |
Ma | - | Mach number |
P | W | Wind turbine power |
R | m | Rotor radius |
TI | % | Turbulence intensity |
TSR | - | Tip-Speed Ratio |
U | MPa | Tensile strength |
V | m/s | (Reference) wind speed |
cpress | - | Pressure coefficient |
m | kg | (Blade) mass |
p | Pa | Pressure |
y+ | - | Dimensionless distance |
Δβ | deg | Maximal angle of blade twist due to deformation |
δ | mm | Maximal deflection of the blade tip |
ν | - | Poisson’s ratio |
ρ | kg/m3 | Density |
σmax | MPa | Maximal equivalent stress in the blade |
ω | rad/s | Rotational speed |
References
- BP Plc. BP Statistical Review of World Energy 2019; BP Plc: London, UK, 2019. [Google Scholar]
- Ma, T.; Javed, M.S. Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Convers. Manag. 2019, 182, 178–190. [Google Scholar] [CrossRef]
- Neto, P.B.L.; Saavedra, O.R.; Oliveira, D.Q. The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids. Renew. Energy 2020, 147, 339–355. [Google Scholar] [CrossRef]
- Jamieson, P. Multi Rotor Solution for Large Scale Offshore Wind Power. In Proceedings of the EERA Deepwind 2017, Trondheim, Norway, 18–20 January 2017. [Google Scholar]
- Folkecenter for Renewable Energy. Catalogue of Small Wind Turbines (under 50 kW); Folkecenter Print; Folkecenter for Renewable Energy: Hurup Thy, Denmark, 2016. [Google Scholar]
- WINDExchange. WINDExchange, Small Wind Guidebook; US Department of Energy, Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 2020.
- Stathopoulos, T.; Alrawashdeh, H.; Al-Quraan, A.; Blocken, B.; Dilimulati, A.; Paraschivoiu, M.; Pilay, P. Urban wind energy: Some views on potential and challenges. J. Wind Eng. Ind. Aerodyn. 2018, 179, 146–157. [Google Scholar] [CrossRef]
- Anup, K.C.; Whale, J.; Urmee, T. Urban wind conditions and small wind turbines in the built environment: A review. Renew. Energy 2019, 131, 268–283. [Google Scholar]
- Pourrajabian, A.; Dehghan, M.; Javed, A.; Wood, D. Choosing an appropriate timber for a small wind turbine blade: A comparative study. Renew. Sustain. Energy Rev. 2019, 100, 1–8. [Google Scholar] [CrossRef]
- Glück, M.; Breuer, M.; Durst, F.; Halfmann, A.; Rank, E. Computation of fluid–structure interaction on lightweight structures. J. Wind Eng. Ind. Aerodyn. 2001, 89, 1351–1368. [Google Scholar] [CrossRef]
- Löhner, R.; Haug, E.; Michalski, A.; Muhammahd, B.; Drego, A.; Nanjundaiah, R.; Zarfam, R. Recent advances in computational wind engineering and fluid–structure interaction. J. Wind Eng. Ind. Aerodyn. 2015, 144, 14–23. [Google Scholar] [CrossRef]
- Wang, L.; Quant, R.; Kolios, A. Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. J. Wind Eng. Ind. Aerodyn. 2016, 158, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Huque, Z.; Kommalapati, R.; Han, S.-E. Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis. Renew. Energy 2017, 113, 512–531. [Google Scholar] [CrossRef]
- Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S.; Larwood, S.M. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns; National Renewable Energy Laboratory: Golden, CO, USA, 2001.
- MacPhee, D.W.; Beyene, A. Fluid–structure interaction analysis of a morphing vertical axis wind turbine. J. Fluid Struct. 2016, 60, 143–159. [Google Scholar] [CrossRef]
- Lipian, M.; Dobrev, I.; Karczewski, M.; Massouh, F.; Jozwik, K. Small wind turbine augmentation: Experimental investigations of shrouded- and twin-rotor wind turbine systems. Energy 2019, 186, 115855. [Google Scholar] [CrossRef] [Green Version]
- Kulak, M.; Lipian, M.; Zawadzki, K. Investigation of performance of Small Wind Turbine blades with winglets. Int. J. Numer. Method Heat 2020, in press. [Google Scholar] [CrossRef]
- Lipian, M.; Kulak, M.; Stepien, M. Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development. Energies 2019, 12, 1625. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2011. [Google Scholar]
- Grapow, F.; Raszewska, D.; Skalski, R.; Czarnecki, J.; Telega, K.; Miller, M.; Rogowski, P.; Prociow, M. Small wind, big potential: HAWT design case study. MATEC Web Conf. 2018, 234, 01005. [Google Scholar] [CrossRef]
- Kadrowski, D.; Kulak, M.; Lipian, M.; Stepien, M.; Baszczynski, P.; Zawadzki, K.; Karczewski, M. Challenging low Reynolds—SWT blade aerodynamics. MATEC Web Conf. 2018, 234, 01004. [Google Scholar] [CrossRef]
- Lipian, M.; Karczewski, M.; Jozwik, K. Analysis and comparison of numerical methods for design and development of small Diffuser-Augmented Wind Turbine (DAWT). In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016. [Google Scholar]
- Ansys CFX, Release 18.0, Help System, Book: CFX; ANSYS, Inc.: Canonsburg, PA, USA, 2017.
- Open Jet Facility, TU Delft. Available online: https://www.tudelft.nl/lr/organisatie/afdelingen/aerodynamics-wind-energy-flight-performance-and-propulsion/facilities/low-speed-wind-tunnels/open-jet-facility/ (accessed on 23 February 2020).
Blade mass | m | 0.586 | kg |
Density | ρ | 1.15 | kg·m−3 |
Young modulus | E | 3.40 | GPa |
Poisson’s ratio | ν | 0.39 | - |
Ultimate tensile strength | UT | 90 | MPa |
Flexural strength | UF | 109 | MPa |
Inlet | Wind velocity V, turbulence intensity TI = 5% |
Outlet | Static pressure p = 0 Pa |
Side surfaces | Rotational periodicity |
External surface | Opening (inflow and outflow), relative pressure 0 Pa |
Blade, hub | No slip smooth wall |
V, m/s | TSR, - | Rotational Velocity | ||
---|---|---|---|---|
[rpm] | [rad/s] | |||
Max thrust | 12 | 5 | 716 | 74.98 |
Overload conditions | 24 | 5 | 1432 | 149.96 |
Extreme working load | 42 | 5 | 2500 | 261.80 |
Extreme static load | 42 | - | 0 | 0 |
Method | Number of Elements | |||
---|---|---|---|---|
Sweep | Sizing of the Tip Cross-Section | Edge Sizing | ||
Mesh | El. Length, mm | El. Size, mm | No of Divisions | |
I | 3 | 0.4 | 4 | 243,780 |
II | 5 | 0.6 | 3 | 69,498 |
III | 5 | 0.6 | 3 | 49,572 |
IV | 51 | 0.6 | 3 | 69,498 |
Mesh | δ, mm | σmax, MPa | Δβ, deg |
---|---|---|---|
I | 58.249 | 8.295 | 0.032 |
II | 57.882 | 8.453 | 0.036 |
III | 57.817 | 8.641 | 0.034 |
IV | 57.511 | 8.815 | 0.033 |
average | 57.864 | 8.551 | 0.034 |
δ, mm | σmax, MPa | Δβ, deg | |
---|---|---|---|
Max thrust | 58.249 | 8.551 | 0.034 |
Overload conditions | 223.939 | 31.131 | 0.453 |
Extreme working load | 621.616 | 90.141 | 1.403 |
Extreme static load | 56.824 | 8.365 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipian, M.; Czapski, P.; Obidowski, D. Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade. Energies 2020, 13, 1832. https://doi.org/10.3390/en13071832
Lipian M, Czapski P, Obidowski D. Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade. Energies. 2020; 13(7):1832. https://doi.org/10.3390/en13071832
Chicago/Turabian StyleLipian, Michal, Pawel Czapski, and Damian Obidowski. 2020. "Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade" Energies 13, no. 7: 1832. https://doi.org/10.3390/en13071832
APA StyleLipian, M., Czapski, P., & Obidowski, D. (2020). Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade. Energies, 13(7), 1832. https://doi.org/10.3390/en13071832