
energies

Article

Accurate Deep Model for Electricity Consumption
Forecasting Using Multi-Channel and Multi-Scale
Feature Fusion CNN–LSTM

Xiaorui Shao , Chang-Soo Kim * and Palash Sontakke

Department of Information Systems, Pukyong National University, Busan 608737, Korea;
shaoxiaoruil@pukyong.ac.kr (X.S.); palashsntkk65@gmail.com (P.S.)
* Correspondence: cskim@pknu.ac.kr

Received: 13 March 2020; Accepted: 10 April 2020; Published: 12 April 2020
����������
�������

Abstract: Electricity consumption forecasting is a vital task for smart grid building regarding the
supply and demand of electric power. Many pieces of research focused on the factors of weather,
holidays, and temperatures for electricity forecasting that requires to collect those data by using kinds
of sensors, which raises the cost of time and resources. Besides, most of the existing methods only
focused on one or two types of forecasts, which cannot satisfy the actual needs of decision-making. This
paper proposes a novel hybrid deep model for multiple forecasts by combining Convolutional Neural
Networks (CNN) and Long-Short Term Memory (LSTM) algorithm without additional sensor data,
and also considers the corresponding statistics. Different from the conventional stacked CNN–LSTM,
in the proposed hybrid model, CNN and LSTM extracted features in parallel, which can obtain
more robust features with less loss of original information. Chiefly, CNN extracts multi-scale robust
features by various filters at three levels and wide convolution technology. LSTM extracts the features
which think about the impact of different time-steps. The features extracted by CNN and LSTM
are combined with six statistical components as comprehensive features. Therefore, comprehensive
features are the fusion of multi-scale, multi-domain (time and statistic domain) and robust due to the
utilization of wide convolution technology. We validate the effectiveness of the proposed method
on three natural subsets associated with electricity consumption. The comparative study shows
the state-of-the-art performance of the proposed hybrid deep model with good robustness for very
short-term, short-term, medium-term, and long-term electricity consumption forecasting.

Keywords: smart grid; electricity forecasting; CNN–LSTM; very short-term forecasting (VSTF);
short-term forecasting (STF); medium-term forecasting (MTF); long-term forecasting (LTF)

1. Introduction

Accurate, reliable, and timely electricity consumption information is the key to ensure a stable
and efficient electricity supply. However, the electricity consumption in daily life usually fluctuates
with time, region, season, temperature, and society. Even in the same city, electricity consumption
in different areas may vary. Typically, the power company arranges fixed personnel to provide the
electricity supply of the fixed place. Once there is a surge of local electricity consumption, the electricity
supply of the area will be affected, thus affecting the healthy life. Forecasting actual future electricity
consumption can make corresponding adjustments in time to avoid this situation. There are three types
of forecasts according to the forecasting duration: short-term forecast (STF), medium-term forecasting
(MTF), and long-term forecasting (LTF). Generally, STF focuses on the time range from 24 h to one
week; MTF focuses on the time range from one week to one month, and LTF focuses on the time range
longer than the other two types [1,2].
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Different types of electric power forecasting have different purposes: The short-term electricity
consumption forecasting supports the personnel and equipment arrangement of the next day. The
medium-term electricity consumption forecasting gives decision support for the human resource
allocation of the power company. The long-term electricity consumption forecasting is a significant
decision basis from the macro perspective. To deal with an emergency such as line damage, natural
disasters, and so on, very short-term (VST) power consumption forecasting is also essential. We defined
very short-term electricity forecasting in this paper is hourly.

Different methods have been carried out for power forecasting, which mainly contains three
categories: regression-based, time series-based, and machine learning-based methods [3]. The
regression-based method can be divided into two sub-classes: Normal regression such as simple
linear regression, lasso regression, ridge regression, and autoregression methods such as vector
auto-regression (AR) and vector moving average (MA). Especially, Tang et al. applied a LASSO-based
approach to forecast the current solar power generation by using the past 30 days of data and achieve
better results than the support vector machine-based method [4]. Yu et al. applied an improved
AR-based method for short-term hourly load forecasting, which was tested on two kinds of real-time
hourly data sets [5]. Ordinary regression only considers the relationship of current variables and needs
additional related data. However, the dependent variables are affected by the relevant variables of the
current and past periods. The autoregressive model takes into account the impact of the current and
past points, but it requires data that must be stationary. To overcome the disadvantages that occurred
in the regression-based method, a time series-based method is presented for energy consumption
forecasting. Autoregressive integrated moving average model (ARIMA) is one of the most excellent
time series-based models. It not only considers the impact of the current and past periods but also can
be used for non-stationary data. The ARIMA model can be symbolized as ARIMA(p, d, q), where p is
the parameter of lag pth order autocorrelation, q is the parameter of lag qth order partial autocorrelation,
and d is the parameter for generating stationary time series. Usually, d ranges from 1 to 2; p, q range
from 8 to 10 [3,6]. ARIMA has been employed for short-term power forecasting in [7,8]. Mitkov et al. [9]
proved that ARIMA could be used for MTF and LTF for electricity forecasting.

The above regression-based and time series-based methods consider the relationship between
the past and the current time is linear. However, most of the hidden relationships are nonlinear.
The machine learning-based method can overcome this issue by using different nonlinear kernels
such as support machine vectors (SVMs). Although some studies have successfully used SVM to
predict energy consumption, there will be overfitting when data is broad [3,10]. Fortunately, the deep
learning-based method can handle the overfitting problem very well with a good forecasting result.
Recently, the convolutional neural network (CNN) [11], one of the mighty deep learning methods, has
been widely applied for power forecasting due to its excellent feature extraction capacity. Li et al. [12]
reshapes the data into two dimensions as an image and then applies CNN for short-term electrical load
forecasting. A novel multi-scale CNN considering time-cognition was presented in [13] for multi-step
short-term load forecasting. Suresh et al. developed a new sliding window algorithm to generate data
to forecast solar PV using multi-head CNN in making STF and MTF [14]. Kim et al. applied CNN for
VST photovoltaic power generation forecasting and compared it with the long short-term memory
(LSTM) method, proving that the CNN-based method is better than LSTM for VSTF [15]. Another deep
learning-based method LSTM was used for LTF and STF problems as it has long-term memory [16].
Ma et al. [17–20] employed LSTM for STF in the area of power. For LTF problems, Agrawal et al.
presented a novel model by combining LSTM and recurrent neural network (RNN) to predict future
five-year electricity loads [21]. An enhanced deep model was proposed in Han’s work [22] for STF and
MTF of electric load. The attention mechanism was combined into LSTM for short-term photovoltaic
power forecasting in Zhou’s work [23]. In order to overcome the shortcomings of a single model, some
hybrid models are proposed for power forecasting, such asWang et al. [24] proposed ARIMA–LSTM
for daily water level forecasting. It used LSTM to forecast the residuals through results and then
utilized ARIMA to train the model with residuals. However, it is complex to build so many ARIMA
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models to get the residuals when the data size is massive. Another hybrid model, CNN–LSTM, is
proposed in Kim’s work [25] for minutely, hourly, daily, and weekly electricity energy consumption
forecasting using multi-variables as input. Hu et al. [26] also applied CNN–LSTM for daily urban
water demand forecasting using related meteorological data. However, collecting such correlated
variables is hard and time-consuming in reality. Although Yan et al. proposed a hybrid of CNN–LSTM
to predict power consumption by using raw time series, it only focused on VSTF (minutely) [27].
Moreover, Yan et al. [28] proposed a hybrid LSTM model, in which wavelet transform (WT) is applied
to preprocess the raw univariate time series firstly. Later, stationary parts of transformation are selected
for VSTF (minutely). However, there is a problem that occurred in Yan’s work [28] is that we still need
to select the stationary part by hand.

The limitations of current research for energy consumption forecasting are summarized as follows.
On the one hand, most above methods only focused on one or two types of forecasts among VSTF, STF,
MTF, and LTF. However, we need to master various types of future power consumption information to
improve power supply efficiency and realize the smart grid. On the other hand, most existing methods
refer to multi-variable regression, which requires collecting multiple related data. Motivated by this, we
present a highly accurate deep model for various types of electricity forecasts by only using self-history
data. We call this deep model multi-channels and scales CNN–LSTM (MCSCNN–LSTM). The proposed
MCSCNN–LSTM employs dual channels as input to extract rich, robust feature representations from
different domains of raw data. One channel is the raw sample, and the other is the information of
statistics corresponding to the raw sample. We adopted the parallel structure of CNN–LSTM, which is
different from conventional CNN–LSTM. At first, the CNN part in this structure extracts multi-scale
and global features from the first channel using multi-scale and wide convolution technology. Then,
the LSTM part guarantees to extract features that have a long-time dependency from the raw data. At
last, combined with CNN, LSTM extracted features with statistics channels as comprehensive features
to forecast the electricity consumption.

The biggest challenge is that the power consumption time series only has fewer time points rather
than vibration signal, image, and video. It requires us to use CNN seriously due to the obtained data
being relatively low dimensional. The strategy of this paper is to use a few pooling layers to reduce the
loss of valuable information.

The main contributions of this paper are summarized as follows:

• To the best of our understanding, a few types of research focused on using one model for VSTF,
STF, MTF, and LTF. This paper addresses this issue with MCSCNN–LSTM.

• The hybrid deep model MCSCNN–LSTM was designed, trained, and validated.
The MCSCNN–LSTM obtains the highest performance compared to the current
state-of-the-art methods.

• The proposed method can accurately forecast electricity consumption by inputting the self-history
data without any additional data and any handcrafted feature selection operation. Therefore, it
reduces the cost of data collection while simultaneously keeping high accuracy.

• The feature extraction capacity of each part has been analyzed.
• The excellent transfer learning and multi-step forecasting capacities of the proposed

MCSCNN–LSTM have been proven.

The rest of the paper is arranged as follows. Section 2 formalizes our problem and gives the
data generation method. Section 3 introduces the theoretical background of the proposed approach
consisting of CNN, LSTM, and statistical components knowledge. Section 4 gives the proposed
architecture for electricity forecasting. Each type of forecasting mission is defined in this section also.
In Section 5, comparative experimental studies on three datasets are carried out. In Section 6, we
discuss the proposed deep model. Section 7 presents the conclusions and feature work.
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2. Problem Formulations

Our purpose is to forecast future power consumption using self-historical data. The self-historical
data of power consumption could be expressed as a time series as follows:

T = (t1, t2, t3, . . . , ti, . . . , tN) (1)

where T contains N data points. Different types of forecasts have different elements in T. We defined
four types of forecasts as shown in Table 1 and described follows.

• VSTF: Hourly forecasting, power consumption data of previous H hours are employed for
next-hour power consumption forecasting.

• STF: Daily forecasting, applying power consumption data of previous D days to get the next day’s
power consumption.

• MTF: Weekly forecasting, using power consumption data of previous W weeks to forecast power
consumption of the next week.

• LTF: Monthly forecasting, the power consumption data of previous M months are employed to
get the next one month.

Table 1. Defined four types of forecasts.

Forecasts Types Length of Input History Data Outputs

VSTF (hourly) Previous H hours Next one hour
STF (daily) Previous D days Next one day

MTF (weekly) Previous W weeks Next one week
LTF (monthly) Previous M months Next one month

The time series T needs to reconstruct as Equation (2) to satisfy the input of the proposed deep
model. The input matrix includes N − L samples; the length of sample x(t) is L. Different types of
forecasts have different L, which corresponds to H, D, W, and M. The corresponding output is defined
as Equation (3). Every output is the electricity consumption of the next duration.

Input =


t1 t2 t3 · · · tL−1 tL

t2 t3 t4 · · · tL tL+1
...

...
...

. . .
...

...
tN−L tN−L+1 tN−L+2 . . . tN−2 tN−1

 (2)

Output =


tL+1

tL+2
...

tN

 (3)

3. Methods

3.1. CNN

CNN is a typical feedforward neural network. It virtually constructs various filters that can extract
the characteristics of input data. Through these filters, the input data is convoluted and pooled, and
the topology features hidden in the data are extracted step by step. With the deep entry of the network
layer, the extracted features are abstracted. Therefore, the extracted features have translation, scaling,
and rotation invariance. The sparse connection in CNN reduces the number of training parameters and
speeds up the convergence; weight sharing effectively avoids algorithm overfitting; and downsampling
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makes full use of the features of the data and reduces the data dimension, optimizing the network
structure [29,30]. CNN can deal with one-dimensional (1-D) signals and sequences, two-dimensional
(2-D) images, and three-dimensional (3-D) videos. We apply CNN to extract features from 1-D
sequences in this paper.

The essential components of CNN are convolutional operation and pooling operation. Through
convolution operation, high-level local region feature representations are extracted with different filter
kernels. The convolution process is described as follows:

xl
j = f (

∑
i∈M j

xl−1
i × kl

i j + Bl
j) (4)

where xl
j are the j feature maps of lth layer through convolution operation between l− 1th’s output xl−1

i

and j filters kl
i j, Bl

j is j bias of each feature map; i is in the range of j input values M j. After convolution

operation, xl
j is processed with an activation function. The comprehensive result al

j is the input of the
next layer. Rectified Linear Unit (ReLU) was widely applied to accelerate and converge the CNN,
which enabled a nonlinear expression of input signals to enhance the representation ability. Which is
formalized as follows:

al
j = max

(
0, xl−1

j

)
(5)

Another key component of CNN is the pooling operation, which is employed to reduce the
dimension of input data and ensure scale invariance. Thus, obtained features are more stable, especially
when data is acquired from a noisy environment. There are three types of pooling operations: maximum,
minimum, and average pooling operation. We give an example of utilizing maximum pooling, which
is expressed as follows:

pl
j = max

(
ql−1

j (t)
)
, t ∈ [( j− 1)w, jw] (6)

where pl
j is the output of maximum value among l − 1th layer obtained feature maps ql−1

j (t), t is tth

output neurons at jth layer in the network, w is the width of pooling size. Further details of CNNs can
be found in LeCun’s paper [11].

3.2. LSTM

The traditional feedforward neural networks only accept information from input nodes. They do
not “remember” input to different time series [31]. Thus, it cannot extract the hidden features which
have a long-time dependency from raw data. LSTM is proposed for overcoming this shortcoming
as its long-term memory character [16]. It is a kind of special recurrent neural network (RNN). It
implements memory function through gate structure in one cell as shown in Figure 1. The key point of
the LSTM cell is the upper horizontal line, and it works like a conveyor belt; the information will not
change during the transmission. It deletes old information or adds new information through three
gate structures: forgot gate, input gate, and out gate. The output value of three gates and updated
information are expressed using ft, it, ot, Ĉt as shown in the following formulas:

ft = σ
(
w f ·[ht−1, xt] + b f

)
(7)

it = σ(Wi·[ht−1, xt] + bi) (8)

Ĉt = tan h(WC·[ht−1, xt] + bC) (9)

Ct = ft ∗Ct−1 + it∗Ĉt (10)

ot = σ(wO·[ht−1, xt] + bO) (11)

ht = σ(wO·[ht−1, xt] + bO)∗ tan h(Ct) (12)
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where Ct represents the memory cell which integrates the old useful information ft ∗Ct−1 and adds
some new information it∗Ĉt. W f , i, o represents the weight and bias vectors of the abovementioned
gates. σ is activation function sigmoid, ht−1 is the LSTM value of the previous time step, and xt is
input data.Energies 2020, 13, 1881 6 of 22 
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Figure 1. The structure of Long-Short-Term Memory (LSTM) cells.

3.3. Statistical Components

Statistics is a variable used to analyze and test data in statistical theory. It is the macro performance
of data in the statistical domain. This paper creatively applied statistical components as one of the
dual channels in the deep model to extract more features. The input matrix of raw time series we
already defined as Equation (2). Each raw sample x(t)εInput corresponds to six tuples named Statistics,
which contains mean, max, min, standard deviation (Sd), skewness (Skew), and kurtosis (Kurt), which
are defined as Equations (13)–(18).

mean(t) =
1
M

M∑
t=1

x(t) (13)

max(t) = max(x(t)) (14)

min(t) = min(x(t)) (15)

Sd(t) =

√√√
1
M

M∑
t=1

(x(t) −mean(t))2 (16)

Skew(t) = E

(x(t) −mean(t)
sd(t)

)3 (17)

Kurt(t) = E

(x(t) −mean(t)
sd(t)

)4 (18)

4. Proposed Deep Model

We propose a deep model that has dual-channel inputs. One is raw data, and the other contains the
six tuples of statistical components as we defined above. The overall architecture of the proposed deep
model for electricity consumption forecasting can be seen from Figure 2 and a detailed configuration
of the proposed deep model is shown in Table 2.
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Figure 2. The architecture of the proposed multi-channels and scales convolutional neural networks
(MCSCNN)–LSTM at three levels.

Table 2. Detailed configuration information of the proposed deep model.

Layer Output Shape Connected To Parameters

Input1 (Raw) (None, 24, 1) − 0
Input2 (Statistic) (None, 6, 1) − 0

Conv1_1 (None, 12, 16) Input1 48
Conv1_2 (None, 8, 16) Input1 64
Conv1_3 (None, 6, 16) Input1 80
Conv2_1 (None, 12, 16) Conv1_1 528
Conv2_2 (None, 8, 16) Conv1_2 528
Conv2_3 (None, 6, 16) Conv1_3 528

Concatenate_1 (None, 26, 16)
Conv2_1,
Conv2_2,
Conv2_3

0

Static_Conv (None, 11, 10) Concatenate_1 2570
Global_Maxpooling (None, 5, 10) Static_Conv 0

Flatten_1 (None, 50) Global_maxpooling 0
LSTM_1 (None, 24, 20) Input2 1760
LSTM_2 (None, 10) LSTM_1 1240
Flatten_2 (None, 6) Input2 0

Concatenate_2 (None, 66)
LSTM_2
Flatten_1
Flatten_2

0

Dense (Output) (None, 1) Concatenate_2 67

Modifying the hyperparameters such as number and size of filter can improve the performance
of the model. We defined the configuration information of MCSCNN–LSTM empirically. Here, we
defined H, D, W, M as 24. The filter numbers of CNN decrease from 16 to 10 due to the shallow CNN
layer being in charge of the detailed local feature extraction; the deeper CNN layer functions to capture
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abstract global feature representations. At the same time, LSTM is relatively time-consuming, so we
defined proper output nodes in two LSTM layers as 20 and 10, respectively. From Figure 2, we can see
six parts in our MCSCNN–LSTM: Input, CNN feature extraction, LSTM feature extraction, feature
fusion, output, and weights updating. Every part is explained in detail as follows.

4.1. Input

The proposed deep model has double-channel inputs: raw sample x(t) from the input matrix and
six statistic components Statistics(x(t)), which can be written as:

In =
{
(x(t), Statistics(x(t)))

}
(19)

Moreover, we transform the raw sample into one tensor with the shape of (24, 1), and six tuples
Statistics into tensor with the shape of (6, 1) to satisfy the input requirements of the deep model. The
reshaped tensor is defined in (20).

Tensorin =
{
Reshape(In)

}
=

{
(Reshape(x(t)), Reshape(Statistic(x(t))))

}
(20)

4.2. CNN Feature Extraction

Different from other CNNs, we adopted only one pooling layer to reduce the dimension of extracted
features due to the data we used with lees dimensions, which is motivated by [31]. Firstly, CNN
models the multi-scale local features from raw sample tensor Reshape(x(t)) at three-scale convolution
operations—Conv1_1, Conv1_2, and Conv1_3—using different size kernels with shapes of 1 × 2,
1× 3, 1× 4. The convoluted results are activated by “ReLU”, as defined in Equation (5). In order to
obtain more robust features, we applied one more convolutional layer to extract the abstract feature
representations again; they are Conv2_1, Conv2_2, and Conv2_3. At last, extracted multi-local features
are processed by one wide convolution layer “Global_Conv” to obtain global representations. CNN
extracted features are expressed as Equation (21) and then are flattened for the next step, where CNN()

is the process of this sub-section.

CNNfeatures = CNN(Reshape(x(t))) (21)

4.3. LSTM Feature Extraction

Although CNN extracted rich feature representations, we doubt whether CNN can extract some
critical hidden features having a long-time dependency. Based on this point, we employed LSTM to
extract those features. Two-stacked LSTM layers are employed in this deep model, and every LSTM
layer contains some LSTM cells as shown in Figure 1. The features LSTM extracted are expressed as
Equation (22). LSTM() is the process of this sub-section.

LSTMfeatures = LSTM(Reshape(x(t))) (22)

4.4. Feature Fusion

Conventional CNN–LSTM is a stacked structure, in which CNN extracted features are processed
by LSTM again. Different from conventional CNN–LSTM, this paper adopted a parallel pattern of
CNN–LSTM to extract the features and then merged the features they extracted with flattening statistics
components. Therefore, we obtained fusion features that are multi-scale and multi-domain (time and
statistic domains), which are expressed as:

FUSION f eatures=Concatenate(CNN f eatures, LSTM f eatures, Flatten(Reshape(Statistic(x(t)))) (23)
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4.5. Output

After obtaining the rich, robust feature representations, the output is given by using one full
connection layer between the output nodes and the fusion features, which can be defined as:

Output = W·FUSION f eatures + B (24)

where W is the weight matrix and B is the bias. This paper mainly focuses on power consumption
forecasting of one duration unit (hourly, daily, weekly, and monthly). It is easy to extend the forecast of
multi-duration units by setting the nodes of output; we will discuss this later.

4.6. Updating the Networks

Backpropagation [32] algorithm was employed for updating the weights of the hidden layer
according to the loss function, and “Adam” [33] was selected as the optimizer for finding the
convergence path. The loss function we applied in this deep model is Mean Squared Error (MSE) as
shown in Equation (25), where yi is ground truth electricity consumption and ỹi is forecasting electricity
consumption using the proposed hybrid deep model.

MSE =
1
N

N∑
i=1

(yi − ỹi)
2 (25)

Electricity forecasting using the proposed model is formalized as Equation (26), where
MCSCNN_LSTM() is our model, and x(t)′ is new history electricity consumption data points.

consumption = MCSCNN_LSTM
(
x(t)′, Statistic

(
x(t)′

))
(26)

5. Experiment Verification

In order to verify the effectiveness of the proposed deep model, we designed the following
experiments using three datasets. The experiments are based on the operating system of Ubuntu
16.04.3, 64 bits with 23.4 GB RAM, and Intel (R) i7-700 CPU of processing speed 3.6 GHz. We used
Keras to implement our proposed deep model.

5.1. Dataset Introduction

The data we adopted for validating the priority of the proposed method is from Pennsylvania-New
Jersey-Maryland (PJM), which is a regional transmission organization in the USA. It is a part of the
Eastern Interconnection grid operating an electric transmission system serving all or parts of some
states. Different companies supply different regions. This paper applies three data sets from three
companies: American Electric Power (AEP), Commonwealth Edison (COMED), and Dayton Power
and Light Company (DAYTON). The raw data set of those is hourly consumption in megawatts
(MW), and detailed information is described in Table 3. The data is available on the website of
kaggle.com/robikscube/hourly-energy-consumption.

Table 3. Induction of data sets.

Dataset Start Date End Date Length

AEP 2004-12-31 01:00:00 2018-01-02 00:00:00 121,273
COMED 2011-12-31 01:00:00 2018-01-02 00:00:00 66,497
DAYTON 2004-12-31 01:00:00 2018-01-02 00:00:00 121,275

The original data is utilized to validate the effectiveness of VSTF. For the other forecasting tasks,
we use an overlapping sample algorithm to generate corresponding samples for each forecast, as

kaggle.com/robikscube/hourly-energy-consumption
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shown in Algorithm 1. The stride of the algorithm we defined is one. Notably, we adopted the sample
rate of 24 h, 168 h, and 720 h to generate each type of sample for STF, MTF, and LTF. One electricity
consumption at different durations is given in Figure 3, in which different types fluctuate differently,
respectively, VSTF and STF, which fluctuate frequently.

Algorithm 1: Overlapping sample algorithm

Input: Hourly electricity consumption historical time series hourly
Output: Daily, weekly, and monthly electricity consumption historical time series samples and labels.
Define the length of samples D, W, M as 24.
Step 1: Integrating the original data for different forecasts

daily < −sum(hourly, 24) #adopt the sample rate of 24 h for STF
weekly < −sum(hourly, 168) #adopt the sample rate of 168 h for MTF
monthly < −sum(hourly, 720) #adopt the sample rate of 720 h for LTF

Step 2: Generating the feature and label of each sample corresponding to the (2) and (3)
For i in range (length(daily/weekly/monthly)): # different forecasts have different contents

daily f eatures < −daily[i : i + D]

dailylables < −daily[i + D + 1]
weekly f eatures < −weekly[i : i + W]

weeklylabels < −weekly[i + W + 1]
monthly f eatures < −monthly[i : i + M]

monthlylabels < −monthly[i + M + 1]
End for

Return daily f eatures, dailylabels, weekly f eatures, weeklylabels, monthly f eatures, monthlylabels
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A description of each data for different forecasts is shown in Table 4. The first 80% of samples are
utilized for training the model; the last 20% of samples are utilized to validate. Before starting the
experiment, we adopted Equation (27) to normalize each data to work out the impact of different sizes
of units, where x′ is the normalized data point of time series T and x is the raw data sample.

x′ =
x−min(T)

max(T) −min(T)
(27)
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Table 4. The description of each data set for different forecasts.

Forecasts Dataset Samples

VSTF (Hourly)
AEP 121,249

COMED 66,473
DAYTON 121,251

STF (Daily)
AEP 121,225

COMED 66,449
DAYTON 121,227

MTF (Weekly)
AEP 121,081

COMED 66,305
DAYTON 121,083

LTF (Monthly)
AEP 120,529

COMED 65,753
DAYTON 120,531

5.2. Evaluation Metrics

In order to fairly evaluate the effectiveness of the proposed MCSCNN–LSTM deep model, we
adopted multiple evaluation metrics consisting of the root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE), as shown in Equations (28)–(30), where N is
the number of testing samples, the f orecast is the forecasted value, and real is the ground truth. RMSE
evaluates the model by the standard deviation of the residuals between real values and forecasted
values; MAE is the average vertical distance between ground truth values and forecasted values and is
more robust to the larger errors than RMSE. However, when massive data are utilized for training
and evaluating the model, the RMSE and MAE increase significantly and quickly. Therefore, MAPE is
needed, which is the ratio between residuals and actual values.

RMSE =

√∑N
n=1( f orecastn − realn)

2

N
(28)

MAE =

∑N
n=1

∣∣∣ f orecastn − realn
∣∣∣

N
(29)

MAPE =
100%

N

N∑
n=1

∣∣∣∣∣ f orecastn − realn
realn

∣∣∣∣∣ (30)

5.3. Performance Comparison with Other Excellent Methods

We compared our proposed method to other excellent deep learning-based methods: DNN- [34],
NPCNN- [35], LSTM- [20], and CNN–LSTM-based [25] methods. The structure and configuration
information of the above comparative methods are given in Table 5. Because the abovementioned
methods employed other additional sensor data, we adopted the structure of them only. Conv1D
is a convolutional layer with 1-D; Max1D is a max-pooling layer with 1D. We run 10 times of each
deep learning-based method to overcome the impact of randomness, and every time runs at 50 epochs.
Furthermore, we found the above NPCNN- [35], LSTM- [20], and CNN–LSTM-based [25] methods
did not learn at some iterations. It means the loss does not decrease with the increase of training
epochs. Instead, they keep one constant value from the first epoch. In summary, NPCNN, LSTM, and
CNN–LSTM highly rely on initial processing. The results of this phenomenon are listed in Table 6,
which gives the times of the above cases during 10-time training processes for each forecast. Notably,
the term “None” means it always learns from raw data and is not sensitive to the random initial
settings. For electricity consumption, we must avoid unpredicted and unexpected factors. However,
NPCNN- [35], LSTM- [20], and CNN–LSTM-based [25] methods highly rely on initialization. The
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findings show only DNN [34], and the proposed method always learns so that they are considered
as stable.

Table 5. The structure and configuration information of comparative methods.

Method Structure# Layer (Neurons) Activation
Function

[34] DNN Input-Dense(24)-Dense(10)-Flatten-Output Sigmoid
[35] NPCNN Input-Conv1D(5)-Max1D(2)-Flatten(Dense(1))-Dense(10)-Output ReLu

[20] LSTM Input–LSTM(20)–LSTM(20)-Output ReLu

[25] CNN–LSTM Input-Conv1D(64)-Max1D(2)-Conv1D(2)-Flatten(Max1D(2))–
LSTM(64)-Dense(32)-Output ReLu

Table 6. The non-training times of each deep learning-based method among 10 times.

Dataset Method VSTF STF MTF LTF

AEP

[34] DNN None None None None
[35] NPCNN 2 3 2 2

[20] LSTM 5 4 5 2
[25] CNN–LSTM 2 2 3 2

Proposed None None None None

COMED

[34] DNN None None None None
[35] NPCNN 3 3 2 2

[20] LSTM 5 4 5 4
[25] CNN–LSTM 2 3 4 2

Proposed None None None None

DAYTON

[34] DNN None None None None
[35] NPCNN 2 2 3 2

[20] LSTM 4 4 2 3
[25] CNN–LSTM 2 2 1 2

Proposed None None None None

We compared the proposed method to the stable DNN [34] with averaged metrics of 10 times,
and also compared averaged metrics of the proposed approach to the best results of three unstable
methods: NPCNN [35], LSTM [20], and CNN–LSTM [25] in 10 times, as shown in Table 7 with RMSE,
Table 8 with MAE, and Table 9 with MAPE. The findings reveal that our proposed method has absolute
priority for different durations electricity forecasting at all evaluation metrics compared to DNN. Even
when compared to the best results of the other three methods, the proposed MCSCNN–LSTM keeps
the highest performance of all metrics for all data sets except for VSTF on the data set DAYTON
with evaluation metric MAPE, and RMSE on data set AEP for STF. LSTM [20] performs a little better.
In summary, the proposed MSCSNN–LSTM could forecast the electricity consumption of different
durations accurately and stably.

The averaged improvements of MAPE on different data as shown in Figure 4. The results show
that it improves a lot at all durations forecasts. Especially for STF, MTF, and LTF, which was beyond
50% compared to all the above methods. We select stable DNN as listed in Table 7 to compare the
predicted results, as shown in Figure 5. The findings show both the proposed method and DNN [34]
can predict the global trend of electricity consumption at VSTF, STF, and LTF. However, DNN cannot
predict long-term electricity consumption. Moreover, the proposed method outperforms DNN; it can
predict more detailed irregular trends for VSTF, STF, and LTF, respectively. We can see details from the
marked deep-red box in VSTF and STF of Figure 5.
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Table 7. The comparison results with RMSE.

Dataset Method RMSE (VSTF) RMSE (STF) RMSE (MTF) RMSE(LTF)

AEP

[34] DNN 389.79 756.15 2864.03 15,387.72
[35] NPCNN 476.38 1866.71 4220.96 40,393.06

[20] LSTM 298.28 124.19 757.13 4876.94
[25] CNN–LSTM 374.39 711.02 2408.09 20,060.97

Proposed 294.03 424.14 665.29 3385.70

COMED

[34] DNN 310.69 765.16 3908.04 10,934.82
[35] NPCNN 439.07 1090.17 6,274.38 14,900.91

[20] LSTM 251.47 426.46 2925.53 30,407.07
[25] CNN–LSTM 272.18 501.70 3082.33 4654.41

Proposed 240.51 377.74 520.02 3122.94

DAYTON

[34] DNN 61.49 112.43 311.37 1299.99
[35] NPCNN 71.16 183.90 390.88 1399.25

[20] LSTM 43.84 142.49 107.87 444.95
[25] CNN–LSTM 47.08 109.42 175.67 502.58

Proposed 43.68 65.68 95.84 270.40

Table 8. The comparison results with MAE.

Dataset Method MAE (VSTF) MAE (STF) MAE (MTF) MAE (LTF)

AEP

[34] DNN 246.41 583.44 2052.89 10,384.48
[35] NPCNN 332.21 1682.52 2506.76 16,803.83

[20] LSTM 198.67 995.27 613.45 3732.41
[25] CNN–LSTM 248.65 508.70 1705.03 11,723.84

Proposed 180.94 250.15 494.04 2788.86

COMED

[34] DNN 198.20 611.87 2951.25 8023.53
[35] NPCNN 333.18 813.53 5427.71 11,953.35

[20] LSTM 156.24 316.02 2831.15 30,082.99
[25] CNN–LSTM 179.20 405.19 1181.74 3274.47

Proposed 142.60 244.50 345.84 2434.41

DAYTON

[34] DNN 39.93 88.92 244.97 1145.00
[35] NPCNN 49.81 135.24 312.21 1247.53

[20] LSTM 29.10 116.53 613.45 372.93
[25] CNN–LSTM 28.82 79.36 131.67 392.52

Proposed 27.12 38.68 70.04 212.64

Table 9. The comparison results with MAPE.

Dataset Method MAPE (VSTF) MAPE (STF) MAPE (MTF) MAPE (LTF)

AEP

[34] DNN 1.68 0.16 0.08 0.10
[35] NPCNN 2.32 0.46 0.10 0.17

[20] LSTM 1.65 0.27 0.03 0.03
[25] CNN–LSTM 1.70 0.15 0.07 0.11

Proposed 1.23 0.06 0.02 0.03

COMED

[34] DNN 1.79 0.23 0.16 0.10
[35] NPCNN 3.02 0.30 0.29 0.15

[20] LSTM 1.41 0.12 0.15 0.38
[25] CNN–LSTM 1.68 0.15 0.07 0.04

Proposed 1.30 0.09 0.02 0.03

DAYTON

[34] DNN 1.99 0.19 0.07 0.08
[35] NPCNN 2.58 0.28 0.09 0.08

[20] LSTM 1.36 0.23 0.03 0.03
[25] CNN–LSTM 1.49 0.16 0.04 0.03

Proposed 1.38 0.08 0.02 0.01
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Energies 2020, 13, 1881 15 of 22

5.4. Feature Extraction Capacity of MCSCNN–LSTM

To better understand the feature extraction capacity of the proposed MCSCNN–LSTM, firstly,
we compared it to some single models in MCSCNN–LSTM using the metric of MAPE: Multi-Scale
CNN (MSCNN), Multi-Channel and Multi-Scale CNN (MCSCNN), and hybrid conventional stacked
CNN–LSTM (SCNN–LSTM). The structure of LSTM is the same as [20], which is not stable. All
configurations of those models are the same as MCSCNN–LSTM. The results are average of 10 times as
shown in Table 10.

Table 10. The comparison results for validating the feature learning capacity using averaged MAPE.

Dataset Method VSTF STF MTF LTF

AEP

MSCNN 1.91 1.17 0.85 1.26
MCSCNN 2.28 0.93 0.79 1.19

SCNN–LSTM 1.84 0.64 0.57 0.75
Proposed 1.23 0.06 0.02 0.03

COMED

MSCNN 2.36 1.02 0.79 0.86
MCSCNN 2.31 0.87 0.89 0.58

SCNN–LSTM 1.93 0.80 1.08 0.43
Proposed 1.30 0.09 0.02 0.03

DAYTON

MSCNN 2.28 1.14 0.77 0.91
MCSCNN 2.61 0.81 0.70 0.83

SCNN–LSTM 2.08 0.63 0.45 0.45
Proposed 1.38 0.08 0.02 0.01

Comparing the MSCNN with the NPCNN [35], we find that the proposed MSCNN is more stable
than general CNN-based methods. The results indicate MSCNN with single input cannot extract
satisfactory feature representations for different forecasts of electricity consumption by comparing
MSCNN with MCSCNN, especially for STF, MTF, and LTF. By comparing SCNN–LSTM to LSTM, we
can see the MCSCNN can extract elegant, robust features to avoid instability and improve performance.
We computed the averaged improvement of MAPE on three data sets for different duration forecasts, as
shown in Figure 6. MSCNN is selected as the baseline. The findings reveal that the proposed method
promotes a lot for all kinds of forecasts. Attentively, the results show only the performance of the
MCSCNN on data AEP for VSTF decreased. Furthermore, the level of feature extraction capacity is
ranked as proposed: > SCNN–LSTM > MCSCNN > MSCNN.

Secondly, we have analyzed the inside features to confirm the productive feature extraction
capacity of the proposed deep model. The visualization results using one VSTF sample shown
in Figure 7a,b intimate double-channel inputs: one raw data sample and corresponding statistics
components by using the normalized data sample of AEP. Figure 7c is a CNN-learned feature map
through the raw data sample. Figure 7d is the feature map of LSTM and we marked it with a red box at
the comprehensive feature map Figure 7f, and Figure 7e is a statistic feature map that is marked with
the yellow box in Figure 7f. The unmarked part in Figure 7f is a CNN-learned feature map. Figure 7f
is a comprehensive feature map. The findings reveal that CNN can learn multi-scale robust global
features with less noise because it almost has no changes around 0. The feature map of LSTM ranges
from −0.100 to 0.075, and the statistic feature map ranges from 0.00 to 1.75, which indicates statistic
components are more useful to extract detailed patterns than LSTM. The comprehensive feature maps
combined robust multi-scale global features and detailed features of different domains.
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Figure 7. Feature maps visualization. Each part of the proposed deep model extracted different features.
(a) The raw sample channel. (b) The statistic components channel. (c) CNN-learned feature map, which
almost has no changes around 0. (d) LSTM-learned feature map, which ranges from –0.10 to 0.075.
(e) Statistic components feature map of a reshaped tensor. The raw statistic components channel was
reshaped into [1,6], which ranges from 0.00 to 1.75. (f) Reshaped comprehensive feature map. The
shape of the obtained feature is 1 by 66, and we reshaped it into 11 by 6 to clearly see and analyze.
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5.5. Transfer Learning Capacity Test

We have validated the transfer learning capacity of the proposed method to satisfy the needs in
the real-life. For instance, one new company wants to predict electricity consumption, but they do
not have enough historical data to train the model. It requires the model with an excellent transfer
learning capacity. The following experiments are designed to test the transfer learning capacity of the
proposed method, as described in Table 11. We adopted the training part of AEP as the training set to
train the model for VSTF, the training part of COMED to train the model for STF, and the training part
of DAYTON to train the model for MTF and LTF. The testing part of others is utilized to test.

Table 11. Experiment design for transfer learning capacity test of the proposed deep model.

Forecasts Training Sets Testing Sets

VSTF AEP COMED, DAYTON
STF COMED AEP, DAYTON
MTF DAYTON AEP, COMED
LTF DAYTON AEP, COMED

The DNN [34] and the proposed MCSCNN–LSTM applied the same data to train and test are
considered as comparative experiments to validate the transfer learning capacity. For example, we
trained DNN and MCSCNN–LSTM with the training part of COMED, DAYTON, and tested on the
testing part of the same data set for VSTF. The results as shown in Figure 8; the x-axis is the testing part
of each data set. The results indicate the proposed method has a functional transfer learning capacity,
which outperforms DNN [34] for all kinds of forecasts, and a little lower than the proposed method
using the same data to train and test the model. We performed a t-test to quantify this difference.
The results of the p-value are shown in Table 12. If a p-value is higher than 0.05, it means there is no
significant difference. The results show there was no significant difference when we utilized different
companies’ data for training the model. Moreover, even though DNN [34] employed the same source
data to train and test model, its performance is worse than “transfer”. Notably, there is a significant
improvement for the VSTF of electricity consumption compared to DNN. In summary, Figure 8 and
Table 12 confirmed that the proposed method has an excellent transfer learning capacity against
noisy data.

Table 12. The p-value of significance test using t-test.

Forecasts Transfer vs. DNN [34] Transfer vs. Proposed

VSTF 0.0380 0.4650
STF 0.4800 0.3600
MTF 0.3120 0.1840
LTF 0.1300 0.4230

5.6. Multi-Step Forecasting Capacity Test

Accurate one-step forecasting enables decision-makers to create proper policies and measures
of the power supply before one duration. Multi-step forecasting can provide multi-step future
consumption information in advance. To validate the multi-step forecasting capacity of the proposed
method for multiple forecasts, we designed a five-step forecasting experiment and compared it to [27],
which tests the multi-step forecasting capacity of their model for VSTF. The input of the proposed
MCSCNN–LSTM for multi-step forecasting in Figure 2 has the same shape with one-step forecasting,
we only need to change the output into one vector with five elements regarding the five future
consumption data points of each forecast. The comparative results using averaged RMSE, MAE, and
MAPE of 10 times are shown in Table 13. AEP is adopted for VSTF and LTF; COMED and DAYTON
are adopted for STF and MTF. The results indicate the proposed MCSCNN–LSTM performs very well
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for STF, MTF, and LTF. Especially, the performance of MTF and LTF has increased tenfold compared to
the method of [27] using RMSE, MAE, and MAPE. Only the VSTF is a little worse than [27], but they
still are the same level. We also give one sample of five-step forecasting of different forecasts as shown
in Figure 9. We can see the proposed MCSCNN–LSTM accurately predicts all types of trends from
the raw data and it outperforms [27] CNN–LSTM in terms of handing details. Notably, the proposed
method has an absolute advantage in terms of STF, MTF, and LTF.
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Table 13. The multi-step forecasting capacity test results.

Metrics RMSE MAE MAPE

Forecasts (Data) Proposed CNN–LSTM
[27] Proposed CNN–LSTM

[27] Proposed CNN–LSTM
[27]

VSTF(AEP) 508.33 477.08 354.52 324.73 2.43 2.22
STF(COMED) 1.8311 × 103 1.8320 × 103 1.3592 × 103 1.3612 × 103 0.50 0.51

MTF(DAYTON) 4.6342 × 102 1.0418×103 3.0828 × 102 8.2458× 102 0.11 0.23
LTF(AEP) 1.1251 × 104 3.0284×104 6.9459× 103 2.3523× 104 0.07 0.22
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Figure 9. A comparison of the results of the five-step forecasting using the proposed method and
CNN–LSTM [27]. The results indicate the proposed method has an absolute advantage in terms of
STF, MTF, and LTF. For VSTF, CNN–LSTM performs a little better than proposed MCSCNN–LSTM.
(a) Five-step electricity forecasting results for VSTF. (b) Five-step electricity forecasting results for STF.
(c) Five-step electricity forecasting results for MTF. (d) Five-step electricity forecasting results for LTF.

6. Discussion

We have proposed a novel MCSCNN–LSTM that models different domain and multi-scale feature
patterns to forecast the electricity consumption at different durations. The difficulty of feature extraction
for different durations forecasts using one model, and different duration electricity consumptions
have different patterns of the trend as shown in Figure 3, which requires a model with excellent
feature extraction capacity with good robustness. Besides, collecting related data such as weather, the
temperature is costly and time-consumption. Therefore, we developed MCSCNN–LSTM to extract
multi-scale and multi-domain features by only inputting the electricity history data, as shown in
Figure 2. We connected CNN and LSTM parallelly with dual inputs, Table 10 and Figure 6 shows it is
more effective than conventional stacked CNN–LSTM.

We compared our proposed deep model with other excellent deep models in Table 6, which
indicates our proposed model is stable. Furthermore, Tables 7–9 and Figure 4 show that we have
improved the performance compared to the stable DNN [34] and the best results of NPCNN [35],
LSTM [20], and CNN–LSTM [25]. Primarily, it has improved a lot for STF, MTF, and LTF.
Figure 5 explained that the proposed method could predict the detailed irregular patterns of
electricity consumption.

As can be seen from Table 10, we have analyzed the feature capacity of each part of the
proposed MCSCNN–LSTM by comparing the averaged MAPE. In addition, we computed the averaged
improvement ratio of the proposed MCSCNN–LSTM by using MCSCNN as the benchmark in Figure 6.
It proved that each part of our proposed model has excellent feature extraction capacity. Moreover, we
have analyzed the inside feature map of MCSCNN–LSTM as shown in Figure 7, it shows the CNN
part of MCSCNN–LSTM can extract multi-scale robust global features, and statistic components are
more effective in extracting detailed patterns than LSTM.

As shown in Figure 8, we have designed comparative experiments on three data sets to validate
the transfer learning capacity of the proposed MCSCNN–LSTM. The findings from Figure 8 have
proven that our proposed deep model has excellent transfer learning skills. In order to quantify the
transfer learning capacity, we compared the p-value of the t-test with none-transfer learning methods
in Table 12. Moreover, we have confirmed the proposed method could accurately forecast multi-step
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electricity consumption in advance in Table 13 and Figure 9, the results from Table 13 and Figure 9
indicate our proposed method outperforms CNN–LSTM which was developed in [27].

7. Conclusions

In conclusion, we proposed a novel MCSCNN–LSTM to forecast the electricity consumption
at different durations accurately and robustly only by using the self-history data. The comparative
analysis has shown that the proposed hybrid deep model MCSCNN–LSTM reaches state-of-the-art
performance. The proposed model is compared to other excellent deep learning-based methods to
confirm the efficiency and robustness. We run ten times for each model on three data sets to evaluate
fairly. The results indicate that our proposed deep model is not sensitive to the initial settings and
stable. We compare the forecasted results with other methods to prove that the proposed method can
extract more detailed patterns. We also confirmed the necessity of each part in the proposed deep
model by comparing the MAPE of each part for electricity forecasting at different durations. We proved
that the parallel structure of CNN–LSTM is more potent than conventional stacked CNN–LSTM. We
also analyzed the internal feature maps to confirm the feature extraction capacity of each part, and the
results show CNN can extract global features; LSTM, and statistic components are in charge of detailed
pattern extraction. Some individual experimental cases are designed to validate their excellent transfer
learning capacity. We confirmed the proposed MCSCNN–LSTM has excellent multi-step forecasting
capacity for STF, MTF, and LTF, respectively. The proposed MCSCNN–LSTM can accurately and stably
predict the irregular patterns of electricity consumption at different durations by only using self-history
data and have a good transfer learning capacity, which can be easy to extend to other forecasting tasks.

In this paper, we designed the networks empirically. Setting proper hyperparameters can
effectively improve forecasting performance. In the feature, we will use deep reinforcement learning
to automatically build the model and choose the better hyperparameters of MCSCNN–LSTM for
electricity consumption forecasting.
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