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Abstract: In a survey of the literature from the last 20 years, 20% of the numerical models used to
analyze the performance of adsorption chillers assumed the evaporator and condenser were ideal,
with a fixed evaporation temperature and condenser temperature, and ignored interactions between
the adsorption bed and evaporator/condenser. Even when the interaction with the evaporator and
condenser was included, the other 80% of studies modeled the adsorption bed based on the LPM
(lumped parameter method), which ignores the geometry effect and contact resistance of the bed,
and thus reduces the accuracy of the analysis. As a consequence, these earlier numerical studies
overestimated the system performance of the adsorption chiller. In this study, we conducted a refined
numerical approach which avoids these limitations, producing estimates in close agreement with
experimental results. Compared with our approach, the models with ideal treatment of evaporator
and condenser overestimated COP (coefficient of performance) and SCP (specific cooling power) by
as much as 16.12% and 24.64%, respectively. The models based on LPM overestimated COP and SCP
by 22.82% and 11.28%, compared to our approach.
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1. Introduction

Demand for cooling has rapidly increased due to global warming and economic development.
There are many types of refrigerator systems that can be employed to address this demand. Among
them, the vapor compression refrigerator has been most commonly used. However, its operation
negatively impacts the environment and consumes an excessive amount of electric power. As a result,
many researchers have focused on the development of eco-friendly refrigeration systems. Among
these, heat-driven refrigerators, such as absorption, desiccant, and adsorption cooling system, have
been highly attractive.

The adsorption chiller operates using reversible adsorption and desorption processes, in a cycle
of preheating, heating, pre-cooling, and cooling. During the pre-heating process, the sorption bed
is isolated from both the condenser and the evaporator by closing the connecting valves. Because
desorption is an endothermic process, heat must be supplied to maintain the desorption process.
When the pressure of the sorption bed reaches that of the condenser, the valve connecting the sorption
bed and the condenser is opened and the desorbed refrigerant flows to the condenser. During the
pre-cooling process, the sorption bed is again isolated by closing the connecting valves. Because of
the exothermic nature of adsorption, the heat needs to be removed by the cold heat source. When the
pressure of the sorption bed reaches that of the evaporator, the valve connecting to the evaporator is
opened and the evaporated refrigerant vapor moves towards the sorption bed.
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To understand the adsorption chiller process in more detail, a number of researchers have been
conducting studies, investigating adsorbents [1–3], the geometry of the heat exchanger [4–6], advanced
cycle [7–10], and operating conditions [11–13].

From the literature survey, the research target of numerical analyses was confined to the adsorption
bed due to the limitation in numerical analysis. From a literature survey of the last 20 years, 20% of
the published papers were found to belong to this category. Although they rigorously modeled the
adsorption bed, they did not include modeling of the evaporator or condenser.

Adsorption beds have the same role as the compressor in a conventional refrigerator. Due
to the reversibility of adsorption and desorption processes, outlet temperature is unstable and
fluctuates [14,15]. For accurate prediction of coefficient of performance (COP), the change of chilled-out
temperature of the evaporator should be included in the modeling, and the analysis of evaporators
and condensers is important.

Previous numerical studies [1,3,5,6] covered many interesting issues and practical improvement
of adsorption cooling systems. However, there has been no report on the impact of assumption on the
evaporator and condenser. The isotherm of the sorbent is a function of pressure and temperature [3].
Thus, the idealized evaporator temperature distorts the evaluation of the system performance.

The other 80% of published papers included modeling of the evaporator or condenser. However,
modeling of the adsorption bed, which is the most crucial component in the adsorption chiller, was
based on the lumped parameter method (LPM), i.e., the adsorption bed, and the evaporator and
condenser were modeled by assuming there was no spatial variation. Thus, the LPM-based analyses
cannot include the effects of geometric features and the interaction between the sorbent material and
the metallic finned tube. Note that geometric factors such as fin height, fin spacing, tube diameter,
and thickness, are highly influential on the system performance, thus plenty of previous studies
have conducted the optimization of geometric factors. The LPM, which assumes no special variation,
affirmatively deteriorates the accuracy of the analysis.

Most of LPM-based analyses were for macrosystems such as recovery cycles and multi-stages.
They have advantages in understanding system arrangement and the effect of each composition.
However, essentially, LPM-based analyses suffer from low accuracy due to the excessive simplification
of the adsorption bed, which is the most important part of adsorption cooling system.

In this study, we numerically analyzed an adsorption chiller with a SWS-1 L + water working pair
based (1) on a rigorous CFD simulation for the adsorption bed, and (2) also including the evaporator
and condenser. Model validity was checked by the comparison with experiments. For the present
approach and the previous approaches, a close examination on the accuracy of system performance
prediction was conducted. This approach provided detailed information over time and space and also
enabled a much closer estimate of system performance.

2. Numerical Method

2.1. Mathematical Model

Figures 1 and 2 show the schematics of the 2-bed adsorption chiller, and the current numerical
model, respectively. The numerical model includes the following assumptions.

(1) The particles in the adsorption bed are all spherical with a uniform size and porosity.
(2) Thermal equilibrium between the adsorbed and vapor phases is assumed.
(3) A two-dimensional (2D) axisymmetric model is assumed.
(4) Refrigerant vapor is an ideal gas and the adsorbed phase is liquid.
(5) There is no heat loss through the chamber wall and the effect of radiation is negligible.
(6) The thermo-physical properties of the thermal fluid, tube, fins, dry adsorbent, adsorbate liquid,

and gas are constant, except for the density of the adsorbate gas.
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Figure 1. The schematic of the 2-bed adsorption chiller with two adsorption beds, evaporator,
and condenser.
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Figure 2. Current numerical model of adsorption bed with a circular fin-tube heat exchanger.

2.2. Energy and Mass Balance Equations

2.2.1. Adsorption Bed

Our recent research showed that inter- and intra-particle mass transfer kinetics have a large
influence on system performance, and therefore it is highly recommended that models be chosen
considering a valid diffusion ratio range (Hong et al. [16]). Given a sufficiently large value of Deq/rp,
the non-isobaric model and linear driving force (LDF) model were used for the inter- and intra-particle
mass transfer models, respectively.

Non-isobaric model (Hong et al. [3], Niazmand et al. [4], Hong et al. [13]):

εt
∂ρv

∂t
+∇ ·

(
ρv
→
uv

)
+ ρads

∂q
∂t

= 0 (1)
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The distribution of the velocity of water vapor (
⇀
uv) in the adsorption bed follows the porous

model, expressed as Darcy’s law:
⇀
uv = −

Kapp

µv
∇P (2)

The apparent permeability, Kapp, was obtained using the following equations. (Bird et al. [17], Lee
and Thodos [18], Ruthven [19]):

Kapp = Kd +
εbµv

τP
Deq (3)

Kd =
εb

3dp
2

150(1− εb)
2 (4)

Deq =

 1

0.02628
√

T3/MV
Pσ2Ω

+
1

48.5dpore
√

Tb/Mv


−1

(5)

τ = εb
−0.4 (6)

dpore = 0.6166dp (7)

where σ and Ω are σ = 2.641Å and Ω = 2.236.
When substituting Equation (2) into Equation (1), the following equation can be obtained:

εt
∂
(

P
RvT

)
∂t

+∇ ·

(
ρv

Kapp

µ
∇P

)
+ ρads

∂q
∂t

= 0 (8)

LDF model (Hong et al. [16]):

∂q
∂t

= 15
Dso

rp2 exp
(
−

Ea

RuTb

)
(q∗ − q) (9)

The pre-exponent constant, Dso, and the activation energy of diffusion, Ea, were 0.000254 m/s2

and 42,000 J/s, respectively. The adsorption amount is expressed in isotherms and the isotherm of
SWS-1 L from Saha et al. [20] was used:

q∗ =
1.6× 10−12Cq∗[

1 +
(
2× 10−12Cq∗

)1.1
]1/1.1

(10)

Cq∗ = P exp
(

∆H
RvTb

)
(11)

The heat transfer equation in the adsorption bed is expressed as:

ρCp
∂Tb

∂t
+∇ ·

(
ρvCp,v

⇀
uvTb

)
= ∇ · (kb∇Tb) + ρads∆H

∂q
∂t

(12)

where ρCp is the heat capacity of the entire bed, including the adsorbent and the refrigerant.

ρCp = εt
(
ρvCp,v

)
+ ρads

(
Cp,ads + qCp,b

)
(13)

εt = εb + (1− εb)εp (14)

The second term on the right-hand side in Equation (12), ρads∆H ∂q
∂t , is the heat generated by

adsorption and desorption.
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The energy equation for the heat transfer fluid is as follows:

ρCp
∂Tf

∂t
+

∂
∂Z

(
ρfCp,fufTf

)
=

∂
∂Z

(
kf
∂Tf

∂Z

)
+

4
di

h
(
Tc,R=Ri − Tf

)
(15)

The last term is a heat exchange term. The convective heat transfer coefficient, h, is obtained from
the following correlations:

Nu = 0.023Re0.8Prn n = 0.3 forcoolingphase
n = 0.4 forheatingphase

(16)

The energy equation for the copper fin-tube is as follows:

ρCp,c
∂Tc

∂t
= ∇(kc∇Tc) (17)

2.2.2. Evaporator

The evaporator is connected to the adsorption bed during the adsorption process and allows the
evaporated refrigerant vapor to move towards the adsorption bed. Therefore, the energy equilibrium
equation of the evaporator is expressed as (Miyazaki et al. [21]):

(
mCp

)
eva

dTeva

dt
= −θhfg

(
mads

dqads

dt

)
+

( .
mCp

)
chill

(Tchill,in − Tchill,out) −Cp(Tcon − Teva)mads
dqdes

dt
(18)

Note that the evaporator was modeled by LPM, like in most previous research. The novelty in
this work was to model the sorption bed from the refined CFD simulation, and simultaneously include
the effect of the evaporator and condenser.

The term on the left-hand side in Equation (18) is the heat capacity, showing the internal energy
of the entire evaporator. The first term on the right-hand side shows the cooling energy generated
by the latent heat of evaporation. θ is equal to 1 or 0 during adsorption (or desorption) and the
switching period, respectively. The second term on the right-hand side is the heat exchange between
the evaporator and chilled water, and the last term is the heat needed to lower the temperature of the
regenerated refrigerant from Tcon to Teva.

2.2.3. Condenser

The condenser is connected to the adsorption bed during the desorption process to condense the
desorbed vapor. The regenerated fluid is sent to the evaporator through the U-tube. The condenser
energy equilibrium equation is as follows (Miyazaki et al. [21]):

(
mCp

)
con

dTcon

dt
= −θhfg

(
mads

dqdes

dt

)
+

( .
mCp

)
con

(Tcool,in − Tcool,out) −Cp(Tdes − Tcon)mads
dqdes

dt
(19)

The term on the left-hand side is heat capacity reflecting the internal energy of the entire condenser.
The first term on the right-hand side is the latent heat of evaporation. The second term is the heat
exchange between condenser and cooling water, and the last term is the heat needed to lower the
refrigerant temperature from Tdes to Tcon.
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2.2.4. Outlet temperature

The log mean temperature difference (LMTD) determines the outlet temperature of the evaporator
and condenser (Miyazaki et al. [21]):

Tchill,out = Teva + (Tchill,in − Teva) exp

−(UA)eva( .
mCp

)
chill

 (20)

Tcool,out = Tcon + (Tcool,in − Tcon) exp

−(UA)con( .
mCp

)
cool

 (21)

where U is the overall heat transfer coefficient and A is the heat transfer area.

2.2.5. Mass balance equation

The mass balance equations are expressed as follows (Miyazaki et al. [21]):

dmeva

dt
= −mads

[
dqads

dt
+

dqdes

dt

]
(22)

2.3. Initial and Boundary Conditions

Initial condition for adsorption process:
Tinitial = Tads = 303.15K
Pinitial = Pads = 1633Pa
qinitial = qads = 0.13kg/kg

(23)

Initial condition for desorption process:
Tinitial = Tdes = 353.15K
Pinitial = Pdes = 4144Pa
qinitial = qdes = 0.13kg/kg

(24)

Boundary condition:

R = Ri, 0 ≤ Z ≤ Zo : h(Tc − Tf) = kc
∂Tc

∂R
(25)

R = Rm, 0 ≤ Z ≤ Zo : kc
∂Tc

∂R
=

∆T
1/hCR

= kb
∂Tb

∂R
,
∂P
∂R

= 0 (26)

R = Ro, 0 ≤ Z ≤ Zo :
∂Tb

∂R
= 0,

[
∂P
∂R = 0 forthepre-heatingandpre-coolingphase
P = PevaorPcon fortheheatingandcoolingphase

(27)

Rm ≤ R ≤ Roatfin-absorbentboundary : kc
∂Tc

∂Z
=

∆T
1/hCR

= kb
∂Tb

∂Z
,
∂P
∂Z

= 0 (28)[
Tf = Tads at Z = 0 (cooling phase)
Tf = Tdes at Z = 0 (heating phase)

(29)

where 1/hCR is the contact resistance between the adsorption bed and the tube (or fin), empirically
obtained by Zhu and Wang [22] as follows:

1
hCR

=
(
0.00122T2

− 0.1699T + 8.15
)
× 10−3 (30)
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2.4. Performance Index

The coefficient of performance (COP) and specific cooling power (SCP) were selected as
performance indicators, and were defined as the following:

COP =
Qeva

Qin
(31)

SCP =
Qeva

madstcycle
(32)

where Qeva denotes the input heat energy supplied to the sorption bed during the desorption process,
mb is the total mass of the solid sorbent, and tcycle means cycle time. When the evaporator and the
condenser were assumed to be ideal, as in most previous studies, the cooling energy, Qeva, was obtained
as the amount of adsorbed vapor (Equation (33)). However, when the evaporator and the condenser
are included in the modeled analysis, the cooling energy should be obtained by using the temperature
difference between the inlet chilled water and the outlet chilled water of the evaporator (Equation (34)).

Qeva = Lv

∫ tads

tdes

∫
interface

ρv
⇀
uv · d

⇀
Adt (33)

Qeva =

∫ tads

tdes

{( .
mCp

)
chill

(Tchill,in − Tchill,out)
}
dt (34)

Qin =

∫ tdes

tads

{( .
mCp

)
cool

(Tcool,in − Tcool,out)
}
dt (35)

where Lv is the latent heat and is expressed as follows:

Lv = L(Teva) −CP,ads(Teva − Tcon) (36)

2.5. Numerical Procedure

The detailed numerical procedures used in the two models, i.e., the previous studies which
assumed an ideal evaporator and condenser and the newly proposed model, are shown in Figures 3
and 4. The separate analysis of each adsorption bed and its integration with an evaporator and
condenser avoids the over-simplified assumptions in the previous model and enables an accurate
estimation of bed behavior and evaporator outlet temperature, which results in a more accurate
estimation of system performance.
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Figure 4. Flowchart of performance evaluation strategy based on the present model including realistic
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3. Results and Discussion

The governing equations subject to the given boundary conditions were solved using
STAR-CCM+v12, a commercial computational fluid dynamics (CFD) program, and additional
user-supplied codes. The grid dependence was thoroughly tested for 2000~9600 hexagonal grids,
and the test results indicated that 4400 grids were sufficient to obtain grid-independent results. The
first-order temporal discretization was used to solve the implicit unsteady problem. A hybrid-scheme
and a central difference scheme were used for the convection and diffusion terms, respectively. The
resulting discretized equations were solved using a Gauss–Seidel algorithm for every time step. Time
steps of 0.01 s were used for the isosteric phase and 0.5 s was used for the isobaric phase. The
computation time was approximately 24 h for a typical model running on an Intel Core i7-8700 CPU
@3.20Ghz, which was two times longer than the earlier model with an ideal evaporator and condenser
because two beds were simultaneously analyzed, as described in Figure 4.

All results were obtained after an initial couple of cycles, which ensured that the system had
reached a quasi-equilibrium state.

The parameters and operating conditions required for the analysis are summarized in Table 1.
The properties of the evaporator and condenser such as overall heat transfer coefficient are given in
Miyazaki et al. [21].

Table 1. Parameter values and operating conditions of the adsorption chiller.

Parameter Values

Fin pitch 1.68 mm
Fin thickness 0.06 mm

Fin height 6.82 mm
Inner diameter of tube 9.6 mm
Outer diameter of tube 8.8 mm

Fluid velocity 1 m/s
Heating temperature 80 °C
Cooling temperature 30 °C

Cycle time 900 s
Density 700 kg/m3

Specific heat 900 J/kgK
Thermal conductivity 0.2 W/mK

Heat of adsorption 2760 kJ/kg
Total porosity 0.6352
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3.1. Validation

The cooling capacity of the present model was compared to the results of an experiment
by Chang et al. [23]. The numerical analysis was conducted under the operating conditions of
Theat = 60–90 °C, Tcool = 30 °C, Tchill = 14 °C, Teva = 15 °C, tcycle = 12 min,

.
mcool= 0.6 kg/s,

.
mheat= 0.48 kg/s.

The details of the geometrical shapes of the adsorber, evaporator, and condenser are given in
Chang et al. [23].

Figure 5 shows that there is close agreement between the present numerical model and the prior
experiment, however, the predictions by LPM or with ideal treatment of the evaporator and condenser
are considerably different than the experiment. Most of the earlier studies, about 80%, are based on
LPM. The assumption that there is no spatial variation in the adsorption bed, a component which is
highly influential on the performance of the adsorption chiller, inherently limits the accuracy of the
model. Also, detailed analyses of the effects of geometric features (fin height, fin spacing, tube diameter,
and thickness) and the interaction between sorbent material and metallic finned tube, are not feasible
in the LPM. The remaining 20% of the studies treat the evaporator and condenser as ideal, even though
the adsorption bed was rigorously modeled. In those models, the evaporator and condenser did not
interact with the adsorption bed and it is assumed that the evaporator temperature and condenser
temperature were fixed, i.e., they assumed an ideal evaporator and condenser. As a consequence, these
models inherently overestimated performance, which is the reason most previous numerical results
showed higher system performance than the experiment.
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3.2. Effect of Evaporator/Condenser Model

Figure 6 compares the Clapeyron diagram of the present model and the model of an ideal evaporator
and condenser, i.e., with a fixed evaporation temperature (15 °C) and condenser temperature (30 °C).
During the isosteric phase in processes (A) and (C), the valves are disconnected from the evaporator
and condenser and the adsorption bed is isolated. Thus, except for the starting (4 and 4’) and end
points (1 and 1’), there is no difference between the models.
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Figure 6. Clapeyron diagram of the present model and the model based on ideal treatment of the
evaporator and condenser.

The processes (B) and (D) are the heating and cooling phases, which are desorbing or adsorbing
the vapor. In contrast to the real pressure behavior, which was properly estimated in the present model,
the pressure in the idealized model is assumed to be constant at the saturation pressure corresponding
to the temperature of the evaporator, 15 °C, or the condenser, 30 °C.

Figure 7 shows the isotherm of the adsorbent SWS-1 L and compares the adsorption and desorption
amounts corresponding to the ideal and real pressures of the condenser and evaporator. In the model
with ideal treatment of the evaporator and condenser, the pressure during the adsorption and desorption
process is constant, shown in the bold dashed line in Figure 7, which causes constant q*. On the other
hand, in the present model, relative pressure varies from 0.09 to 0.11 during the desorption process and
varies from 0.31 to 0.4 during the adsorption process, as described in the hatched region in Figure 7.
A larger variation is observed during the adsorption process, which results in 4.2% less adsorption and
1.8% less desorption compared to the ideal evaporator and condenser. This difference is the reason that
most previous numerical results overestimated system performance. In the model based on an ideal
evaporator and condenser, COP was estimated to be 0.523, which is an overestimate of 16.12%, and
SCP was 637 W/kg, which is an overestimate of 24.64%, compared to the present model.
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3.3. Effect of Bed Model

For the rough design purpose in system scale analysis, LPM has an advantage because the refined
model in beds requires special treatment and much longer computation time (Duong et al. [24]).
However, LPM is not enough when higher accuracy or detailed information in beds is required during
the process. Figure 8 shows a Clapeyron diagram of the present model and the model based on LPM.
The result of LPM was obtained for the same device geometry and operating condition in the present
model. The only difference is the treatment of the bed simulation. The processes (A) and (C) are the
isosteric phase and the processes (B) and (D) are the heating and cooling phase of the desorbing or
adsorbing vapor. Both models allow variable pressure, based on the temperature of evaporation or
condensation. However, because the adsorption bed behaviors are different depending on the bed
model, processes (B) and (D) in Figure 8 are significantly different. The resulting COP in the model
based on LPM for all components was 0.553, which was 22.82% higher than the present model, and
SCP was 568 W/kg, which was 11.28% higher than the present model.
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Figure 8. Clapeyron diagram of the present model and the model based on the lumped parameter
method (LPM) for all components of the bed, evaporator, and condenser.

In contrast to the LPM, the present model includes the effects of geometric features (fin height,
fin spacing, tube diameter, and thickness) and considers the contact resistance between the sorbent
material and metallic finned tube, which affirmatively enhances the accuracy of the analysis. There
were a lot of studies on geometric optimization in adsorption beds [4,13,25–27]. Also, recent coating
technology has made it possible to reduce contact resistance and tremendously enhance performance
(Rezk [28], Girnik and Aristov [29]). The LPM cannot accommodate all these effects, thus has to limit
to estimate the real system performance.

In summary, Figure 9 shows how much the accuracy of COP improved as the model became
more precise.
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4. Conclusions

In this study, we proposed a novel numerical model for an adsorption chiller including (1) the
proper interaction with the evaporator and condenser, and also (2) a rigorous treatment of the
adsorption bed. The proposed numerical model was compared with results from experiments and
showed close agreement.

Properly accounting for the interaction between the adsorption bed and the evaporator and
condenser enhanced the model’s accuracy. Previous models have used a fixed evaporation temperature
and condenser temperature, which did not interact with the adsorption bed, which is why the earlier
numerical models have normally overestimated system performance.

The model based on an ideal evaporator and condenser resulted in a COP of 0.523, which led to
an overestimate of 16.12%, and a SCP of 637 W/kg, which was an overestimate of 24.64%, compared to
the present model.

Even when the interaction with the evaporator and condenser was included, excessive
simplification of the adsorption bed in previous LPM analyses distorted the actual performance. This
is because LPM failed to reflect the geometry effect and contact resistance of the bed, the component
which is most influential on adsorption chiller system performance. As a result, the estimated COP
was 0.553, and the SCP was 568 W/kg, which were 22.82% and 11.28% higher respectively, than the
present model.

Considering the many studies on the geometric optimization of the adsorption bed, and recent
coating technology to enhance system performance, producing an accurate estimation of adsorption
chiller performance requires not only proper interaction with the evaporator and condenser, but also
rigorous modeling of the adsorption bed.

Author Contributions: Conceptualization, writing—review and editing, J.D.C.; validation, X.Q.D. and N.V.C.;
formal analysis, investigation and writing—original draft preparation, W.S.L. and M.Y.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B05030422)
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