Space Charge Measurement and Modelling in Cross-Linked Polyethylene
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Preparation
2.2. Space Charge Measurement
3. Space Charge Modelling Methods
3.1. Bipolar Charge Transport Model
3.2. Modified Model by Considering Ionization
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mazzanti, G.; Marzinotto, M. Extruded Cables for High-Voltage Direct-Current Transmission: Advances in Research and Development; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Heyman, O.; Weimers, L.; Bohl, M.-L. HVDC-A key solution in future transmission systems. In Proceedings of the World Energy Congress-WEC, Montreal, QC, Canada, 12–16 September 2010; pp. 12–16. [Google Scholar]
- Jeroense, M. HVDC, the Next Generation of Transmission: Highlights with Focus on Extruded Cable Systems. IEEJ Trans. Electr. Electron. Eng. 2010, 5, 400–404. [Google Scholar] [CrossRef]
- Fabiani, D.; Montanari, G.; Laurent, C.; Teyssedre, G.; Morshuis, P.; Bodega, R.; Dissado, L.; Campus, A.; Nilsson, U. Polymeric HVDC Cable Design and Space Charge Accumulation. Part 1: Insulation/Semicon Interface. IEEE Electr. Insul. Mag. 2007, 23, 11–19. [Google Scholar] [CrossRef]
- Fabiani, D.; Montanari, G.; Laurent, C.; Teyssedre, G.; Morshuis, P.; Bodega, R.; Dissado, L. HVDC Cable Design and Space Charge Accumulation. Part 3: Effect of Temperature Gradient [Feature article]. IEEE Electr. Insul. Mag. 2008, 24, 5–14. [Google Scholar] [CrossRef]
- Hanley, T.; Burford, R.; Fleming, R.; Barber, K. A general review of polymeric insulation for use in HVDC cables. IEEE Electr. Insul. Mag. 2003, 19, 13–24. [Google Scholar] [CrossRef]
- Mazzanti, G.; Montanari, G.; Dissado, L. Electrical aging and life models: The role of space charge. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 876–890. [Google Scholar] [CrossRef]
- Huang, X.; Fan, Y.; Zhang, J.; Jiang, P. Polypropylene based thermoplastic polymers for potential recyclable HVDC cable insulation applications. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1446–1456. [Google Scholar] [CrossRef]
- Andrews, T.; Hampton, R.; Smedberg, A.; Wald, D.; Waschk, V.; Weissenberg, W. The role of degassing in XLPE power cable manufacture. IEEE Electr. Insul. Mag. 2006, 22, 5–16. [Google Scholar] [CrossRef]
- Fu, M.; Chen, G.; Dissado, L.; Fothergill, J. Influence of thermal treatment and residues on space charge accumulation in XLPE for DC power cable application. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, G.; Romano, P.; Imburgia, A.; Ala, G. Review of the PEA Method for Space Charge Measurements on HVDC Cables and Mini-Cables. Energies 2019, 12, 3512. [Google Scholar] [CrossRef] [Green Version]
- Takeda, T.; Hozumi, N.; Suzuki, H.; Okamoto, T. Factor of Hetero Space Charge Generation in XLPE under DC Electric Field of 20kV/mm. IEEJ Trans. Fundam. Mater. 1997, 117, 915–921. [Google Scholar] [CrossRef] [Green Version]
- Sekii, Y.; Ohbayashi, T.; Uchimura, T.; Hukuyama, T.; Maeno, T. A study on the space charge formation in XLPE. In Proceedings of the 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225), Kitchener, ON, Canada, 14–17 October 2001; pp. 469–472. [Google Scholar]
- Hussin, N.; Chen, G. Analysis of space charge formation in LDPE in the presence of crosslinking byproducts. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Montanari, G.; Fabiani, D.; Dissado, L.A. A new conduction phenomenon observed in polyethylene and epoxy resin: Ultra-fast soliton conduction. J. Polym. Sci. Part B 2011, 49, 1173–1182. [Google Scholar] [CrossRef]
- McAllister, I.; Crichton, G.; Pedersen, A. Charge accumulation in DC cables: A macroscopic approach. In Proceedings of the 1994 IEEE International Symposium on Electrical Insulation, Pittsburgh, PA, USA, 5–8 June 2002; pp. 212–216. [Google Scholar]
- Zhan, Y.; Chen, G.; Hao, M.; Pu, L.; Zhao, X.; Sun, H.; Wang, S.; Guo, A.; Liu, J. Comparison of two models on simulating electric field in HVDC cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1107–1115. [Google Scholar] [CrossRef]
- Alison, J.M.; Hill, R.M. A model for bipolar charge transport, trapping and recombination in degassed crosslinked polyethene. J. Phys. D 1994, 27, 1291–1299. [Google Scholar] [CrossRef]
- Fu, M.; Hou, S.; Liu, T.; Lv, Z.; Wu, K.; Wang, Y.; Wang, X. Mechanism of space charge accumulation in crosslinked polyethylene under temperature gradient. In Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, Australia, 19–22 July 2015; pp. 356–359. [Google Scholar]
- Le Roy, S.; Teyssedre, G.; Laurent, C. Modelling space charge in a cable geometry. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2361–2367. [Google Scholar] [CrossRef]
- Wu, J.; Lan, L.; Li, Z.; Yin, Y. Simulation of space charge behavior in LDPE with a modified of bipolar charge transport model. In Proceedings of the 2014 International Symposium on Electrical Insulating Materials, Niigata, Japan, 1–5 June 2014; pp. 65–68. [Google Scholar]
- Liu, N.; Zhou, C.; Chen, G.; Zhong, L. Determination of threshold electric field for charge injection in polymeric materials. Appl. Phys. Lett. 2015, 106, 192901. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.; Teyssedre, G.; Laurent, C. Space-charge dynamic in polyethylene: From dc to ac stress. J. Phys. D 2010, 44, 15401. [Google Scholar] [CrossRef]
- Carlini, M.; McCormack, S.; Castellucci, S.; Ortega, A.; Rotondo, M.; Mennuni, A. Modelling and Numerical Simulation for an Innovative Compound Solar Concentrator: Thermal Analysis by FEM Approach. Energies 2020, 13, 548. [Google Scholar] [CrossRef] [Green Version]
- Le Roy, S.; Teyssedre, G.; Segur, P.; Laurent, C. Modelling of space charge, electroluminescence and current in low density polyethylene under DC and AC field. In Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS, Boulder, CO, USA, 20–20 October 2004; pp. 29–32. [Google Scholar]
- Zhan, Y.; Chen, G.; Hao, M. Space charge modelling in HVDC extruded cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Teyssedre, G.; Laurent, C. Charge transport modeling in insulating polymers: From molecular to macroscopic scale. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 857–875. [Google Scholar] [CrossRef]
- Le Roy, S.; Teyssedre, G.; Laurent, C.; Montanari, G.C.; Palmieri, F. Description of charge transport in polyethylene using a fluid model with a constant mobility: Fitting model and experiments. J. Phys. D 2006, 39, 1427–1436. [Google Scholar] [CrossRef]
- Laurent, C.; Teyssedre, G.; Le Roy, S.; Baudoin, F. Charge dynamics and its energetic features in polymeric materials. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 357–381. [Google Scholar] [CrossRef]
- Castellanos, A. Electrohydrodynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Montanari, G.; Laurent, C.; Teyssedre, G.; Campus, A.; Nilsson, U. From LDPE to XLPE: Investigating the change of electrical properties. Part I. space charge, conduction and lifetime. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 438–446. [Google Scholar] [CrossRef]
- Fu, M.; Dissado, L.; Chen, G.; Fothergill, J. Space charge formation and its modified electric field under applied voltage reversal and temperature gradient in XLPE cable. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Zhong, L.; Liu, M.; Yu, Q.; Li, Y.; Zhao, W.; Zhou, Z. Effects of degassing duration on space charge and DC conductivity in HVDC XLPE cable insulation. In Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2018; pp. 124–127. [Google Scholar]
- Hao, M.; Fazal, A.; Vaughan, A.S.; Chen, G.; Zhou, Y.; Zhang, C. The impacts of degassing on space charge characteristics and DC conductivity in semicon-bonded XLPE for HVDC cable applications. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 97–100. [Google Scholar]
Symbol | Value | Unit | |
---|---|---|---|
Injection barrier height | for electrons | 1.27 | eV |
for holes | 1.20 | eV | |
Trapping coefficient | for electrons | 0.05 | s−1 |
for holes | 0.05 | s−1 | |
Mobility | for electrons | 4 × 10−15 | m2/(V·s) |
for holes | 1 × 10−14 | m2/(V·s) | |
Trap density | for electrons | 100 | C/m3 |
for holes | 100 | C/m3 | |
Detrapping barrier height | for electrons | 0.95 | eV |
for holes | 0.95 | eV | |
Recombination rate | S1, S2, S3 | 4 × 10−3 | m3/(C·s) |
S0 | 0 | m3/(C·s) |
Symbol | Value | Unit | |
---|---|---|---|
Initial ion-pair concentration | for fresh XLPE | 40 | mol/m3 |
for degassed XLPE | 4 | mol/m3 | |
Dissociation rate at zero field | for ion-pairs | 6.1 × 10−11 | s−1 |
Trapping coefficient | for positive ions | 0.1 | s−1 |
for negative ions | 0.1 | s−1 | |
Mobility | for positive ions | 2 × 10−16 | m2/(V·s) |
for negative ions | 1 × 10−16 | m2/(V·s) | |
Trap density | for positive ions | 100 | C/m3 |
for negative ions | 100 | C/m3 | |
De-trapping barrier height | for positive ions | 0.95 | eV |
for positive ions | 0.95 | eV | |
Diffusion coefficient | for ions, holes and electrons | 1 × 10−12 | m2/s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Y.; Chen, G.; Hao, M.; Pu, L.; Zhao, X.; Wang, S.; Liu, J. Space Charge Measurement and Modelling in Cross-Linked Polyethylene. Energies 2020, 13, 1906. https://doi.org/10.3390/en13081906
Zhan Y, Chen G, Hao M, Pu L, Zhao X, Wang S, Liu J. Space Charge Measurement and Modelling in Cross-Linked Polyethylene. Energies. 2020; 13(8):1906. https://doi.org/10.3390/en13081906
Chicago/Turabian StyleZhan, Yunpeng, George Chen, Miao Hao, Lu Pu, Xuefeng Zhao, Sen Wang, and Jian Liu. 2020. "Space Charge Measurement and Modelling in Cross-Linked Polyethylene" Energies 13, no. 8: 1906. https://doi.org/10.3390/en13081906
APA StyleZhan, Y., Chen, G., Hao, M., Pu, L., Zhao, X., Wang, S., & Liu, J. (2020). Space Charge Measurement and Modelling in Cross-Linked Polyethylene. Energies, 13(8), 1906. https://doi.org/10.3390/en13081906