Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal, Scope and Functional Units
2.2. Modelling and Data Sources
2.3. Life Cycle Impact Assessment (LCIA)
3. Results and Discussion
3.1. Miscanthus Production without Fertilisation (Base Scenario)
3.2. Production of Giant Miscanthus with Fertilisation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morandi, F.; Perrin, A.; Østergård, H. Miscanthus as energy crop: Environmental assessment of a miscanthus biomass production case study in France. J. Clean. Prod. 2016, 137, 313–321. [Google Scholar] [CrossRef]
- Pude, R.; Treseler, C.H.; Trettin, R.; Noga, G. Suitability of Miscanthus genotypes for lightweight concrete. Bodenkultur 2005, 56, 61–69. [Google Scholar]
- Scagline-Mellor, S.; Griggs, T.; Skousen, J.; Wolfrum, E.; Holásková, I. Switchgrass and giant miscanthus biomass and theoretical ethanol production from reclaimed mine lands. BioEnergy Res. 2018, 11, 562–573. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Combustion of miscanthus: Composition of the ash by particle size. Energies 2019, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Christian, D.G.; Riche, A.B.; Yates, N.E. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 2008, 28, 320–327. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Witzel, C.P.; Finger, R. Economic evaluation of Miscanthus production—A review. Renew. Sustain. Energy Rev. 2016, 53, 681–696. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Schwarz, K.U.; Awty-Carroll, D.; Iurato, A.; Meyer, H.; Greef, J.; Gwyn, J.; Mos, M.; Ashman, C.; Hayes, C.; et al. Breeding strategies to improve Miscanthus as a sustainable source of biomass for bioenergy and biorenewable products. Agronomy 2019, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal agricultural land low-input systems for biomass production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Galatsidas, S.; Gounaris, N.; Vlachaki, D.; Dimitriadis, E.; Kiourtsis, F.; Keramitzis, D.; Gerwin, W.; Repmann, F.; Rettenmaier, N.; Reinhardt, G.; et al. Revealing bioenergy potentials: Mapping marginal lands in Europe—The seemla approach. In Proceedings of the 26th European Biomass Conference and Exhibition Proceedings, Copenhagen, Denmark, 14–18 May 2018; pp. 31–37. [Google Scholar]
- Pudełko, R.; Kozak, M.; Jędrejek, A.; Gałczyńska, M.; Pomianek, B. Regionalisation of unutilised agricultural area in Poland. Polish J. Soil Sci. 2018, 51, 119–132. [Google Scholar] [CrossRef] [Green Version]
- European Biomass Association. EBA Statistical Report 2019. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2020/01/EBA-AR-2019-digital-version.pdf (accessed on 28 February 2020).
- Chen, S.; Chen, B.; Song, D. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization. Bioresour. Technol. 2012, 114, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Prask, H.; Szlachta, J.; Fugol, M.; Kordas, L.; Lejman, A.; Tuznik, F.; Tuznik, F. Sustainability biogas production from ensiled plants consisting of the transformation of the digestate into a valuable organic-mineral granular fertilizer. Sustainability 2018, 10, 585. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Caradonia, F.; Setti, L.; Hagassou, D.; Giaretta Azevedo, C.V.; Milc, J.; Pedrazzi, S.; Allesina, G.; Arru, L.; Francia, E. Effects of innovative biofertilizers on yield of processing tomato cultivated in organic cropping systems in northern Italy. Acta Hortic. 2019, 1233, 129–135. [Google Scholar] [CrossRef]
- Al Seadi, T.; Drosg, B.; Fuchs, W.; Rutz, D.; Janssen, R. 12—Biogas digestate quality and utilization. In The Biogas Handbook; Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 267–301. [Google Scholar]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Niksa, D. Analysis of the energy efficiency of short rotation woody crops biomass as affected by different methods of soil enrichment. Energy 2016, 113, 748–761. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Olba-Zięty, E.; Rosenqvist, H.; Krzyżaniak, M. Economic efficiency of willow, poplar and black locust production using different soil amendments. Biomass Bioenergy 2017, 106, 74–82. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Tworkowski, J.; Szczukowski, S. Perennial herbaceous crops as a feedstock for energy and industrial purposes: Organic and mineral fertilizers versus biomass yield and efficient nitrogen utilization. Ind. Crops Prod. 2017, 107, 244–259. [Google Scholar] [CrossRef]
- Stolarski, M.; Krzyżaniak, M.; Szczukowski, S.; Tworkowski, J.; Załuski, D.; Bieniek, A.; Gołaszewski, J. Effect of increased soil fertility on the yield and energy value of short-rotation woody crops. BioEnergy Res. 2015, 8, 1136–1147. [Google Scholar] [CrossRef] [Green Version]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Jablonowski, N.D. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenergy 2017, 107, 207–213. [Google Scholar] [CrossRef]
- Nabel, M.; Temperton, V.M.; Poorter, H.; Lücke, A.; Jablonowski, N.D. Energizing marginal soils—The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass Bioenergy 2016, 87, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavičius, D.; Karčauskienė, D.; Liaudanskienė, I. The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico–mechanical properties and energy expenses. Energy 2015, 93 Pt 1, 606–612. [Google Scholar] [CrossRef]
- AEBIOM. AEBIOM Statistical Report 2015; AEBIOM: Brussels, Belgium, 2015. [Google Scholar]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in life cycle assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Krzyżaniak, M.; Stolarski, M.J.; Warmiński, K. Life cycle assessment of Virginia mallow production with different fertilisation options. J. Clean. Prod. 2018, 177, 824–836. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Petersen, B.M.; Knudsen, M.T.; Hermansen, J.E.; Halberg, N. An approach to include soil carbon changes in life cycle assessments. J. Clean. Prod. 2013, 52, 217–224. [Google Scholar] [CrossRef]
- Parajuli, R.; Knudsen, M.T.; Djomo, S.N.; Corona, A.; Birkved, M.; Dalgaard, T. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. Sci. Total Environ. 2017, 586, 226–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parajuli, R.; Kristensen, I.S.; Knudsen, M.T.; Mogensen, L.; Corona, A.; Birkved, M.; Peña, N.; Graversgaard, M.; Dalgaard, T. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery. J. Clean. Prod. 2017, 142 Pt 4, 3859–3871. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Toosi, A.; Christensen, B.T.; Hutchings, N.J.; Vejlin, J.; Kätterer, T.; Glendining, M.; Olesen, J.E. C-TOOL: A simple model for simulating whole-profile carbon storage in temperate agricultural soils. Ecol. Model. 2014, 292, 11–25. [Google Scholar] [CrossRef]
- Bessou, C.; Basset-Mens, C.; Tran, T.; Benoist, A. LCA applied to perennial cropping systems: A review focused on the farm stage. Int. J. Life Cycle Assess. 2013, 18, 340–361. [Google Scholar] [CrossRef] [Green Version]
- Dressler, D.; Loewen, A.; Nelles, M. Life cycle assessment of the supply and use of bioenergy: Impact of regional factors on biogas production. Int. J. Life Cycle Assess. 2012, 17, 1104–1115. [Google Scholar] [CrossRef]
- Brandão, M.; Milà i Canals, L.; Clift, R. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 2011, 35, 2323–2336. [Google Scholar] [CrossRef]
- Murphy, F.; Devlin, G.; McDonnell, K. Miscanthus production and processing in Ireland: An analysis of energy requirements and environmental impacts. Renew. Sustain. Energy Rev. 2013, 23, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Kantola, I.B.; Masters, M.D.; DeLucia, E.H. Soil particulate organic matter increases under perennial bioenergy crop agriculture. Soil Biol. Biochem. 2017, 113, 184–191. [Google Scholar] [CrossRef]
- Gao, F.; Feng, G.; Sharratt, B.; Zhang, M. Tillage and straw management affect PM10 emission potential in subarctic Alaska. Soil Tillage Res. 2014, 144, 1–7. [Google Scholar] [CrossRef]
- Munkhtsetseg, E.; Shinoda, M.; Gillies, J.A.; Kimura, R.; King, J.; Nikolich, G. Relationships between soil moisture and dust emissions in a bare sandy soil of Mongolia. Particuology 2016, 28, 131–137. [Google Scholar] [CrossRef]
- Singer, A.; Zobeck, T.; Poberezsky, L.; Argaman, E. The PM10and PM2·5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. J. Arid Environ. 2003, 54, 705–728. [Google Scholar] [CrossRef]
- Li, C.; Bair, D.A.; Parikh, S.J. Estimating potential dust emissions from biochar amended soils under simulated tillage. Sci. Total Environ. 2018, 625, 1093–1101. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Yin, J.; Zhang, M.; Zhang, T. Chemical characteristics and source apportionment of PM10 during Asian dust storm and non-dust storm days in Beijing. Atmos. Environ. 2014, 91, 85–94. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, L.; Lei, Y.; Gong, X.; Zhang, Q.; Zhang, T.; Xu, H.; Cui, S.; Wang, Q.; et al. Chemical source profiles of urban fugitive dust PM2.5 samples from 21 cities across China. Sci. Total Environ. 2019, 649, 1045–1053. [Google Scholar] [CrossRef]
- Mohankumar, S.; Senthilkumar, P. Particulate matter formation and its control methodologies for diesel engine: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 80, 1227–1238. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Szczukowski, S.; Tworkowski, J. Life cycle assessment of new willow cultivars grown as feedstock for integrated biorefineries. BioEnergy Res. 2016, 9, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.-C.; Ridoutt, B.G.; Wang, X.-C.; Ren, P.-A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Warmiński, K. Life cycle assessment of poplar production: Environmental impact of different soil enrichment methods. J. Clean. Prod. 2019, 206, 785–796. [Google Scholar] [CrossRef]
- Bacenetti, J.; Restuccia, A.; Schillaci, G.; Failla, S. Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment. Renew. Energy 2017, 112, 444–456. [Google Scholar] [CrossRef]
Operation | Diesel Oil (kg ha−1) | Materials | Comments |
---|---|---|---|
Establishment and Closure of Plantation-Operations Performed Once per Plantation Lifetime | |||
Spraying | 2.04 | Glyphosate—Roundup 360 SL. 5 dm3 ha−1 | |
Disking | 8.98 | ||
Ploughing | 29.30 | 5–ridge plough, ploughing depth—30 cm | |
Harrowing (x2) | 11.20 | 2 operations | |
Planting | 14.06 | rhizomes 10,000 ha−1 | 4-row planting machine, suitable for seedlings, rhizomes, or locally produced tubers |
Mechanical weed control (3x) | 21.09 | 3 operations | |
Plantation closure | 44.65 | Ploughing liquidating Miscanthus plantation after 15 years of its use (5–ridge plough. ploughing depth—30 cm) | |
Operations Performed Annually | |||
Application of wet digestate | 12.86–25.94 | Fertiliser inputs differed subject to fertilisation rate | |
Application of dry and torrefied digestate | 7.03–14.06 | Fertiliser inputs differed subject to fertilisation rate | |
Application of mineral NPK fertiliser | 7.02 | The lower and higher fertilisation rates were applied at the same time | |
Soil mixing with fertilisers | 12.65 | ||
Harvest | 11.25–73.84 | Subject to yield; average harvester capacity: 10 Mg h−1 | |
Biomass transport | 37.2–57.7 (tkm)* | Subject to yield |
Fertilisation | N Rate (kg ha−1 N) | OC in Digestate (kg ha−1 C) | Biomass Yield (Mg ha−1 d.m.) | Net Energy Yield (GJ ha−1) |
---|---|---|---|---|
Wet digestate (WD) | 85 | 750 | 33.3c | 528 |
170 | 1499 | 36.2 bc | 576 | |
Dried digestate (DD) | 85 | 2515 | 40.8 abc | 657 |
170 | 5030 | 53.0 abc | 855 | |
Torrefied digestate (TD) | 85 | 2786 | 47.0 abc | 753 |
170 | 5572 | 62.1 ab | 1005 | |
Mineral fertilisers (MF) | 85 | 0 | 55.1 abc | 867 |
170 | 0 | 64.1 a | 1014 | |
Control (C) | 0 | 0 | 54.9 abc | 878 |
Impact Category | Unit | Total | Chemical Weed Control | Disking | Winter Ploughing | Harrowing | Planting | Mechanical Weeding | Harvest | Transport | Plantation Closure | Field Emissions |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Change | kg CO2 eq. | 33.8 | 1.09 | 0.61 | 1.99 | 0.76 | 0.96 | 1.43 | 21.8 | 4.31 | 3.04 | −2.19 |
Particulate Matter Formation | kg PM10 eq. | 0.60 | 0.002 | 0.003 | 0.009 | 0.004 | 0.004 | 0.007 | 0.10 | 0.01 | 0.01 | 0.44 |
Terrestrial Acidification | kg SO2 eq. | 0.31 | 0.005 | 0.006 | 0.018 | 0.007 | 0.009 | 0.013 | 0.201 | 0.02 | 0.03 | 0 |
Freshwater Eutrophication | kg P eq. | 0.003 | 0.002 | 0.00001 | 0.00005 | 0.00002 | 0.00002 | 0.00003 | 0.0005 | 0.001 | 0.0001 | 0 |
Human Toxicity | kg 1,4-DB eq. | 3.80 | 1.36 | 0.02 | 0.06 | 0.03 | 0.028 | 0.06 | 0.83 | 1.31 | 0.12 | 0 |
Terrestrial Ecotoxicity | 0.006 | 0.002 | 0.00005 | 0.0003 | 0.00006 | 0.0002 | 0.0001 | 0.002 | 0.0007 | 0.0003 | 0 | |
Freshwater Ecotoxicity | 0.17 | 0.12 | 0.0005 | 0.002 | 0.0006 | 0.0008 | 0.001 | 0.02 | 0.03 | 0.002 | 0 | |
Fossil Depletion | kg oil eq. | 12.42 | 0.41 | 0.21 | 0.69 | 0.26 | 0.33 | 0.50 | 7.55 | 1.43 | 1.05 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyżaniak, M.; Stolarski, M.J.; Warmiński, K. Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments. Energies 2020, 13, 1931. https://doi.org/10.3390/en13081931
Krzyżaniak M, Stolarski MJ, Warmiński K. Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments. Energies. 2020; 13(8):1931. https://doi.org/10.3390/en13081931
Chicago/Turabian StyleKrzyżaniak, Michał, Mariusz J. Stolarski, and Kazimierz Warmiński. 2020. "Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments" Energies 13, no. 8: 1931. https://doi.org/10.3390/en13081931
APA StyleKrzyżaniak, M., Stolarski, M. J., & Warmiński, K. (2020). Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments. Energies, 13(8), 1931. https://doi.org/10.3390/en13081931