Reactive Power Injection to Mitigate Frequency Transients Using Grid Connected PV Systems
Abstract
:1. Introduction
2. The Proposed Ancillary Service
2.1. Scope and Comparison with VSG
2.2. Working Principle
3. Numerical Simulations: Comparison between Proposed Method and VSG
3.1. The Microgrid under Test
3.2. Control Methods
3.2.1. Proposed Q/f Control
3.2.2. VSG Control
3.2.3. Test Condition and Results
3.2.4. Stability Analisys of the Proposed Q/f Control
4. CHIL Simulation Results
4.1. CHIL Platform of Microgrid
4.1.1. Real-Time Microgrid
4.1.2. Interface and Real-Time Control
4.2. Exposed Control Problem
4.3. Final Test Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chicco, G.; Mancarella, P. Distributed multi-generation: A comprehensive view. Renew. Sustain. Energy Rev. 2009, 13, 535–551. [Google Scholar] [CrossRef]
- Llaria, A.; Curea, O.; Jiménez, J.; Camblong, H. Survey on microgrids: Unplanned islanding and related inverter control techniques. Renew. Energy 2011, 36, 2052–2061. [Google Scholar] [CrossRef]
- Georgilakis, P.S.; Hatziargyriou, N.D. A review of power distribution planning in the modern power systems era: Models, methods and future research. Electr. Power Syst. Res. 2015, 121, 89–100. [Google Scholar] [CrossRef]
- D’Arco, S.; Suul, J.A.; Fosso, O.B. A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. Electr. Power Syst. Res. 2015, 122, 180–197. [Google Scholar] [CrossRef]
- Lopes, J.P.; Hatziargyriou, N.; Mutale, J.; Djapic, P.; Jenkins, N. Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electr. Power Syst. Res. 2007, 77, 1189–1203, Distributed Generation. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, J.M.; Franquelo, L.G.; Bialasiewicz, J.T.; Galvan, E.; PortilloGuisado, R.C.; Prats, M.A.M.; Leon, J.I.; Moreno-Alfonso, N. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Trans. Ind. Electron. 2006, 53, 1002–1016. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef] [Green Version]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pota, H.R.; Hossain, M.J.; Blaabjerg, F. Evolution of microgrids with converter-interfaced generations: Challenges and opportunities. Int. J. Electr. Power Energy Syst. 2019, 109, 160–186. [Google Scholar] [CrossRef]
- Yang, Y.; Blaabjerg, F.; Wang, H. Low-Voltage Ride-Through of Single-Phase Transformerless Photovoltaic Inverters. IEEE Trans. Ind. Appl. 2014, 50, 1942–1952. [Google Scholar] [CrossRef] [Green Version]
- Stetz, T.; Marten, F.; Braun, M. Improved Low Voltage Grid-Integration of Photovoltaic Systems in Germany. IEEE Trans. Sustain. Energy 2013, 4, 534–542. [Google Scholar] [CrossRef]
- Hossain, M.; Pota, H.; Hossain, M.; Haruni, A. Active power management in a low-voltage islanded microgrid. Int. J. Electr. Power Energy Syst. 2018, 98, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Engler, A.; Soultanis, N. Droop control in LV-grids. In Proceedings of the 2005 International Conference on Future Power Systems, Amsterdam, NL, USA, 18 November 2005; p. 6. [Google Scholar] [CrossRef]
- Yu, X.; Khambadkone, A.M.; Wang, H.; Terence, S.T.S. Control of Parallel-Connected Power Converters for Low-Voltage Microgrid—Part I: A Hybrid Control Architecture. IEEE Trans. Power Electron. 2010, 25, 2962–2970. [Google Scholar] [CrossRef]
- Moradi, M.H.; Eskandari, M.; Hosseinian, S.M. Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes. Int. J. Electr. Power Energy Syst. 2016, 78, 390–400. [Google Scholar] [CrossRef]
- Vandoorn, T.L.; Kooning, J.D.D.; Meersman, B.; Zwaenepoel, B. Control of storage elements in an islanded microgrid with voltage-based control of DG units and loads. Int. J. Electr. Power Energy Syst. 2015, 64, 996–1006. [Google Scholar] [CrossRef] [Green Version]
- De Brabandere, K.; Bolsens, B.; Van den Keybus, J.; Woyte, A.; Driesen, J.; Belmans, R. A Voltage and Frequency Droop Control Method for Parallel Inverters. IEEE Trans. Power Electron. 2007, 22, 1107–1115. [Google Scholar] [CrossRef]
- Guerrero, J.M.; De Vicuna, L.G.; Matas, J.; Castilla, M.; Miret, J. Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans. Ind. Electron. 2005, 52, 1126–1135. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W. Analysis, Design, and Implementation of Virtual Impedance for Power Electronics Interfaced Distributed Generation. IEEE Trans. Ind. Appl. 2011, 47, 2525–2538. [Google Scholar] [CrossRef]
- Kim, J.; Guerrero, J.M.; Rodriguez, P.; Teodorescu, R.; Nam, K. Mode Adaptive Droop Control With Virtual Output Impedances for an Inverter-Based Flexible AC Microgrid. IEEE Trans. Power Electron. 2011, 26, 689–701. [Google Scholar] [CrossRef]
- Anderson, P.M.; Fouad, A.A. Power System Control and Stability; IEEE Press: Piscataway, NJ, US, 2003. [Google Scholar]
- Pulendran, S.; Tate, J. Energy storage system control for prevention of transient under-frequency load shedding. In Proceedings of the 2017 IEEE Power Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; p. 1. [Google Scholar] [CrossRef]
- Wen, Y.; Li, W.; Huang, G.; Liu, X. Frequency dynamics constrained unit commitment with battery energy storage. In Proceedings of the 2017 IEEE Power Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; p. 1. [Google Scholar] [CrossRef]
- Barcellona, S.; Huo, Y.; Niu, R.; Piegari, L.; Ragaini, E. Control strategy of virtual synchronous generator based on virtual impedance and band-pass damping. In Proceedings of the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri, Italy, 22–24 June 2016; pp. 1354–1362. [Google Scholar] [CrossRef]
- Liu, J.; Hossain, M.; Lu, J.; Rafi, F.; Li, H. A hybrid AC/DC microgrid control system based on a virtual synchronous generator for smooth transient performances. Electr. Power Syst. Res. 2018, 162, 169–182. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, Y. Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services. IEEE Trans. Sustain. Energy 2017, 8, 1140–1153. [Google Scholar] [CrossRef]
- Johnson, J.; Neely, J.C.; Delhotal, J.J.; Lave, M. Photovoltaic Frequency–Watt Curve Design for Frequency Regulation and Fast Contingency Reserves. IEEE J. Photovolt. 2016, 6, 1611–1618. [Google Scholar] [CrossRef]
- Ochoa, D.; Martinez, S. Fast-Frequency Response Provided by DFIG-Wind Turbines and its Impact on the Grid. IEEE Trans. Power Syst. 2017, 32, 4002–4011. [Google Scholar] [CrossRef]
- Schleif, F.R.; Hunkins, H.D.; Martin, G.E.; Hattan, E.E. Excitation Control to Improve Powerline Stability. IEEE Trans. Power Appar. Syst. 1968, PAS-87, 1426–1434. [Google Scholar] [CrossRef]
- Larsen, E.V.; Chow, J.S. SVC Control Design Concepts for Dystem Dynamic Performance; IEEE Press: Piscataway, NJ, USA, 2003. [Google Scholar]
- Zhao, Q.; Jiang, J. Robust SVC controller design for improving power system damping. IEEE Trans. Power Syst. 1995, 10, 1927–1932. [Google Scholar] [CrossRef]
- Noroozian, M.; Ghandhari, M.; Andersson, G.; Gronquist, J.; Hiskens, I. A robust control strategy for shunt and series reactive compensators to damp electromechanical oscillations. IEEE Trans. Power Deliv. 2001, 16, 812–817. [Google Scholar] [CrossRef]
- Liu, Q.; Vittal, V.; Elia, N. LPV supplementary damping controller design for a thyristor controlled series capacitor (TCSC) device. IEEE Trans. Power Syst. 2006, 21, 1242–1249. [Google Scholar] [CrossRef]
- Zhang, S.; Vittal, V. Design of Wide-Area Power System Damping Controllers Resilient to Communication Failures. IEEE Trans. Power Syst. 2013, 28, 4292–4300. [Google Scholar] [CrossRef]
- Moeini, A.; Kamwa, I. Analytical Concepts for Reactive Power Based Primary Frequency Control in Power Systems. IEEE Trans. Power Syst. 2016, 31, 4217–4230. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.W. Power Management of Inverter Interfaced Autonomous Microgrid Based on Virtual Frequency-Voltage Frame. IEEE Trans. Smart Grid 2011, 2, 30–40. [Google Scholar] [CrossRef]
- Sun, M.; Jia, Q. A Novel Frequency Regulation Strategy for Single-Stage Grid-Connected PV Generation. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Bejing, China, 20–22 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Dspace Manual. Available online: http://www.dspace.com. (accessed on 1 December 2019).
- Typhoon Hil manual. Available online: https://www.typhoon-hil.com. (accessed on 1 December 2019).
- Ren, W.; Steurer, M.; Baldwin, T.L. Improve the Stability and the Accuracy of Power Hardware-in-the-Loop Simulation by Selecting Appropriate Interface Algorithms. IEEE Trans. Ind. Appl. 2008, 44, 1286–1294. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Li, W.; Guo, J.; Monti, A. Development of a Universal Platform for Hardware In-the-Loop Testing of Microgrids. IEEE Trans. Ind. Inf. 2014, 10, 2154–2165. [Google Scholar] [CrossRef]
- Fitzgerald, A.E. Electric Machinery, 6th ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
SG Model Based VSG | Proposed Method | |
---|---|---|
working principle | ) or | |
effective power | Q | |
extra reserve? | Yes | No |
expected effect | compensating load power | impeding voltage recovery |
other features | responds to , early instability concerns | responds to , later high loop speed required |
Common Base Values | |
---|---|
Base voltage | |
Base angular frequency | |
Synchronous Generator | |
Base stator current | |
Base impedance | |
Base stator inductance | |
PV Plant | |
Base output current | |
Base impedance | |
Base inductance | |
Base capacitance | |
VSG | |
Base output current | |
Base impedance | |
Base inductance | |
Base capacitance |
Configuration | |||
Rotor type | Salient-pole | Stator windings | wye connection |
Pole pairs | 2 | Friction factor | 0.16 Nms |
Moment of inertia | 3.553 | ||
Nominal Ratings | |||
Power | 250 kVA | Voltage(rms line-line) | 400 V |
Frequency | 50 Hz | 0.1 | |
Parameters (pu) | |||
(base values are calculated in Table 2–Synchronous Generator) | |||
Stator resistance | 0.026 | Stator leakage inductance | 0.090 |
Magnetizing inductance (d) | 2.750 | Magnetizing inductance (q) | 2.350 |
Field winding resistance | 0.094 | Field winding leakage inductance | 147.262 |
Damping resistance (d) | 0.292 | Damping inductance (d) | 1.982 |
Damping resistance (q) | 0.066 | Damping inductance (q) | 0.305 |
Approximate model | PI regulator |
Setpoint | Amplitude of line-line voltage = 566 (V) |
Output Signal | Field voltage (V) |
Proportional coefficient | 15 |
Integral coefficient | 80 |
Output range | [0, 240] (V) |
Approximate model | PI regulator |
Setpoint | Rotor angular frequency = 157 (rad/s) |
Output Signal | Mechanical torque (Nm) |
Proportional coefficient | 70 |
Integral coefficient | 51 |
Output range | [0, 1600] (Nm) |
Nominal Ratings of the PV plant | |||
Power | 100 kW | Voltage(rms line-line) | 400 V |
Frequency | 50 Hz | Switching frequency | 20 kHz |
Parameters of the PV array @ STC | |||
Maximum Power | 100 kW | ||
Voltage @ MPP | 273.5 V | Current @ MPP | 368.3 A |
Parameters of the output LCL Filter (pu) | |||
(base values are calculated in Table 2–PV Plant) | |||
Inverter side inductor | Inverter side resistor | ||
Grid side inductor | Grid side resistor | ||
Shunt capacitor | 0.272 | Shunt resistor | 0.049 |
Nominal Ratings of the VSG | |||
Power | 25 kW | Voltage(rms line-line) | 400 V |
Frequency | 50 Hz | DC side voltage | 1 kV |
Parameters of the output LCL Filter (pu) | |||
(base values are calculated in Table 2–VSG) | |||
Inverter side inductor | Inverter side resistor | ||
Grid side inductor | Grid side resistor | ||
Shunt capacitor | 1.089 | Shunt resistor | 0.012 |
R/km | L/km | |||
---|---|---|---|---|
78 mΩ/km | 238 μH/km | 0.1 km | 0.3 km | 0.1 km |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Y.; Barcellona, S.; Piegari, L.; Gruosso, G. Reactive Power Injection to Mitigate Frequency Transients Using Grid Connected PV Systems. Energies 2020, 13, 1998. https://doi.org/10.3390/en13081998
Huo Y, Barcellona S, Piegari L, Gruosso G. Reactive Power Injection to Mitigate Frequency Transients Using Grid Connected PV Systems. Energies. 2020; 13(8):1998. https://doi.org/10.3390/en13081998
Chicago/Turabian StyleHuo, Yujia, Simone Barcellona, Luigi Piegari, and Giambattista Gruosso. 2020. "Reactive Power Injection to Mitigate Frequency Transients Using Grid Connected PV Systems" Energies 13, no. 8: 1998. https://doi.org/10.3390/en13081998
APA StyleHuo, Y., Barcellona, S., Piegari, L., & Gruosso, G. (2020). Reactive Power Injection to Mitigate Frequency Transients Using Grid Connected PV Systems. Energies, 13(8), 1998. https://doi.org/10.3390/en13081998