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Abstract: This paper applies a heuristic approach to optimize the predictor variables in artificial
neural networks when forecasting raw material prices for energy production (coking coal, natural
gas, crude oil and coal) to achieve a better forecast. Two goals are (1) to determine the optimum
number of time-delayed terms or past values forming the lagged variables and (2) to improve the
forecast accuracy by adding intrinsic signals to the lagged variables. The conclusions clearly are in
opposition to the actual scientific literature: when addressing the lagged variable size, the results
do not confirm relationships among their size, representativeness and estimation accuracy. It is also
possible to verify an important effect of the results on the lagged variable size. Finally, adding the
order in the time series of the lagged variables to form the predictor variables improves the forecast
accuracy in most cases.

Keywords: raw material; price forecasting; artificial neural network; predictor variable; lagged
variable size; rolling window; coking coal; natural gas; crude oil; coal

1. Introduction

Artificial neural networks (ANN) have been widely used as accurate forecast aids addressing
issues directly or indirectly related with energy or raw materials: energy production [1], raw material
inventory levels [2], crude oil prices [3], volatility of stock price indices [4], electricity prices [5],
stock prices [6], gold prices [7], copper spot prices [8], off-gases production [9], currency exchange
rates [10], etc.

This paper analyzes the forecast of raw material prices for energy production by means of ANN,
focusing on the selection of optimum parameters in order to configure the ANN. Design of experiments
(DOE) is normally used to select these parameters [11].

DOE can be focused on estimating the number of neurons in hidden layers [12], on forming
training and test datasets [13], on eliminating redundant dimensions in the predictor variables trying to
achieve compression [14,15], on determining the optimum size of the lagged variables [16], on adding
signals to the lagged variables [17], etc.
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A heuristic approach will be used to optimize the predictor variables in ANN by means of (1)
modifying the lagged variable size and (2) adding intrinsic signals to the lagged variables.

Addressing the lagged variable size, Liu and Su [18] indicated that a larger size allows
for increasing the forecast accuracy, while it decreases the representativeness of the subsample
heterogeneity. Moreover, although smaller sizes may improve representativeness, they will reduce the
estimation accuracy. In the above empirical research, they used lagged variable sizes of 12, 24 and 36
months to test different alternatives. Nevertheless, the lagged variable sizes indicate very little effect
on the results.

Tang and Abosedra [19] established that the lagged variable regression results are very sensitive
regarding their size, but as there are no proper methods to select an optimum size, arbitrary selections
have to be made. Other authors argue that a larger lagged variable size would lead to short-run
predictability information being missed, and thus, a shorter size is preferred [20,21].

WEKA from the Machine Learning Group at the University of Waikato (Waikato, New Zealand) [22,23],
a well-known open source machine learning software widely used for teaching, research and industrial
applications, has a specific time-series analysis environment to forecast models. WEKA’s time-series
framework uses a machine learning/data mining approach to model time series. It transforms the data
by removing the temporal ordering of individual input examples by encoding the time dependency
via additional input fields or lagged variables. When using WEKA, it is possible to manipulate and
control how lagged variables are created. They are the main mechanism to capture the relationship
between current and past values, creating a window over a certain time period. Essentially, the number
of lagged variables created determines the size of the window.

Regarding the adding of intrinsic signals to the lagged variables, Tavakoli et al. [24] proposed an
input management system based on flexible data by immediately providing a variable definition layer
on top of the acquisition layer to feed a data mining module to build modeling functions. Recently,
and within the neural networks field, Uykan and Koivo [25] have presented and analyzed a new
design for the predictor variables of a radial basis function neural network. In this design, the predictor
variables were augmented with a desired output vector, allowing for better/comparable performance
when compared with the standard neural network.

Raw material selection, namely, coking coal, natural gas, crude oil and coal, was based on the
representativeness and price availability of such materials. In the case of coking coal, prices were
obtained from the Colombian Mining Information System as they were publicly disclosed, while for
the rest of the raw materials, their prices were obtained from the World Bank Commodity Price Data
(The Pink Sheet) under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

The program used to simulate ANNs was NeuralTools 7.5 from Palisade Corporation (Ithaca,
NY, USA).

2. Method

This paper will attempt to improve the result of the time-series forecasting of raw material prices
for energy production developed with ANN by means of a twofold optimization of the predictor
variables (modifying the lagged variable size and adding intrinsic signals to the lagged variables),
taking into consideration the previous work of Matyjaszek et al. [26], in which coking coal prices were
forecasted by means of autoregressive integrated moving average models (ARIMA) [27,28] and ANN,
as well as the transgenic time-series theory.

2.1. Artificial Neural Networks

Two different types of ANNs proposed by Specht [29] will be tested using the best net search
function that is available in NeuralTools: generalized regression neural networks (GRNNs), which were
used in the past to forecast European thermal coal spot prices among very different applications [30,31],
and multilayer feedforward networks (MLFNs), with one or two layers as described in García
Nieto et al. [32].
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GRNNs are based on nonlinear regression theory and are very closely related to probabilistic
neural nets. In GRNNs, a case prediction with a dependent value that is unknown is obtained by means
of interpolation from the training cases, with neighboring cases given more weight [33]. The optimal
parameters for the interpolation are found during training. The main advantage is not requiring any
configuration at all.

Figure 1 presents a GRNN with two independent variables in the input layer and only four
training cases, with the pattern layer having four nodes corresponding to these training cases. Each of
the nodes will compute its Euclidean distance regarding the presented case. Then, these values pass
to the summation layer. The summation layer has two parts: one is the numerator, and the other is
the denominator. The numerator contains the sum of multiplying the training output data and the
activation function. The denominator is the sum of all the activation functions.
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Figure 1. Configuration of a generalized regression neural network (GRNN) with two independent
numeric variables and four training cases.

Finally, the output layer has only one neuron that calculates the output by dividing the numerator
and the denominator of the summation layer.

On the other hand, MLFNs consist of an input layer, one or even two hidden layers and the
output layer. A MLFN is configured by specifying the number nodes in the hidden layers. The net
behavior will depend on the number of nodes selected for each hidden layer, the connections weights,
the bias terms that are assigned to each node, and the activation/transfer function selected to convert
into output the inputs of each node. They are able to approximate complex relationships between
the variables.

2.2. Lagged variable Size

One of the issues to be analyzed within this paper is the current discussion about if a larger lagged
variable size allows for increasing the forecast accuracy [18] or if a shorter size is preferred based on
avoiding to miss short-run predictability information [20,21]. Another issue will be whether lagged
variable regression results are very sensitive regarding their size [19] or not [18].

Lagged variables are generated by a number of linear time-delayed input terms or past values,
normally in ascending order, such as P(t−n) . . . P(t−2), P(t−1), to estimate the output value P(t) [34].
They are also referred to as rolling windows [35].

To undergo a first estimation of the number of time-delayed terms that should form the lagged
variables (n), there are several alternatives that can be selected, including the one developed by
Ren et al. [36], which uses the seasonal characteristic that appears in the autocorrelation function
(ACF) plot, although this value is not always available.

Other common approach is to approximate the value by determining the square root of the amount
of data available to undertake the analysis [26]:√

Total n◦ o f data (1)
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Another alternative is the one used also by Matyjaszek et al. [26], in which the adequate number
of time-delayed terms, k, that should form each input layer is calculated as follows:

Total n◦ of data ≤ n2 + 2n + 1, (2)

n = 1 + k + 1 (3)

2.3. Adding Intrinsic Signals to the Lagged Variables

Up to date and in order to improve the forecast accuracy by adding signals to the lagged variables,
research is focused on the extrinsic ones [24,25]. This paper would analyze whether it is feasible to
optimize predictor variables by adding intrinsic signals, so that the neural network will have more
information available; thus, a better forecast could be made. For this purpose, the order in the time
series of each lagged variable would be used, so the ANN could exploit this feature.

This line of thinking is congruent with the work developed by Barabási [37], who states that there
is a huge disconnect between network science and deep learning; although ANN are abstractions of
natural processes, some of the key neural networks could not be more ignorant about real networks.
Main deep learning algorithms treat network features, like degree, as simple variables. Thus, they
cannot truly exploit the network effects, which are the essence of these systems, as in networked
systems the key information is in the relationships between the connected components (i.e., in the links
or edges, which are the direct interactions between nodes), not in the node attributes.

Table 1 presents an example of the first through tenth lagged variables used in a model with five
time-delayed input terms: P(t−k) . . . P(t−2), P(t−1), with k = 5, as well as the output to be estimated: P(t).

Table 1. First through tenth lagged variables with five time-delayed input terms, and the output to be
estimated (t).

Lagged Variable t−5 t−4 t−3 t−2 t−1 t

First 37.93 37.31 34.84 37.87 26.03 38.73
Second 37.31 34.84 37.87 26.03 38.73 40.41
Third 34.84 37.87 26.03 38.73 40.41 38.31

Fourth 37.87 26.03 38.73 40.41 38.31 38.27
Fifth 26.03 38.73 40.41 38.31 38.27 39.33
Sixth 38.73 40.41 38.31 38.27 39.33 39.36

Seventh 40.41 38.31 38.27 39.33 39.36 39.85
Eighth 38.31 38.27 39.33 39.36 39.85 37.30
Ninth 38.27 39.33 39.36 39.85 37.30 38.27
Tenth 39.33 39.36 39.85 37.30 38.27 37.15

Table 2 presents the same first through tenth lagged variables with five time-delayed input terms
plus the order in the time series of each lagged variable, as well as the output to be estimated: P(t).

Table 2. First through tenth predictor variables with 5 time-delayed input terms plus the order in the
time series of each lagged variable, and the output to be estimated (t).

Neuron Number Order t−5 t−4 t−3 t−2 t−1 t

First neuron 1 37.93 37.31 34.84 37.87 26.03 38.73
Second neuron 2 37.31 34.84 37.87 26.03 38.73 40.41
Third neuron 3 34.84 37.87 26.03 38.73 40.41 38.31

Fourth neuron 4 37.87 26.03 38.73 40.41 38.31 38.27
Fifth neuron 5 26.03 38.73 40.41 38.31 38.27 39.33
Sixth neuron 6 38.73 40.41 38.31 38.27 39.33 39.36

Seventh neuron 7 40.41 38.31 38.27 39.33 39.36 39.85
Eighth neuron 8 38.31 38.27 39.33 39.36 39.85 37.30
Ninth neuron 9 38.27 39.33 39.36 39.85 37.30 38.27
Tenth neuron 10 39.33 39.36 39.85 37.30 38.27 37.15
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2.4. Figures of Merit

The experimental results will be evaluated using the two most common figures of merit [38],
namely, the root mean squared error (RMSE) and the mean absolute error (MAE).

The RMSE is an excellent general-purpose error measure used for numerical predictions.
It amplifies and penalizes large errors and can be expressed as follows:

RMSE =

√∑n
t=1(At − Ft)

2

n
, (4)

where At is the actual value, Ft is the forecasted value, and n is the number of forecasted values.
The MAE is used to measure how close the predictions are to the outcomes and can be expressed

as follows:

MAE =
1
n

n∑
t=1

|At − Ft| (5)

Chai and Draxler [39] proposed the use of a combination of metrics including but not limited
to the RMSE and the MAE. Conversely, Carta et al. [40], when addressing wind resource prediction,
proposed using the MAE, the MAPE and the index of agreement (IoA).

In this paper, the standard deviation of absolute error (STD of AE) was selected to complement
these measures as in Lazaridis [38], characterizing the dispersion of the absolute errors.

3. Results

3.1. Coking Coal

The dataset used was the Colombia hard coking coal monthly prices free on board (FOB) for
the period from January 1991 to December 2015, as publicly disclosed by the Colombian Mining
Information System [41], totaling 300 data points. The dataset is presented in Figure 2.
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Figure 2. Colombia hard coking coal monthly prices FOB from January 1991 to December 2015 [41].

In first place, GRNNs and MLFNs with 2–6 nodes in the first hidden layer (as the second layer is
seldom needed for better prediction accuracy) were tested using the best net search function that is
available in NeuralTools.

Table 3 presents the results of this best net search, where the configuration of the lagged variables
was made using 19 time-delayed terms, which was the lagged variable size given by the seasonal
characteristic that appears in the autocorrelation function (ACF) plot of the transformed time series
when representing a consistent genome [26,42]. The results showed that the GRNN improved all the
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MLFN models, as stated for most cases by Modaresi et al. [43], so this will be the ANN to be used in
this paper.

Table 3. Best net search.

Neural Network Type RMS Error

GRNN 14.41
MLFN 2 Nodes 18.43
MLFN 3 Nodes 24.37
MLFN 4 Nodes 21.91
MLFN 5 Nodes 19.80
MLFN 6 Nodes 19.28

To undergo a first estimation of the number of time-delayed terms that should form the
lagged variables, the square root of the amount of data available to undertake the analysis was
calculated: √

Total n◦ o f data =
√

300 = 17.32

Using the other alternative previously mentioned, the value obtained is as follows:

300 ≤ n2 + n + 1 => n = 16.32,

k = n −2 = 14.32

Nevertheless, the GRNN will be trained starting with 12 time-delayed input terms and up to
24 time-delayed input terms, a range that includes the previous values of k as well as one and two
complete year periods [18].

This allows considering almost any periodical aspect that may be hidden within the time-series
values but without drastically reducing the sample size requirements according to Turmon and Fine [44].
The results from the GRNN training are presented in Table 4.

Table 4. Training results for the GRNN model of the Colombian coking coal time series, from 12 to 24
time-delayed input terms (total number of data points is 300).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
30% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 288 9.0278% 5.715 3.718 4.340
13 287 9.7561% 6.383 4.295 4.721
14 286 9.7902% 6.352 4.131 4.826
15 285 8.7719% 5.801 3.699 4.469
16 284 9.5070% 6.167 3.996 4.698
17 283 9.1873% 5.678 3.580 4.408
18 282 9.5745% 5.969 3.761 4.636
19 281 8.5409% 4.550 2.784 3.599
20 280 8.9286% 5.080 3.172 3.968
21 279 8.6022% 4.853 2.949 3.854
22 278 9.7122% 5.352 3.296 4.217
23 277 9.3863% 5.211 3.230 4.089
24 276 9.0580% 4.955 3.040 3.913

The figures in bold correspond to the model that achieves better performance measures.

Based on these measures, the best result was obtained with 19 time-delayed input terms, which
was the lagged variable size given by the seasonal characteristic that appears in the autocorrelation
function (ACF) plot of the transformed time series when representing a consistent genome [26].

The figures of merit were root mean squared error (RMSE) of 4.550, mean absolute error (MAE) of
2.784 and standard deviation of absolute error of 3.599. With 30% tolerance, the percentage of bad
predictions was 8.5409%.

Then, it was checked if it was feasible to optimize the predictor variables by adding intrinsic
signals to the lagged variables so that the ANN would have more information available, and thus,
a better forecast could be achieved.
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For this purpose, the order of the lagged variables in the time series was considered. Using these
predictor variables, results from the training of the GRNN are presented in Table 5.

Table 5. Training results for the GRNN model of the Colombian coking coal time series, from 12 to
24 time-delayed input terms and including the order in the time series of the lagged variables (total
number of data points is 300).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
30% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 288 7.9861% 5.690 3.816 4.221
13 287 6.9686% 5.599 3.731 4.175
14 286 8.0420% 6.018 4.034 4.466
15 285 8.4211% 6.288 4.246 4.637
16 284 9.5070% 6.112 4.072 4.557
17 283 6.7138% 5.358 3.447 4.102
18 282 5.6738% 5.138 3.311 3.929
19 281 6.4057% 4.914 3.169 3.756
20 280 5.7143% 4.555 2.962 3.460
21 279 3.2258% 3.871 2.545 2.916
22 278 3.2374% 4.575 3.104 3.361
23 277 2.8881% 3.883 2.624 2.863
24 276 2.5362% 3.376 2.286 2.485

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 24 time-delayed input terms, with a RMSE of 3.376, a MAE of
2.286 and a standard deviation of absolute error of 2.485. With 30% tolerance, the percentage of bad
predictions was 2.5362%. Thus, the order in the time series of the lagged variables clearly improved
the model’s forecasting performance, as it significantly reduced the RMSE, the MAE, the standard
deviation of absolute error and the percentage of bad predictions.

3.2. Natural Gas

The second raw material for energy production analyzed was natural gas. The dataset used was
natural gas prices in Europe for the period from January 1991 to August 2019, totaling 344 values.

Prices were obtained from the World Bank [45] and are presented in Figure 3 in MMBtu, also known
as million British thermal units, with 1 MMBtu = 28.263682 m3 of natural gas at 1 ◦F.
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Figure 3. Natural gas prices in Europe for the period from January 1991 to August 2019 [45].

As no seasonal characteristic appears in the autocorrelation function (ACF), in order to estimate
the number of time-delayed input terms, the following calculations were made:√

Total n◦ o f data =
√

344 = 18.55,
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344 ≤ n2 + n + 1 => n = 17.54

k = n −2 = 15.54

Nevertheless, the GRNN was trained with lagged variables starting with 12 time-delayed input
terms and up to 24 time-delayed input terms, using the same interval as in the coking coal case and for
the same reasons.

The results from the training of the GRNN are presented in Table 6.

Table 6. Training results for the GRNN model of the European natural gas time series, from 12 to 24
time-delayed input terms (total number of data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 4.8193% 0.06273 0.03456 0.05235
13 331 13.2931% 0.11497 0.07372 0.08823
14 330 9.0909% 0.08877 0.04962 0.07361
15 329 11.2462% 0.10689 0.06426 0.08541
16 328 7.3171% 0.07147 0.03534 0.06211
17 327 8.5627% 0.08255 0.04554 0.06885
18 326 7.6687% 0.07654 0.04115 0.06453
19 325 8.9231% 0.08099 0.04326 0.06847
20 324 10.4938% 0.10054 0.05656 0.08312
21 323 9.5975% 0.08318 0.04125 0.07223
22 322 7.1429% 0.07656 0.03844 0.06621
23 321 11.5265% 0.10147 0.05458 0.08553
24 320 11.2500% 0.10862 0.05987 0.09064

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 12 time-delayed input terms, with a RMSE of 0.06273, a MAE of
0.03456 and a standard deviation of absolute error of 0.05235. With 5% tolerance, the percentage of bad
predictions was 4.8193%. A 5% tolerance was used this time, as with a 30% tolerance the percentages
of bad predictions were always zero.

Then, the GRNN was trained using the same number of time-delayed input terms but considering
the order in the time series of each lagged variable. The results from the training of the GRNN are
presented in Table 7. In this case, the best result was obtained with 14 time-delayed input terms,
with a RMSE of 0.01970, a MAE of 0.01032 and a standard deviation of absolute error of 0.01678.
With 5% tolerance, the percentage of bad predictions decreased to zero.

Table 7. Training results for the GRNN model of the European natural gas time series, from 12 to
24 time-delayed input terms and including the order in the time series of the lagged variables (total
number of data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 0.9036% 0.05682 0.03368 0.04577
13 331 1.2085% 0.04952 0.03043 0.03907
14 330 0.0000% 0.01970 0.01032 0.01678
15 329 11.8541% 0.11262 0.07292 0.08583
16 328 2.7439% 0.07011 0.04389 0.05468
17 327 1.2232% 0.04523 0.02703 0.03627
18 326 7.0552% 0.09436 0.05991 0.07291
19 325 4.9231% 0.06879 0.04397 0.05290
20 324 1.8519% 0.06466 0.04194 0.04922
21 323 9.2879% 0.10533 0.06673 0.08150
22 322 7.7640% 0.08618 0.05335 0.06768
23 321 8.4112% 0.09739 0.06137 0.07562
24 320 7.5000% 0.07879 0.04658 0.06354

The figures in bold correspond to the model that achieves better performance measures.
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Thus, again, the order in the time series of the lagged variables clearly improved the model’s
forecasting performance, as it significantly reduced the RMSE, the MAE, the standard deviation of
absolute error and the percentage of bad predictions.

3.3. Crude Oil

The third raw material for energy production analyzed was crude oil. The dataset used was
that of Brent crude oil prices for the same period as for the natural gas: January 1991 to August 2019,
totaling 344 values. Again, prices were obtained from the World Bank [45] and are presented in Figure 4
in $/bbl, that is, dollars per barrel, with 1 barrel being approximately 159 liters.
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Figure 4. Brent crude oil prices for the period from January 1991 to August 2019 [45].

The number of estimated time-delayed input terms that should be used were the same as in the
case of natural gas and crude oil, as the number of data points was the same in all cases (344).

The GRNN was trained again with lagged variables starting with 12 time-delayed input terms and
up to 24 time-delayed input terms. The results from the training of the GRNN are presented in Table 8.

Table 8. Training results of the GRNN model for the Brent crude oil time series, from 12 to 24
time-delayed input terms (total number of data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 29.2169% 1.713 1.1509 1.269
13 331 28.3988% 1.486 0.9643 1.131
14 330 28.7879% 1.601 1.0494 1.209
15 329 29.1793% 1.535 0.9976 1.167
16 328 28.9634% 1.525 0.9911 1.159
17 327 25.6881% 1.324 0.8427 1.021
18 326 29.4479% 1.569 0.9986 1.210
19 325 28.3077% 1.539 0.9680 1.197
20 324 28.0864% 1.563 0.9761 1.221
21 323 28.7926% 1.535 0.9451 1.209
22 322 24.8447% 1.316 0.7827 1.058
23 321 23.0530% 1.177 0.6645 0.971
24 320 26.8750% 1.420 0.8398 1.145

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 23 time-delayed input terms, with a RMSE of 1.177, a MAE of
0.6645 and a standard deviation of absolute error of 0.971. With 5% tolerance, the percentage of bad
predictions was 23.0530%.
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Then, the GRNN was trained using the same number of time-delayed input terms but considering
the order in the time series of each lagged variable. The results from the training of the GRNN are
presented in Table 9.

Table 9. Training results of the GRNN model for the Brent crude oil time series, from 12 to 24
time-delayed input terms including the order in the time series of the lagged variables (total number of
data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 0.0000% 0.0000 0.0000 0.0000
13 331 0.0000% 0.1708 0.1147 0.1265
14 330 0.0000% 0.0281 0.0178 0.0218
15 329 4.8632% 0.5863 0.3764 0.4496
16 328 17.0732% 0.9034 0.5742 0.6974
17 327 4.2813% 0.4508 0.2649 0.3648
18 326 12.5767% 0.7637 0.4729 0.5996
19 325 5.8462% 0.7225 0.4589 0.5581
20 324 0.6173% 0.2725 0.1653 0.2166
21 323 5.5728% 0.6292 0.3951 0.4896
22 322 1.8634% 0.4352 0.2698 0.3414
23 321 13.0841% 0.8028 0.5109 0.6193
24 320 0.6250% 0.3644 0.2332 0.2801

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 14 time-delayed input terms, with a RMSE of 0.0281, a MAE of
0.0178 and a standard deviation of absolute error of 0.0218. With 5% tolerance, the percentage of bad
predictions decreased again to zero.

With 12 time-delayed input terms, it is clear that the ANN was able to learn the exact configuration
of the time series, but only in this case.

Thus, the order in the time series of the lagged variables clearly improved the model’s forecasting
performance, as it significantly reduced the RMSE, the MAE, the standard deviation of absolute error
and the percentage of bad predictions.

3.4. Coal

The fourth and last raw material for energy production analyzed was coal. The dataset used was
that of Australian coal prices for the same period as crude oil and natural gas: January 1991 to August
2019. Prices were also obtained from the World Bank [45] and are presented in Figure 5 in $/t.
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Figure 5. Australian coal prices for the period January from 1991 to August 2019 [45].

The number of estimated time-delayed input terms that should be used were the same as in the
case of natural gas and crude oil, as the number of data points was the same in all cases (344).
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The GRNN was trained again with lagged variables starting with 12 time-delayed input terms
and up to 24 time-delayed input terms, as in the case of European natural gas and Brent crude oil.
The results from the training of the GRNN are presented in Table 10.

Table 10. Training results of the GRNN model for the Australian coal time series, from 12 to 24
time-delayed input terms (total number of data points is 344).

Time-delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 17.1687% 1.4800 0.9232 1.1568
13 331 20.8459% 1.6634 1.0467 1.2928
14 330 16.6667% 1.4359 0.8757 1.1379
15 329 21.5805% 1.6421 1.0063 1.2976
16 328 21.6463% 1.6679 1.0163 1.3225
17 327 19.2661% 1.5443 0.9240 1.2373
18 326 16.8712% 1.4328 0.8257 1.1710
19 325 15.6923% 1.3280 0.7397 1.1029
20 324 24.3827% 1.7703 1.0805 1.4023
21 323 23.8390% 1.7435 1.0541 1.3888
22 322 21.1180% 1.6711 0.9920 1.3448
23 321 20.2492% 1.6219 0.9430 1.3196
24 320 18.4375% 1.5812 0.9129 1.2910

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 19 time-delayed input terms, with a RMSE of 1.3280, a MAE of
0.7397 and a standard deviation of absolute error of 1.1029. With 5% tolerance, the percentage of bad
predictions was 15.6923%.

Then, the GRNN was trained using the same number of time-delayed input terms but considering
the order in the time series of each lagged variable. The results from the training of the GRNN are
presented in Table 11.

Table 11. Training results for the GRNN models of the Australian coal time series, from 12 to 24
time-delayed input terms and including the order in the time series of the lagged variables (total
number of data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 18.6747% 1.5567 1.0548 1.1448
13 331 18.4290% 1.5274 1.0027 1.1521
14 330 17.8788% 1.4749 0.9614 1.1185
15 329 17.6292% 1.3702 0.8624 1.0647
16 328 23.1707% 1.8393 1.1910 1.4017
17 327 22.6300% 1.7316 1.1060 1.3324
18 326 21.4724% 1.6358 1.0383 1.2641
19 325 20.9231% 1.5696 0.9819 1.2245
20 324 20.3704% 1.4961 0.9180 1.1813
21 323 18.5759% 1.4415 0.8794 1.1423
22 322 16.7702% 1.3678 0.8185 1.0959
23 321 23.0530% 1.9438 1.1856 1.5404
24 320 22.5000% 1.8997 1.1497 1.5123

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 22 time-delayed input terms, with a RMSE of 1.3678, a MAE of
0.8185 and a standard deviation of absolute error of 1.0959. With 5% tolerance, the percentage of bad
predictions was 16.7702%.

In this case, adding the order in the time series of each lagged variable only improved the standard
deviation of absolute error.

Nevertheless, if the RMSE and MAE were compared with the training results obtained without
adding the order in the time series of each lagged variable, although slightly higher, they were very
similar to the best results, and better than the rest of the training results.

Thus, the differences between both options were almost negligible.
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4. Discussion and Conclusions

This paper applied a heuristic approach to optimize the predictor variables in artificial neural
networks when forecasting raw material prices for energy production to achieve a better forecast.

Two goals are (1) to determine the optimum number of time-delayed terms or past values
forming the lagged variables and (2) to optimize predictor variables by adding intrinsic signals to the
lagged variables.

The experimental results were evaluated using the two most common figures of merit, the root
mean squared error (RMSE) and the mean absolute error (MAE), as well as the standard deviation of
absolute error, as the scientific literature proposes the use of a combination of metrics including RMSE
and MAE, but not being limited to them.

Results demonstrated, first, that in opposition to scientific literature when addressing lagged
variable size, a larger size did not allow for increasing the forecast accuracy, and that smaller sizes
did not reduce the estimation accuracy. Moreover, the lagged variable regression results were very
sensitive regarding their size.

In the three raw materials with the same number of cases (natural gas, crude oil and coal), the
best results were obtained with rolling window sizes of 12, 23 and 19, respectively. Furthermore, it was
possible to verify an important effect of the lagged variable size on the results, with differences that in
some cases were larger than 20%.

Thus, and in opposition again to scientific literature indicating that there are no proper methods
to select an optimum size so arbitrary selections have to be made, it is recommendable to address this
question by trial and error method, although the approximate size can be estimated in order to select
the complete year’s period range to which this value belongs, e.g., 12–24 months or 24–36 months.
This will allow considering any periodical aspect that may be hidden within the time series values,
but without drastically reducing or increasing the sample size requirements for neural networks.

Second, in three of the four raw materials analyzed (coking coal, natural gas and crude oil), it
was possible to improve the forecast accuracy by adding the order in the time series of the lagged
variables to form the predictor variables. The best results were achieved with rolling window sizes of
24, 14 and 14, respectively.

In the case of the Australian coal, this process only improved the standard deviation of absolute
error. Nevertheless, if the RMSE and MAE were compared with the training results obtained without
adding the order, although slightly higher, they were very similar to the best results and better than
the rest of the training results without adding the order.

As the differences between both options were almost negligible, it is possible to recommend
adding the order in the time series of each lagged variable to the predictor variable in all cases.

Third, only with the Brent crude oil with 12 time-delayed input terms and considering the order
in the time series of the lagged variables, the ANN was able to learn or deduct the exact configuration
of the time series. This is completely congruent with the fact that there is a huge disconnect between
network science and deep learning, as the key information is in the relationships between the connected
components, not in the node attributes.

Concluding, the findings presented in this paper have an immediate practical application
addressing the forecast of time series by means of ANN that consider lagged variables, without being
restricted to the studied case of raw material prices for energy production.

Any forecast may be optimized just by adding an intrinsic signal to the predictor variable
consisting of the order in the time series of each lagged variable. By doing this way, the ANN will be
able to exploit this feature, something that will not happen otherwise. In most of the cases, figures of
merit may improve (may be reduced) up to a 20%, with the consequent benefit for decision-makers
regarding savings, efficiency/benefit gains and/or lower risk.

Regarding the size of the lagged variable, a selection should be made about the period that will be
analyzed in order to undergo a trial and error process. This selection should follow the procedure
shown in this paper or other ones that may be found in the scientific literature.
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Further research should address different issues such as the use of more intrinsic signals. Regarding
this issue, authors have made interesting preliminary approaches by considering the transgenic time
series theory that allows eliminating anomalous phenomena from the time series. Augmenting the
lagged variables within this anomalous period with a ‘1’ and the rest with a ‘0’, or vice versa, it was
possible to improve a priori the figures of merit.

Another area of interesting future research will be to develop a procedure to determine accurately
the number of time-delayed input terms that should be used when considering the order in the time
series of the lagged variables. While the seasonal characteristic that appears in the autocorrelation
function (ACF) plot is valid before augmenting the lagged variables, later this figure is no longer valid,
so a new approach should be addressed. Nevertheless, nothing is yet developed addressing the
time series with an ACF plot that does not allow one to extract a seasonal characteristic. Again, the
transgenic time series theory could be of help in these cases.

Finally, it should be addressed by future research why in the case of Australian coal, or in similar
cases, it was not possible to improve the figures of merit by adding to the predictor variable the order
in the time series of each lagged variable.
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26. Matyjaszek, M.; Riesgo Fernández, P.; Krzemień, A.; Wodarski, K.; Fidalgo Valverde, G. Forecasting coking

coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory.
Resour. Policy 2019, 61, 283–292. [CrossRef]

27. Hyndman, R.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw.
2008, 27, 1–22. [CrossRef]

28. Ong, C.S.; Huang, J.J.; Tzeng, G.H. Model identification of ARIMA family using genetic algorithms. Appl.
Math. Comput. 2005, 164, 885–912. [CrossRef]

29. Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [CrossRef]
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