energies MBPY

Review

Outdoor Wellbeing and Quality of Life: A Scientific
Literature Review on Thermal Comfort

Ernesto Antonini **, Vincenzo Vodola, Jacopo Gaspari'® and Michaela De Giglio

Department di Architecture—DA, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy;
vincenzo.vodola2@unibo.it (V.V.); jacopo.gaspari@unibo.it (J.G.); michaela.degiglio@unibo.it (M.D.G.)
* Correspondence: ernesto.antonini@unibo.it

check for
Received: 17 March 2020; Accepted: 9 April 2020; Published: 21 April 2020 updates

Abstract: While indoor comfort represents a widely investigated research topic with relation to
sustainable development and energy-demand reduction in the built environment, outdoor comfort
remains an open field of study, especially with reference to the impacts of climate change and the
quality of life for inhabitants, particularly in urban contexts. Despite the relevant efforts spent in the
last few decades to advance the understanding of phenomena and the knowledge in this specific
field, which obtained much evidence for the topic’s relevance, a comprehensive picture of the studies,
as well as a classification of the interconnected subjects and outcomes, is still lacking. This paper
reports the outcomes of a literature review aimed at screening the available resources dealing with
outdoor thermal comfort, in order to provide a state-of-the-art review that identifies the main topics
focused by the researchers, as well as the barriers in defining suitable indexes for assessing thermal
comfort in outdoor environments. Although several accurate models and software are available to
quantify outdoor human comfort, the evocated state of mind of the final user still remains at the core
of this uncertain process.

Keywords: outdoor thermal comfort; human thermal perception; thermal comfort assessment; quality
of life

1. Introduction

1.1. Review Contest and Boundaries

While indoor conditions have been the main concern for research on user comfort since the second
half of 20th century, assessing outdoor comfort has emerged as a challenging field during the last few
decades. Three main phenomena have pushed towards this change:

e  The growth of cities, driven by the increasing movement of people to urban areas, where half of
the world’s population is already living, and a further expansion is expected in the near future [1].

e  The consequent exposure of a huge number of people to the effects of extreme weather conditions
due to both climate change and local phenomena, boosted by the high density of settlements, such
as Urban Heat Islands (UHI) (peaks of temperature higher than that of the rural surroundings) [2].
The evidence on the average temperature increase and the related potential impacts are widely
explored in authoritative reports from the Intergovernmental Panel on Climate Change (IPCC) [3]
and the National Oceanic and Atmospheric Administration (NOAA) [4], particularly dealing with
more relevant effects on urban areas [5].

e  The change in lifestyles and particularly the increasing amount of time spent by inhabitants inside
buildings pushed the need for high-quality outdoor spaces that provide healthy leisure facilities,
and significantly contribute to the urban environment’s livability and vitality. Thus, encouraging
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more people to use outdoor spaces would bring greater benefits into the physical, environmental,
economic and social spheres of the cities [6-9].

Scientists worldwide have thus focused their attention on this topic, making available a wide
range of tools and methods to assess human thermal outdoor comfort in different climatic contexts.
Over 100 biometeorological and thermal stress indexes [10] have been developed, adopting different
approaches and rationales, aiming at linking the microclimatic conditions to the perceived sensations.

Since the available knowledge on human thermal perception and related evaluation protocols were
mainly the ones previously developed for interior spaces and other confined spaces, the assessment of
outdoor conditions initially refers to these patterns [11].

In fact, human thermal comfort and its assessment were studied since the beginning of
the 20th Century, when the first simplified models were developed [12]. The two node model
applied thermodynamics principles to energy exchanges between the human body and its thermal
environment [13] for the first time during the 1930s, but it is only from the 1960s onwards that
researchers were able to analyze the main climatic parameters connected to the perception of thermal
comfort (e.g., air temperature, radiant temperature, air humidity, air flow velocity) when the first
climate chambers were made available [14]. The cornerstone studies of Givoni [15] and Fanger [16] led
in the following years to the identification of new parameters that are currently considered essential
elements in the contemporary assessment of thermal comfort. The advances in the physics of heat
exchange knowledge gained during the 1980s and the increasing availability of computer tools to
support the research activity allowed relevant progress on the understanding of the human thermal
environment [17-22] and the formulation of indexes based on body heat exchange [11].

In order to model human thermal comfort in outdoor environments, solar radiation was first
added to the set of climatic variables in use for indoor spaces [23,24]. Olgyay assumed that solar
radiation must be combined to the effects of other climatic elements, to draft a “bioclimatic chart” for
the outdoor conditions [23].

Further studies have shown that outdoor thermal comfort is a more complex notion and a
multilayered condition, which is very difficult to properly describe as a whole by considering
biometeorological factors only [25]. Although the thermal state appears as very influential among the
many factors shaping the quality of outdoor spaces, a wide range of additional social and physical
aspects, however, were identified as relevant, especially those linked to behavioral variables [26].

Nonetheless, the issue remains open, especially regarding the assessment of the human variables
influenced—including cultural, behavioral and psychological factors—on the perception of the
environment’s physical conditions [10].

The efforts spent in the last few decades to advance the understanding of these phenomena
provide evidence of the topic’s relevance, even if a comprehensive picture of available studies is still
lacking, as well as a classification of the interconnected subjects and outcomes. A systemic overview of
the available knowledge could be therefore a useful tool for identifying the different research trends
and classifying their objectives, approaches, results and implications.

This paper reports the outcome of a literature review aimed at screening the available resources
dealing with outdoor thermal comfort, in order to provide a state of the art that identifies the main
topics focused on by the researchers, as well as the barriers in defining suitable indexes and approaches
for thermal comfort assessment in outdoor environments.

1.2. Theoretical Background

The International Organization for Standardization (ISO) has released a series of international
regulations for the evaluation of thermal comfort; ISO 13731:2001 defines physical quantities and
provides a reference for terminology and symbols to adopt for standards on ergonomics of the thermal
environment [27], while ISO 7726:1998 identifies the means and instruments for measuring the physical
quantities involved [28]. ISO 7730:2005 provides an analytical determination and interpretation of
thermal comfort using calculation of the Predictive Mean Vote (PMV) and Percentage of Person
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Dissatisfied (PPD) indexes and local collected data [29]. Although the model was developed for indoor
comfort assessment, it may be adapted for outdoor spaces by adding the radiative exchange values [30].
This ISO Standard also includes annexes providing comprehensive databases for the metabolic rates of
different human activities and the thermal insulation values of clothing ensembles. Moreover, ISO
7243:2017 enables the estimation of the worker heat stress by Wet Bulb Globe Temperature Index
(WBGT) [31], which can be applied for both indoor and outdoor work environments.

In addition to ISO standards, other regulations such as American National Standards Institute
(ANSI) / American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
Standard 55-2017 and European Standards (EN) 15251-2017 specify calculation and evaluation methods
for thermal comfort. However, they are mostly addressed to indoor environments, and focused on
those parameters affecting the energy performance of buildings [32].

The awareness of the topic’s broad latitude has prompted some authors to focus on the possible
gaps in criteria and assumptions currently in use to map the factors influencing the perceived outdoor
comfort and wellbeing sensation, starting from the definition of thermal comfort itself.

ASHRAE defines thermal comfort as a state of mind that expresses satisfaction with the thermal
surroundings [33], which means that human thermal comfort refers to a subjective sensation, different
from one subject to another [34]. Some studies argue that this definition may appear rather vague [10]:
it does not specify what that state of mind is (in terms of perception, feeling, etc.) and it does not
provide any indication of how to relate this mental state into something that can be measured, nor
which variables could be involved [35]. Thus, this is still an open issue from different points of
view, although the definition is intended to be the most general as possible, to provide a common
understanding, thus leaving each study the responsibility to state the assumptions (and limitations) in
their own premises.

Additionally, when the assessment of this mental state has to be investigated, referring to the
outdoor environment, the relationship between the human body and a large set of spatial and temporal
variables must be also considered. Theoretically, this gap could be filled by adapting for the outdoor
comfort assessment the same methodologies and indexes developed to evaluate indoor comfort.
However, several authors discussed this position as unsuitable, arguing that the theoretical models
developed for describing thermoregulation functions within the indoor environment are not adequate
to feature the outdoor thermal comfort conditions [34,36]. This is mainly because of the outdoor
environment’s greater complexity, and its temporal and spatial variability [34]. Thus, the need is
acknowledged for empirical data from field surveys on the subjective human perception of outdoor
wellbeing, which should enable investigation of thermal comfort in open spaces from a broader and
more realistic perspective [34].

In order to make the reading easier, Table 1 provides the nomenclature of the main terms and
acronyms reported in the paper, as well as Table 2, which summarizes the main thermal comfort indexes.

Table 1. Nomenclature of main terms used.

Abbreviation Definition
UHI Urban Heat Island
IPCC Intergovernmental Panel on Climate Change

NOAA National Oceanic and Atmospheric Administration
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Table 2. Nomenclature of the main thermal comfort indexes cited.

Abbreviation Index Unit
ASV Actual Sensation Vote -
AT Apparent Temperature °C
COMFA COMfort FormulA W-m2
DI Discomfort Index °C
ESI Environmental Stress Index and °C
ET Effective Temperature °C
ETU Universal Effective Temperature °C
H Humidex °C
HI Heat Index °C
ITS Index of Thermal Stress W
MENEX Man ENvironmental Heat EXchange model W-m~2
OUT_SET* Outdoor Effective Temperature °C
PE Cooling Power Index kcalm=2h
PET Physiologically Equivalent Temperature °C
PMV Predicted Mean Vote -
PSI Physiological Strain Index °C
PT Perceived Temperature °C
RSI Relative Strain Index -
SET New Standard Effective Temperature °C
TS Thermal Sensation -
TSV Thermal Sensation Vote -
UTCI Universal Thermal Climate Index °C
WBGT Wet Bulb Globe Temperature Index °C
WCI Wind Chill Index °C

2. Methodology

Although overall human comfort involves several environmental agents acting simultaneously,

including air quality and thermal, acoustic, and lighting factors [34,37], this study was limited
to the thermal wellbeing, since it plays a crucial role in affecting the comfort perception in
outdoor environments.

The review was based on a systematic search for peer-reviewed papers published within the
last twenty years. The aim of the review was to identify the most relevant trends in studies dealing
with outdoor human thermal comfort. Five main search engines were used: Science Direct, Google
Scholar, Scopus, Web of Science (WOS) and Researchgate. The following keywords were used for the
preliminary retrieval of papers from the sources:

e outdoor thermal comfort;

e thermal perception;

e thermal wellbeing;

e human thermal comfort;

e  human thermal index;

e outdoor thermal comfort approaches;
e thermal comfort assessment.

This allowed a first selection based on the paper title and abstract. Additionally, papers referenced
within the selected articles were considered as secondary sources, thus embedded in the second step of
the review process.

Review Process and Outcomes

The outcome of the first search round provided more than 25,000 results, of which 1059 were
retrieved from the Science Direct database, 16,600 from the Google Scholar search engine, 710 from the
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Scopus database, 594 from Web of Science and 6160 from Researchgate. Duplications were deleted in
a second step of the process and the results were also filtered using a combination of the proposed
keywords. The results distribution from Science Direct, reported in Figure 1, indicates a growing
interest in the second decade that can be certainly associated to new drivers, such as the effects
of climate change and related heat waves, but also to the development of web-based solutions to
share knowledge and studies that facilitated the communication and exchange among the scientific
community. Furthermore, it must be noted that the increasing demand for scientific publications on
the topic within the academic circuits, for both research purposes and career advancement, may have
influenced the numeric growth of studies, as well as their availability in scientific journals.

160 152 149

136
140

100
80 66
60

40 32 31

SCIENCE DIRECT SOURCES

20

Figure 1. Results retrieved from the ScienceDirect search engine (keys: publication after 1999; text
string “outdoor thermal comfort” in paper abstract and/or title).

The selection results were then refined according to the predefined set of keywords; a total of 855
sources were found at the end of the filtering process, including journal articles, book chapters, reviews
and peer-reviewed conference papers. The sources matching with three or more keywords (out of
six) were considered as having highly relevant contents. They were then shortlisted and their full text
downloaded; 146 significant outputs were identified by selecting those focusing on the relationships
between outdoor thermal comfort and microclimatic variables.

The sources referenced by the selected papers were also explored, thus increasing to 236 the
final number of the surveyed articles. Figure 2 displays the incidence per year (Figure 2a) and the
breakdown by issues addressed (Figure 2b).

2000 - 2005 Background
Knowledge Mathematical
Models and

Indexes

” <2000
Software and
predicting tools

2016-2020 2006 - 2010

T2011-2015 %
Thermal Perception

and Thermal Adapation

(a) (b)

Figure 2. Distribution by year (a) and by topic (b) of the final 236 sources considered for the
review purposes.
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The analysis of the 236 final resources, as shown in Figure 2b, pointed out that studies on outdoor
comfort could be divided into four main groups:

e  The first group [1-5,11-13,16,19-24,26-29,31-33,38—47] includes papers that provide theoretical
background elements as well as definitions, terminology and regulations (14% of items);

e  The second group [8,14,15,17,18,22,30,48-149] collects mathematical models and indexes for the
definition of new approaches in outdoor comfort assessment (45% of selected items);

e  The third group [6,7,9,10,25,34-37,150-213] includes investigations of the physical, physiological
and psychological human adaptability as a key for understanding thermal perception in outdoor
environments (31% of items);

e  The fourth group [214-236] deals with the use of software and forecasting tools to virtually
reproduce complex environmental contexts, in particular with the aim of supporting the designer
in understanding the effects of changes in the climatic factors that affect people’s external comfort
(10% of articles).

Accordingly, this review adopts the same structure, reporting the findings grouped in three
sections, corresponding to the main topics to which scientific efforts were devoted toward identifying
both effective methodologies and main limitations for the full comprehension of the subject. In addition,
a brief introduction to standards and regulations is provided in the theoretical background paragraph
of the introduction.

From the literature analysis, field studies on outdoor thermal comfort were carried out around
the world in the last 20 years. Givoni et al. discussed methodological issues and deepens problems
in outdoor comfort research based in Japan and Israel [164], as well as in China [74], where
other studies were also conducted [51,54,57]. Other studies were performed with reference to
the following geographical areas: Canada [207], Argentina [138], Sweden [147,175,218], Portugal [131],
United Kingdom [187,209], Italy [214], Morocco [132], Emirates [227], Egypt [118], Malaysia [192],
Bangladesh [141], Australia [142], New Zealand [208]. Among the largest research projects, the
most extensive was RUROS: Rediscovering the Urban Realm and Open Spaces [37], which included
field surveys carried out in seven European cities: Athens, Thessaloniki, Milan, Fribourg, Kassel,
Cambridge, Sheffield.

3. Results

3.1. Mathematical Models and Indexes

Several complex thermal indexes were developed to date, describing and quantifying the thermal
environment of humans and the energy fluxes between the human body and the surrounding
environment. De Freitas and Grigorieva [79,80] carried out a three-stage study, providing a
comprehensive register of 165 indexes suitable for the purpose, which were subsequently grouped
and classified. Thus, they observed that indexes are almost designed for a specific application, so
the choice depends on the context in which the index is used, as well as on the availability of the
data needed to quantify it. They also found that the best performing indexes are those based on the
body/atmosphere energy balance, which, however, are those needing more complicated calculation
routines and more detailed input data. What emerges as an additional and more serious drawback
is that body—-atmosphere energy balance indexes are often based on numerical models that were not
validated. This leads to the conclusions that there is not an overall best index [79] and the use of a
standardized human body could introduce errors, since the characteristics of the human body vary
individually [80].

A review about models and standards is provided by Coccolo et al. [157] who analyzed a number
of outdoor human comfort models and the related physical variables as well as the applicability with
reference to the climate, with reference to the research goals, dividing the models in the following
three groups:



Energies 2020, 13, 2079 7 of 22

e Indexes based on the human’s energy balance, which show the interrelation between metabolic
activities, clothing and environmental parameters, and humans thermal perception. They include
COMEFA (COMfort FormulA), ETU (Universal Effective Temperature), ITS, MENEX, PET, PMV,
PT, OUT_SET*, SET, UTCL;

e  Empirical indexes, which are expressed as linear regressions based on field studies (monitoring
and surveys) defining the human comfort for a specific climate or location that are set and validated
for it. They consider Actual Sensation Vote (ASV), Thermal Sensation (TS), Thermal Sensation
Vote (TSV);

e Indexes based on linear equations defining the comfort as function of the thermal environment,
by focusing on air temperature, wind speed and relative humidity parameters, but neglecting the
microclimate and human behaviour. Among these are Apparent Temperature (AT), Discomfort
Index (DI), Environmental Stress Index and (ESI) and Physiological Strain Index (PSI), Effective
Temperature (ET), Humidex (H), Heat Index (HI), Cooling Power Index (PE), Relative Strain Index
(RSI), Wet Bulb Globe Temperature Index (WBGT), Wind Chill Index (WCI).

A selection of case studies about the different models since 2000 is organized in a graph according to
the Koppen climate classification by Coccolo et al [157]. Temperate climate emerges as the most studied
condition, followed by those referring to arid, cold and tropical climates, while very few studies were
performed for polar environments. The outcomes of this research leads to the following conclusions:

e Thermal indexes based on energy balance enable quantification of thermal sensation from the
general climate to the urban microclimate, considering the human variables.

e  Empirical indexes reliably describe the thermal perception of humans and the environmental
factors affecting their thermal behavior.

e Indexes based on linear equations do not allow for more comprehensive microclimate analysis,
even if they can be useful for meteorological forecasting or for mapping of thermal comfort trends
over the time [86].

From the literature analysis, it emerges that PMV and PET are the most widely used
indexes [49,50,59,61,62,67,71,75,77,80,85,86,88,89,92,93,95,98,109,110,112,114,118,128,131,133,138,141,
142,148,151,154]. However, PMV was elaborated for indoor environments by observing people
sitting in climate chambers; it does not consider the dynamic adaptive response of the human body
and instead references a punctual static situation. Thus, its use in outdoor environments may often
give misleading results. Cheng et al. [74] clearly demonstrate that PMV generally overestimates the
thermal sensation in summer and underestimates in winter.

Developed for the outdoor environment, PET is a procedure often adopted, with results that are
well correlated with onsite monitoring and questionnaires [49,77,89,114,131,133,141,142,148]. The PET
index can be used as an alternative to PMV; however, the main drawback is that it can underestimate the
effect of latent heat fluxes and overestimate radiant heat flows [74]. By comparing the outdoor thermal
environment and the thermal sensation of pedestrians in two different Chinese cities, and through
the thermal unacceptability percentage and PET indexes, Yang et al. [54] observed that the thermal
unacceptability expressed by people was different according to the city, despite the similar outdoor
thermal conditions.

In arid climates, ITS results show high correlation with field studies [196,200],
while SET [52,142,191] and OUT SET* [133,148] appear to be more applied in and reliable for temperate
climates. Being more scientifically updated, UTCI is instead the only index that was applied to all
climates [59,84,99], ensuring a good matching between onsite measures and simulations [70,133,157].
PE and WCI, describing thermal sensations from comfort to extreme cold stress are preferable in
cold climates. ITS, H, HI and WGBT make available detailed thermal scales for hot sensations, often
neglecting the cold ones [157].
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From the research carried out so far in order to understand the primary models used, it seems
that there are apparently a large number of indexes available for the assessment of outdoor comfort,
despite each of them presenting some drawback with different levels of error or approximation.

Although energy balance based indexes are widely used, the main limitation lies in the
steady-state condition that does not fully reflect people rarely experience thermal equilibrium in
outdoor environments [100].

A positive note is that the scientific community seems to be aware of this limit and much effort
was spent to understand the human adaptation capacity as well [25].

3.2. Human Thermal Perception and Thermal Adaptation

The term adaptation can be broadly defined as the gradual decrease of the organism’s response
under an iterated exposure to a stimulus, thanks to the effects of all the actions deployed by the subject
to make it better suited to survive in such an environment. In the context of thermal comfort, this can
involve all the processes that people perform to reduce the gap between the environmental conditions
and their requirements [194]. In other words, whenever metabolic activity or environmental conditions
change, the human body tends to adapt itself to those changes. According to Nikolopoulou and
Steemers [194], the adaptation basically occurs in three different ways:

e  Physical adaptation—namely, the changes that a person makes in order to adjust oneself to the
environment (such as altering clothing layers, posture and position, or drinking) or to conform
the environment to his needs;

e  Physiological adaptation—also called physiological acclimatization, which implies changes in the
physiological response mechanisms resulting from repeated exposure to a stimulus;

e Psychological adaptation—which involves the different ways that individual people perceive
the environment, being the human response is not only direct related to the physical stimulus
magnitude, but also to the information that people have regarding that situation. The familiarity
with that climate, the individual expectations, experiences, time of exposure and alleged control
power on the situation, significantly influence the perception of environmental stimuli. Cultural
factors and personal attitudes also affect the thermal perception, thus underlining the need to
connect the thermal comfort indexes to the emotional feeling individually established with the
environment [175].

A large number of studies were done in the last twenty years that aimed to incorporate the human
dimensions into comfort assessment methods, performed both through climate chambers and by direct
field surveys. Some of these studies investigated the possible adaptation from a thermophysiological
perspective [95,174], others focused on the parameters that determine the human perception of
comfort [81,142,194,208].

Some links between human thermoregulation mechanisms and thermal environment conditions
were established by running tests in climate chambers [149,195]. However, whether these results
can be transferred to the behavior of people in external environments is still an open question, since
all the aspects that influence adaptation actions in real contexts are highly complex to reproduce
(providing wide temperature ranges, checking for human physical and behavioral changes, measuring
temperatures of people’ skin and core to evaluate thermoregulation features etc.).

Thus, the assessment of the human thermal sensation must consider the environmental stimuli,
which are dynamic and perceived subjectively. The stimuli are dynamic due to the human adaptation
to external climatic conditions, which is a progressive process influenced by various adaptive factors.
It is subjectively perceived, since the human perception of thermal comfort is not always nor univocally
dependent only on objective biometeorological conditions. This means that the individual attitude
towards outdoor space is not only determined by the state of the body, but also by the state of the mind.
This suggests that the ideal framework for thermal comfort assessment should work on at least four
levels: physical, physiological, psychological and social/behavioral [7].



Energies 2020, 13, 2079 9 of 22

Therefore, by considering simultaneously all the factors (whether objective or subjective)
influencing human thermal perception, it is possible to obtain an evaluation of outdoor comfort
as coincident as possible with reality. Each of these factors can be estimated or calculated through
different approaches (measurements, modeling, field interviews and observations). Thus, working on
the four levels of evaluation of human outdoor thermal comfort, it should make it possible to connect
the external microclimatic conditions with the perception of people who use a certain space at a specific
temporal moment.

In other words, this framework should allow a linkage of “climatic knowledge” with “human
knowledge” [7].

“Neuroarchitecture” seems to be opening a new research field that is able to drive some advances
in this direction, combining neuroscience and architecture to better understand how space is perceived
by the human brain [159,160,165]. The outcome from neuroarchitecture studies could thus enhance the
effectiveness of the design of the built environment, providing a better knowledge of the relationship
between the humans and their spatial wellbeing [157].

Coburn et al. [202] investigated how neuroarchitecture could mature into an experimental science
by outlining the related challenges ahead and identifying the priority need for a specific framework to
guide research. To date, however, relatively little work has been done on architecture neuroscience,
and further studies are needed.

Therefore, the final suggestion is to apply a multidisciplinary approach, including both studies on
physical phenomena and human psychology. For this reason, it is highly recommended that shared
principles and definitions be included in the common framework.

3.3. Software and Predictive Tools

Givoni et al. [164] addressed the need for prediction tools in order to support designers in
understanding the effect of a change in a climatic element that influences people’s outdoor comfort.
In fact, the availability of simulation and scenario-testing tools within an assessment framework is
crucial, as they provide a platform for both the integration of knowledge from various perspectives
and the comparisons of different design options.

Currently, tools for simulating virtual scenarios are becoming increasingly available and updated,
allowing reproduction of even complex environmental contexts. The literature review performed
identified the most used software: ENVI-Met, RayMan, SOLWEIG and the UTCI calculator (Figure 3).
While ENVI-Met is based on computational fluid dynamics (CFD) and thermodynamics, RayMan and
SOLWEIG are basically 3D radiation models.

SOLWEIG (2 sources - 9%)

_ UTCI calculator (1 source - 4%)
RayMan
(5 sources - 21%)

ENVI-Met (14 sources - 66%)
Figure 3. The most used software and tools outlined from the literature review.
ENVI-Met is a tool to simulate outdoor space microclimate by quantifying energy and mass

exchanges, wind turbulence, vegetation effect on the outdoor conditions, bioclimatology data and
pollution scattering. It is based on four interrelated systems: soil, vegetation, atmosphere and buildings.
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Outdoor microclimate is described by air temperature, Mean Radiant Temperature (MRT), wind speed
and direction, short- and long-wave radiation from a single building to an entire city [236]. It was
used by Acero et al. to evaluate the differences in thermal comfort comparison models and onsite
measures in four different locations [58]. The study points out that some deviations may occur in the
ENVI-Met output; however, the tool provides useful and quite reliable outcomes (e.g., comparison of
urban planning scenarios during typical meteorological conditions). Nevertheless, limitations must be
clearly outlined in order to avoid misleading results. ENVI-Met is often used while interacting with
other tools and plugins. Through the postprocessing tool called BioMet, it is possible to determine
thermal comfort according to PMV, PET, UTCI [215] and MRT. Additionally, thanks to a generative
algorithm called ENVI-BUG Software, it is possible to combine ENVI-Met, Rhinoceros, Grasshopper
and LadyBug. Fabbri et al. effectively adapted it to obtain a 3D output, achieving a simplified method
for displaying results and making them easier to read for nonexpert users [230].

Developed at the University of Freiburg, RayMan is a diagnostic microscale radiation model able
to calculate radiation fluxes and thermophysiologically indexes, such as PMV, PET, SET* [222], UTC],
PT [220] and MRT. It is mainly used to compare the effect of multiple planning scenarios in different
situations from micro to regional scales [220]. It allows the use of several input data such fish-eye
pictures or obstacle files to obtain additional outputs like shade and sunshine duration, as well as
the possibility to run long-term data sets. The major drawback is that the model cannot calculate
air temperature, air humidity and calculate or adjust wind speed. These gaps are often bridged by
preparing the data in the input files or running simulations with different wind speeds [222].

SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry) enables quantification of
PET, UTCI and MRT within complex urban settings as described by Lindberg et al. [218]. It applies
the theory of radiative fluxes and mean radiant temperature, the main limitation is that it takes only
building geometry into account, while vegetation is not considered when mean radiant temperature
is calculated.

The UTCI calculator allows determination of a pedestrian’s thermal comfort according to the
Universal Thermal Climate Index [117]. Abdel-Ghany etal. demonstrated its application in combination
with RayMan to evaluate UTCI index in arid climatic conditions [128], concluding that the model
can be used successfully in arid environments to evaluate the thermal sensation, with the heat stress
outcome very close to the PET index.

These environmental modeling tools can provide a better understanding of climatic conditions
and a mean to effectively assess human thermal comfort outdoors, helping town planners and decision
makers to compare and test several design alternatives in terms of attractiveness and effectiveness [232].
In addition, the development of such tools and software can solve the limitation of the different
methodologies used in research.

4. Discussion

The literature review in this paper lists the main available resources dealing with outdoor thermal
comfort issues. Its aims to provide a state-of-the-art review to identify the main topics on which current
research focuses, and what the main barriers are that limit the identification of successful indexes for
the assessment of thermal comfort in the outdoor environment, especially in urban contexts [150,170].

The main outcome is that thermal comfort in the outdoor environment is a complex issue with
multiple layers and that the human state of the mind plays a key role in influencing peoples’ perception
on space and its utilization.

The literature review performed points out that many indexes and approaches have been
developed, however they are specifically addressed to meet particular contexts with relation to specific
variables. A relevant drawback deals with the limited consideration of the dynamic adaptive response
of the human body, since the most frequently adopted indexes focus on the energy balance between
the human body and the environment. More recent indexes seem to pay more attention to human
perception and behavior, but their application is still limited and therefore a discussion on the potential
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outcomes is still hard and may be somehow misleading. The main suggestion is to focus on a limited
and possibly shared number of procedures that adequately consider the human thermal perception
and thermal adaptation.

It must be noted, despite some attempts to integrate different disciplines on the same topic, that
most studies are organized by adopting a silos approach.

Moreover, many studies reveal that different people experience the environment in a different way.
The human response to a physical stimulus is not in direct relationship to its intensity, but depends on
the "information" that people have for a particular situation, and on the associated psychological factors
influencing the thermal perception of a space and the changes occurring in it [194]. If physiological
acclimatization is not sufficient to meet a comfort status, physical adaptation will be introduced to
adjust oneself to the environment or alter the environment to his needs (such as altering clothing levels,
modifying posture and position, or even changing metabolic heat with the consumption of hot or
cool drinks).

Since the agents acting on this mechanism belong to at least four different but interconnected
patterns (physical, psychological, physiological and social/behavioral), the ideal framework for thermal
comfort assessment should work on all of them.

No effective methods are available today that include the human dependent factors within the
outdoor thermal comfort models. However, the scientific community seems to become increasingly
aware of the importance of the psychological and social/behavioral factors, as indicated by the number
of recent studies exploring these fields. Integrating the physical energy balance and the human
variables would allow for creation of more complete and thus more effective models, drastically
improving the reliability of their results.

Despite the complexity of the above interrelations, these topics should be approached at design
level. More effective simulation and modeling tools could be developed within that framework,
providing designers and decision makers with a means to better achieve the thermal outdoor comfort
target by integrating the factors related to climatic conditions and those belonging to the people’s
sensitivity to environmental stimuli; these tools could be wisely adopted in urban design. In this way,
shopkeepers could be the first group to realize the benefit of such cool oases in a hot environment,
and finally it would be possible to extend the positive impacts not only to the environmental domain
of cities but also to the economic domain.

The highly advisable trend sketched by this scenario cannot hide the fact that shortcomings are
still evident in research, concerning both the tools and the goals. Concerning tools, the systematization
of all knowledge belonging to physical, physiological and psychological studies seems to be the only
way forward today for the identification of an effective and shared method to evaluate the achievement
of thermal comfort in outdoor spaces. Regarding goals, deeper interdisciplinary studies are needed
to support with evidence the assumption that the more intense use of outdoor space will benefit the
economic and social life of the city.

5. Conclusions

The literature review performed points out that many different interrelated issues drive the
research on outdoor thermal comfort. The topic emerges as worthy to be further investigated, especially
in relation to social and behavioral implications, requiring to possibly adopt a transdisciplinary
approach. Despite the effort spent to create accurate models and software to properly assess outdoor
human comfort, the evocated state of mind of the final user still remains at the core of the uncertain
process. The field studies, including surveys and tests with different categories of users, highlight
the need to refine the available indexes to better reflect the real perception of the human body in
different conditions.

Therefore, each user has to clearly understand the basic equations of the software or tool chosen,
in order to select the one that best suits the needs for the research purpose and the application
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context. This often generates some uncertainty that makes a comparative approach among the different
outcomes more difficult.

Some relevant shortcomings can be currently detected and listed as follows, with the aim to address
and prioritize the research efforts for further improving an understanding of outdoor human comfort.

Assuming that an effective assessment requires consideration of physical, physiological,
psychological and behavioral levels, the detected lack of shared principles and definitions within a
common framework reduces the possibility to take into account the multiple and interconnected nature
of phenomena. Accordingly, the definition of a comprehensive and stable framework represents a
top priority:

e The availability of several models and methods is on the one hand a true sign of interest in
assuming outdoor thermal comfort as a relevant field of research, especially when connected to
climate change effects (UHI, heat waves etc.), but each methodology has its own limitations and
the differences make it harder to compare the outcomes. The development or the refinement of
tools and software able to solve these gaps may certainly support the research activity in the future.

e  The gap between models and real perception in experimental studies suggests that human sensation
and behavior are central and crucial elements to further improving the quality of research.

e  Understanding the outcomes is another relevant issue dealing with a proper communication of
the possible social implications to nonexperts. Even if this is not a top priority, it will certainly
contribute by increasing the attention towards quality of life in outdoor urban spaces.

The use of reliable predictive and simulation tools will support decision makers, designers and
planners to better realize the potential impacts of their decision and strategies when transforming the
built environment. Finally, a multidisciplinary approach, including studies on physical phenomena,
human psychology and architecture, is highly recommended, assuming people’s wellbeing is the
ultimate goal.
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