Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al2O3/Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Method
2.1.1. Simulation and Boundary Condition
2.1.2. Governing Equations
2.1.3. Mesh Generation
2.2. Experimental Method
2.2.1. Preparation and Characterization of Nanofluid
2.2.2. Experimental Setup
2.2.3. Test Section and Twisted Tape Geometry
2.3. Data Reduction
3. Results and Discussion
3.1. Evaluation
3.2. Uncertainties
4. Conclusions
- Utilizing TT IPR inside a tube able to manipulate the fluid flow path inside the tube and create a higher swirl flow intensity that improves the heat transfer rate.
- TT IPR having dynamic PR (lower at the inlet) caused higher secondary flow vortexes at the inlet while higher PR to the outlet contributes to lower f towards the outlet of the tube, which eventually results in improvement in η. The value of η is improved up to 10% with the use of SiC/Water nanofluid compared to using TT IPR alone.
- All Nu values increase with increasing Re for all modifications (TT IPR TT DPR and TT PR 2). However, the impact of changing Re is more significant for TT IPR as compared to TT DPR and TT PR 2, especially at Re > 10,000.
- For all modifications of the twisted tape, the values of Nu, f and η is increased with increasing φ from 1% to 3%. Increasing the value of φ shows a maximum increase up to ~23.7%, ~10% and 15% of Nu, f and η respectively as compared to water.
- Using TT IPR inserts enhanced η by ~62.2% compared to the plain tube, while increasing φ of the SiC/Water nanofluid up to 3% enhanced η by 31.6%. This demonstrates that the use of inserts has a more significant effect on the thermal efficiency of the system than using a nanofluid as the working fluid. However, the simultaneous use of these two passive methods increased η up to 71.14% compared with using a plain tube with water as the working fluid.
- Utilization of twisted tape with dynamic PR (TT IPR) gives 50% higher η compared to constant PR (TT PR2) at the same value of φ. Hence, this new geometry is the best choice for enhancement in η for the heat exchanger device.
Future Recommendations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Al2O3. | Aluminum Oxide |
cp | Specific Heat |
D | Tube diameter |
k | Thermal conductivity |
L | Tube Length |
Nu | Nusselt number |
PR | Pitch Ratio |
ΔP | Pressure drop |
Re | Reynolds number |
RNG | Renormalized group |
SiC | Silica oxide |
t | Twisted tape thickness |
Tf | Bulk temperature |
Tin | Inlet temperature |
Tw | Pipe wall temperature |
TT DPR | Constant-Decreased pitch ratio twisted tape |
TT IPR | Constant-Increased pitch ratio twisted tape |
TT PR2 | Twisted tape with pitch ratio 2 |
w | Twisted tape width |
y | Pitch Length |
η | Overall Enhancement Ratio |
φ | Nanoparticles Volume Fraction |
ρ | Density |
µ | Viscosity |
References
- Ajeel, R.K.; Salim, W.S.-I.; Sopian, K.; Yusoff, M.Z.; Hasnan, K.; Ibrahim, A.; Al-Waeli, A.H.A. Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study. Int. J. Heat Mass Transf. 2019, 145, 118806. [Google Scholar] [CrossRef]
- Abed, A.M.; Alghoul, M.A.; Sopian, K.; Mohammed, H.A.; Majdi, H.S.; Al-Shamani, A.N. Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chem. Eng. Process. Process Intensif. 2015, 87, 88–103. [Google Scholar] [CrossRef]
- Eiamsa-Ard, S.; Promvonge, P. Thermal characteristics in round tube fitted with serrated twisted tape. Appl. Therm. Eng. 2010, 30, 1673–1682. [Google Scholar] [CrossRef]
- Piriyarungrod, N.; Kumar, M.; Thianpong, C.; Pimsarn, M.; Chuwattanakul, V.; Eiamsa-Ard, S.; Chuwattabakul, V. Intensification of thermo-hydraulic performance in heat exchanger tube inserted with multiple twisted-tapes. Appl. Therm. Eng. 2018, 136, 516–530. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthilkumaar, J.; Jaisankar, S. Performance assessment in V-trough solar water heater fitted with square and V-cut twisted tape inserts. Appl. Therm. Eng. 2016, 102, 476–486. [Google Scholar] [CrossRef]
- Liu, G.; Yang, C.; Zhang, J.; Zong, H.; Xu, B.; Qian, J.-Y. Internal Flow Analysis of a Heat Transfer Enhanced Tube with a Segmented Twisted Tape Insert. Energies 2020, 13, 207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lu, L.; Dong, C.; Hyun, S. Performance evaluation of a double-pipe heat exchanger fi tted with self- rotating twisted tapes. Appl. Therm. Eng. 2019, 158, 113770. [Google Scholar] [CrossRef]
- Nakhchi, M.; Esfahani, J. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018, 339, 985–994. [Google Scholar] [CrossRef]
- Salman, S.D.; Kadhum, A.A.H.; Takriff, M.S.; Mohamad, A.B. CFD Simulation of Heat Transfer Augmentation in a Circular Tube Fitted with Alternative Axis Twisted Tape in Laminar Flow under a Constant Heat Flux. Heat Transf. Res. 2014, 43, 384–396. [Google Scholar] [CrossRef]
- Bahiraei, M.; Mazaheri, N.; Hassanzamani, S.M. Efficacy of a new graphene–platinum nanofluid in tubes fitted with single and twin twisted tapes regarding counter and co-swirling flows for efficient use of energy. Int. J. Mech. Sci. 2019, 150, 290–303. [Google Scholar] [CrossRef]
- Eiamsa-ard, S.; Kiatkittipong, K.; Jedsadaratanachai, W. Heat transfer enhancement of TiO2/Water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes. Eng. Sci. Technol. Int. J. 2015, 18, 336–350. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Sheikholeslami, M.; Jafaryar, M.; Shafee, A.; Chamkha, A.J. Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J. Mol. Liq. 2018, 266, 797–805. [Google Scholar] [CrossRef]
- Zheng, L.; Xie, Y.; Zhang, D. Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al 2 O 3-water nanofluid. Int. J. Heat Mass Transf. 2017, 111, 962–981. [Google Scholar] [CrossRef]
- Safikhani, H.; Abbasi, F. Numerical study of nanofluid flow in flat tubes fitted with multiple twisted tapes. Adv. Powder Technol. 2015, 26, 1609–1617. [Google Scholar] [CrossRef]
- Gnanavel, C.; Saravanan, R.; Chandrasekaran, M. Materials Today: Proceedings Heat transfer enhancement through nano-fluids and twisted tape insert with rectangular cut on its rib in a double pipe heat exchanger. Mater. Today Proc. 2019. [Google Scholar]
- Maddah, H.; Alizadeh, M.; Ghasemi, N.; Rafidah, S.; Alwi, W. Experimental study of Al 2O3/Water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int. J. Heat Mass Transf. 2014, 78, 1042–1054. [Google Scholar] [CrossRef]
- Khoshvaght-aliabadi, M.; Davoudi, S.; Dibaei, M.H. Chemical Engineering Research and Design Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chem. Eng. Res. Des. 2018, 133, 26–39. [Google Scholar] [CrossRef]
- Murali, G.; Nagendra, B.; Jaya, J. Materials Today: Proceedings CFD analysis on heat transfer and pressure drop characteristics of turbulent flow in a tube fitted with trapezoidal-cut twisted tape insert using Fe3O4 nano fluid. Mater. Today Proc. 2019. [Google Scholar]
- Rahimi, M.; Shabanian, S.R.; Alsairafi, A.A. Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts. Chem. Eng. Process. Process. Intensif. 2009, 48, 762–770. [Google Scholar] [CrossRef]
- Tabatabaeikia, S.; Mohammed, H.A.; Nik-Ghazali, N.; Shahizare, B. Heat Transfer Enhancement by Using Different Types of Inserts. Adv. Mech. Eng. 2014, 6, 250354. [Google Scholar] [CrossRef] [Green Version]
- Eiamsa-Ard, S.; Pimsarn, M.; Thianpong, C. Performance Assessment in a Heat Exchanger Tube with Opposite/Parallel Wing Twisted Tapes. Adv. Mech. Eng. 2014, 7, 652536. [Google Scholar] [CrossRef] [Green Version]
- Khoshvaght-aliabadi, M.; Eskandari, M. Influence of twist length variations on thermal—Hydraulic specifications of twisted-tape inserts in presence of Cu – water nanofluid. Exp. Therm. Fluid Sci. 2015, 61, 230–240. [Google Scholar] [CrossRef]
- Qi, C.; Wang, G.; Yan, Y.Y.; Mei, S.; Luo, T. Effect of rotating twisted tape on thermo-hydraulic performances of nanofluids in heat-exchanger systems. Energy Convers. Manag. 2018, 166, 744–757. [Google Scholar] [CrossRef]
- Abdullah, M.F.; Zulkifli, R.; Harun, Z.; Abdullah, S.; Wan Ghopa, W.A.; Najm, A.S.; Sulaiman, N.H. Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin impingement jet of a heated aluminum plate. Micromachines. 2019, 10, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.; Syu, S.; Yang, Y. Effects of particle volume fraction on spray heat transfer performance of Al 2 O 3—Water nanofluid. Int. J. Heat Mass Transf. 2012, 55, 1014–1021. [Google Scholar] [CrossRef]
- Duangthongsuk, W.; Wongwises, S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Transf. 2010, 53, 334–344. [Google Scholar] [CrossRef]
- Vajjha, R.S.; Das, D.K. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int. J. Heat Mass Transf. 2012, 55, 4063–4078. [Google Scholar] [CrossRef]
- Kane, J.M. Ansys Fluent 12.0 User’s Guide. 2009. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm (accessed on 20 November 2018).
- Patankar, S.V.; Spalding, D.B.A. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 1972, 15, 1787–1806. [Google Scholar] [CrossRef]
- Godson, L.; Raja, B.; Lal, D.M.; Wongwises, S. Enhancement of heat transfer using nanofluids—An overview. Renew. Sustain. Energy Rev. 2010, 14, 629–641. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Rikhtegar, F.; Sabaghan, A.; Roohi, E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy 2016, 101, 190–201. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Siavashi, M.; Izadgoshasb, I.; Niazmand, H.; et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys. Rep. 2019, 790, 1–48. [Google Scholar] [CrossRef]
- Hamilton, R.L.; Crosser, O.K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Zhou, S.-Q.; Ni, R. Measurement of the specific heat capacity of water-based Al[sub 2]O[sub 3] nanofluid. Appl. Phys. Lett. 2008, 92, 93123. [Google Scholar] [CrossRef]
- Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism, 2nd ed.; Oxford University Press: Oxford, UK, 1904. [Google Scholar]
- Ramakumar, B.V.N.; Arsha, J.D.; Tayal, P. Tapered Twisted Tape Inserts for Enhanced Heat Transfer. J. Heat Transf. 2015, 138, 011901. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John-Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Eiamsa-Ard, S.; Kiatkittipong, K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/Water nanofluid. Appl. Therm. Eng. 2014, 70, 896–924. [Google Scholar] [CrossRef]
- Karami, A.; Rezaei, E.; Shahhosseni, M.; Aghakhani, M. Optimization of heat transfer in an air cooler equipped with classic twisted tape inserts using imperialist competitive algorithm. Exp. Therm. Fluid Sci. 2012, 38, 195–200. [Google Scholar] [CrossRef]
- Naphon, P. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert. Int. Commun. Heat Mass Transf. 2006, 33, 166–175. [Google Scholar] [CrossRef]
- Manglik, R.M.; Bergles, A.E. Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows. J. Heat Transf. 1993, 115, 890–896. [Google Scholar] [CrossRef]
- Ponnada, S.; Subrahmanyam, T.; Naidu, S.V. A comparative study on the thermal performance of water in a circular tube with twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis. 2018, 136, 530–538. [Google Scholar] [CrossRef]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Van Buren, S.; Miranda, A.C.; Polifke, W. Large eddy simulation of enhanced heat transfer in pulsatile turbulent channel flow. Int. J. Heat Mass Transf. 2019, 144, 118585. [Google Scholar] [CrossRef]
- Leong, K.Y.; K. Z. Ku Ahmad, K.Z.; Ong, H.C.; Ghazali, M.J.; Baharum, A. Synthesis and thermal conductivity characteristic of hybrid nanofluids—A review. Renew. Sustain. Energy Rev. 2017, 75, 868–878. [Google Scholar] [CrossRef]
Parameter | Definition |
---|---|
D = 19 mm | Tube diameter |
t = 1.9 mm | Twisted tape thickness |
w = 12.7 mm | Tape width |
L = 300 mm | Tube length |
y | Pitch length |
PR | Pitch ratio (y/w) |
Re = 6000 – 14 000 | Reynolds number |
φ = 1%, 2% and 3% | Nanoparticle volume fraction |
Constant | Value |
---|---|
0.0845 | |
0.7194 | |
0.7194 | |
1.42 | |
1.68 | |
4.38 | |
0.012 |
Number of Cells | Nu | ∆P |
---|---|---|
519,393 | 125.78 | 72.543 |
723,435 | 125.98 | 72.673 |
874,532 | 126.123 | 72.689 |
1,134,125 | 126.234 | 72.698 |
Case | Type of TT | Re | Y+ |
---|---|---|---|
1 | PR2 | 4000 | 0.4940 |
2 | PR2 | 10,000 | 0.9483 |
3 | IPR | 4000 | 0.4579 |
4 | IPR | 10,000 | 0.8949 |
5 | DPR | 4000 | 0.6115 |
6 | DPR | 10,000 | 0.8724 |
Sensor | Number | Variable Measured | Model | Uncertainty |
---|---|---|---|---|
Thermocouple | 8 | Wall temperature | K-type | 0.2% |
Digital pressure sensor | 2 | Local pressure | Huba Control | 0.1% |
Flow meter | 1 | Volumetric flow rate | ZYIA Rotameter | 2.0% |
Temperatures probe | 2 | Bulk temperature | K-type thermocouple with probe | 0.2% |
Digital multimeter | 1 | Current of the electric heater | UNI-T Multimeter | 0.1% |
Dependent Variables | Uncertainty |
---|---|
Nu | ±3.99 |
Re | ±4.13 |
f | ±5.21 |
η | ±6.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.; Abdullah, S.; Sopian, K. Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al2O3/Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape. Energies 2020, 13, 2095. https://doi.org/10.3390/en13082095
Ahmad S, Abdullah S, Sopian K. Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al2O3/Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape. Energies. 2020; 13(8):2095. https://doi.org/10.3390/en13082095
Chicago/Turabian StyleAhmad, Saadah, Shahrir Abdullah, and Kamaruzzaman Sopian. 2020. "Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al2O3/Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape" Energies 13, no. 8: 2095. https://doi.org/10.3390/en13082095
APA StyleAhmad, S., Abdullah, S., & Sopian, K. (2020). Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al2O3/Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape. Energies, 13(8), 2095. https://doi.org/10.3390/en13082095