Lightning Performance Evaluation of Italian 150 kV Sub-Transmission Lines †
Abstract
:1. Introduction
- Reducing the tower surge impedance (in order to mitigate the stress on the insulator strings) by using guyed towers.
- Adding one (or more) shield wire(s).
- Increasing the critical flashover voltage of the line by installing longer insulator strings.
- Improving the grounding system efficiency by reducing the grounding impedance in the frequency range of interest (up to 1 MHz).
- Installing line surge arresters (on all phases or only on one phase, in all towers or only in selected towers).
2. Main Characteristics of Terna 150 kV OHLs
2.1. Subtransmission Lines
2.2. Towers
2.3. Grounding System Arrangements
3. ATP-EMTP Monte Carlo Procedure for BFOR Calculation
3.1. Statistical Inputs of the Procedure
- First and subsequent stroke lightning parameters (i.e., polarity; peak current, IP; time-to-front, tF; time-to-half value, tH)
- Line insulation (critical electric field, E0)
- Location of lightning
- Phase angle of the power frequency voltages
3.2. OHL Model
3.3. Line Insulation Model
3.4. Lightning Stroke Model
3.5. Grounding System Model
3.5.1. Pi-Circuit Synthesis Procedure
- Geometrical and physical parameters of the grounding system are provided; the discretisation step of the range of soil resistivity values of each grounding system (see Table 2) is chosen.
- Pi-circuit linear parameters are calculated in frequency domain.
- Pi-circuit nonlinear parameters are calculated in time domain.
- Points 2 and 3 are repeated for each soil resistivity discretisation step.
- For each pi-circuit parameter, both linear and nonlinear, a polynomial approximation as a function of ρg (applicable in the soil resistivity utilisation range of the grounding system) is performed.
3.5.2. Pi-Circuit Parameters of Terna Grounding System Arrangement
4. Results
- Given a soil resistivity range, install the first subsequent grounding arrangement.
- Change the tower design from a single to a double shield wire arrangement.
- Add additional vertical rods to the existing grounding system design.
- Install guy wires in order to reduce the tower surge impedance, as well as a ground ring to connect guy wires.
- Increase clearances and insulator string length.
4.1. Adopt a Larger Grounding System
4.2. Add a Second Shield Wire
4.3. Add Four Vertical Rods at the Tower Base
4.4. Install Guy Wires and Ground Ring
4.5. Increase Insulator String Length
5. Conclusions
- Adoption of a larger grounding system than the one prescribed by Terna specification for the given soil resistivity range.
- Installation of a second shield wire.
- Addition of four vertical rods to the tower grounding system.
- Installation of guy wires (with no structural purpose) and ground ring.
- Addition of four insulators to the standard insulator string.
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, B.R.; Thapar, B. Impulse impedance of grounding grids. IEEE Trans. Power Appar. Syst. 1980, 99, 2357–2362. [Google Scholar] [CrossRef]
- Ramamoorty, M.; Babu Narayanan, M.M.; Parameswaran, S.; Mukhedkar, D. Transient performance of grounding grids. IEEE Trans. Power Deliv. 1989, 4, 2053–2059. [Google Scholar] [CrossRef]
- Cidras, J.; Otero, A.F.; Garrido, C. Nodal frequency analysis of grounding systems considering the soil ionization effect. IEEE Trans. Power Deliv. 2000, 15, 103–107. [Google Scholar] [CrossRef]
- Geri, A. Behaviour of grounding systems excited by high impulse currents: The model and its validation. IEEE Trans. Power Deliv. 1999, 14, 1008–1017. [Google Scholar] [CrossRef]
- Grcev, L.; Dawalibi, F. An electromagnetic model for transients in grounding systems. IEEE Trans. Power Deliv. 1990, 5, 1773–1781. [Google Scholar] [CrossRef]
- Xiong, W.; Dawalibi, F. Transient performance of substation grounding systems subjected to lightning and similar surge currents. IEEE Trans. Power Deliv. 1994, 9, 1412–1420. [Google Scholar] [CrossRef]
- Salari, J.C.; Portela, C. Grounding systems modeling including soil ionization. IEEE Trans. Power Deliv. 2008, 23, 1939–1945. [Google Scholar] [CrossRef]
- Visacro, S.; Soares, A. HEM: A model for simulation of lightning-related engineering problems. IEEE Trans. Power Deliv. 2005, 20, 1206–1208. [Google Scholar] [CrossRef]
- Araneo, R.; Maccioni, M.; Lauria, S.; Geri, A.; Gatta, F.M.; Celozzi, S. Hybrid and Pi-Circuit Approaches for Grounding System Lightning Response. In Proceedings of the 2015 IEEE Eindhoven Powertech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar]
- Alipio, R.; Visacro, S. Time-domain analysis of frequency-dependent electrical parameters of soil. IEEE Trans. Electromagn. Compat. 2017, 59, 873–878. [Google Scholar] [CrossRef]
- CIGRE Working Group 01 of SC 33. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines; International Council on Large Electric Systems: Paris, France, 1991. [Google Scholar]
- IEEE Working Group. A simplified method for estimating lightning performance of transmission lines. IEEE Trans. Power App. Syst. 1985, 104, 919–932. [Google Scholar]
- IEEE Working Group. Estimating lightning performance of transmission lines II—Updates to analytical models. IEEE Trans. Power Deliv. 1993, 8, 1254–1267. [Google Scholar] [CrossRef]
- Sarajcev, P.; Vasilj, J.; Jakus, D. Method for estimating backflashover rates on HV transmission linesbased on EMTP-ATP and curve of limiting parameters. Int. J. Elec. Power 2016, 78, 127–137. [Google Scholar] [CrossRef]
- Dudurych, I.M.; Gallagher, T.J.; Holly, M. A Novel Stochastic Approach to the Assessment of the Lightning Performance of HV Transmission Lines Using EMTP. In Proceedings of the 2003 IEEE Bologna Powertech, Bologna, Italy, 23–26 June 2003; pp. 1–8. [Google Scholar]
- Anderson, J.G. Monte Carlo computer calculation of transmission line lightning performance. IEEE Trans. Power App. Syst. 1961, 80, 414–419. [Google Scholar] [CrossRef]
- Sargent, M.A.; Darveniza, M. The calculation of double circuit outage rate of transmission lines. IEEE Trans. Power App. Syst. 1967, 86, 665–678. [Google Scholar] [CrossRef]
- Darveniza, M.; Sargent, M.A.; Limbourn, G.J.; Liew, A.C.; Caldwell, R.O.; Currie, J.R.; Holcombe, B.C.; Stillman, R.H.; Frowd, R. Modeling for lightning performance calculations. IEEE Trans. Power App. Syst. 1979, 98, 1900–1908. [Google Scholar] [CrossRef]
- Martinez, J.A.; Castro-Aranda, F. Lightning performance analysis of overhead transmission lines using the EMTP. IEEE Trans. Power Deliv. 1994, 9, 1838–1849. [Google Scholar] [CrossRef]
- Sarajcev, P. Monte Carlo method for estimating backflashover rates on high voltage transmission lines. Electr. Power Syst. Res. 2015, 119, 247–257. [Google Scholar] [CrossRef]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M. Equivalent Lumped Parameter Π-Network of Typical Grounding Systems for Linear and Non-Linear Transient Analysis. In Proceedings of the 2009 IEEE Bucharest Powertech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–6. [Google Scholar]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M. Simplified HV tower grounding system model for backflashover simulation. In Proceedings of the 30th International Conference on Lightning Protection (ICLP), Cagliari, Italy, 13–17 September 2010; Volume 85, pp. 16–23. [Google Scholar]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M. Simplified HV tower grounding system model for backflashover simulation. Electr. Power Syst. Res. 2012, 85, 16–23. [Google Scholar] [CrossRef]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M. Generalized pi-circuit tower grounding model for direct lightning response simulation. Electr. Power Syst. Res. 2014, 116, 330–337. [Google Scholar] [CrossRef]
- Leuven EMTP Center. Alternative Transients Program (ATP) Rule Book; Canadian/American EMTP User Group: West Linn, OR, USA, 1995. [Google Scholar]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M.; Santarpia, A. An ATP-EMTP Monte Carlo Procedure for Backflashover Rate Evaluation. In Proceedings of the 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2–7 September 2012. [Google Scholar]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M.; Santarpia, A. An ATP-EMTP Monte Carlo procedure for backflashover rate evaluation: A comparison with the CIGRE method. Electr. Power Syst. Res. 2014, 113, 134–140. [Google Scholar] [CrossRef]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M.; Palone, F. Tower grounding improvement versus line surge arresters: Comparison of remedial measures for high-BFOR subtransmission lines. IEEE Trans. Ind. Appl. 2015, 51, 4952–4960. [Google Scholar] [CrossRef]
- Terna Rete Italia. Terna Technical Standard LIN_00000000. Progetto Standard Linee Elettriche Aeree A. T.; Terna Rete Italia: Naples, Italy, 2012. (In Italian) [Google Scholar]
- Sargent, M.A.; Darveniza, M. Tower surge impedance. IEEE Trans. Power App. Syst. 1969, PAS-88, 680–687. [Google Scholar] [CrossRef]
- Dawalibi, F.P.; Ruan, W.; Fortin, S.; Ma, J.; Daily, W.K. Computation of Power Line Structure Surge Impedances using the Electromagnetic Field Method. In Proceedings of the 2001 IEEE/PES Transmission and Distribution Conference and Exposition, Atlanta, GA, USA, 2 November 2001; pp. 663–668. [Google Scholar]
- Terna Rete Italia. Terna Technical Standard LF 91. Unificazione Terna-Dispositivi di Messa a Terra; Terna Rete Italia: Naples, Italy, 1991. (In Italian) [Google Scholar]
- Eriksson, A.J. An Improved Electrogeometric Model for Transmission-Line Shielding Analysis. IEEE Trans. Power Deliv. 1987, 2, 871–886. [Google Scholar] [CrossRef]
- Hileman, A.R. Insulation Coordination for Power Systems, 1st ed; Marcel Dekker, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M. Monte Carlo evaluation of the impact of subsequent strokes on backflashover rate. Energies 2016, 9, 139. [Google Scholar] [CrossRef]
- Heidler, F.; Cvetić, J.M.; Stanić, B.V. Calculation of lightning current parameters. IEEE Trans. Power Deliv. 1999, 14, 399–404. [Google Scholar] [CrossRef]
- CU Aerospace GENETIC ALGORITHM. Available online: https://www.cuaerospace.com/Technology/Genetic-Algorithm (accessed on 10 February 2020).
- Lannone, F.; Quaranta, G.G. Italian Technical Standard CEI 81-3. Valori Medi del Numero dei Fulmini a Terra per Anno e per Chilometro Quadrato dei Comuni d’Italia, in Ordine Alfabetico; Maggioli Editore: Santarcangelo di Romagna, Italy, 1999. (In Italian) [Google Scholar]
- Munukutla, K.; Vittal, V.; Heydt, G.T.; Chipman, D.; Keel, B. A practical evaluation of surge arrester placement for transmission line lightning protection. IEEE Trans. Power Deliv. 2010, 25, 1742–1748. [Google Scholar] [CrossRef]
- Bedoui, S.; Bayadi, A.; Haddad, A.M. Analysis of Lightning Protection with Transmission Line Arrester using ATP/EMTP: Case of an HV 220 kV Double Circuit Line. In Proceedings of the 2010 University Power Engineering (UPEC), Cardiff, Wales, UK, 31 August–3 September 2010. [Google Scholar]
- Martinez, J.A.; Castro-Aranda, F. Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters. Proceedings of 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007. [Google Scholar]
- Shariatinasab, R.; Ajri, F.; Daman-Khorshid, H. Probabilistic evaluation of failure risk of transmission line surge arresters caused by lightning flash. IET Gener. Transm. Distrib. 2014, 8, 193–202. [Google Scholar] [CrossRef]
Coordinate (m) | Conductors | |||
---|---|---|---|---|
A | B | C | SW | |
x | −2.9 | 3 | −3.5 | 0 |
y | 25.4 | 23.4 | 21.4 | 31.1 |
Grounding Arrangement | ρg Range (Ω·m) |
---|---|
MT1 | 10–50 |
MT2 | 50–150 |
MT3 | 150–300 |
MT4 | 300–600 |
MT5 | 600–1300 |
MT6 | 1300–2000 |
Peak Current Amplitude | Median Value | Standard Deviation |
---|---|---|
IP < 20 kA | 61 kA | 1.33 |
IP > 20 kA | 33.3 kA | 0.605 |
Polynomial Coefficients | R11 (Ω) | R21 (Ω) | C11 (nF) | C21 (nF) | R1 (Ω) | L1 (μH) |
---|---|---|---|---|---|---|
a | 2.398 | 1.333 | −1.121 × 10−2 | 29.569 | −3.036 | 0.780 |
b | 0.221 | 2.7 × 10−6 | 1.22 × 10−3 | 1.19 | 0.404 | 1.077 × 10−2 |
Polynomial Coefficients | R11 (Ω) | R21 (Ω) | C11 (nF) | C21 (nF) | R1 (Ω) | L1 (μH) |
---|---|---|---|---|---|---|
a | 5.903 | −4.848 | 2.515 × 10−2 | 1.25 × 10−2 | −8.382 | 0.822 |
b | 0.042 | 0.144 | 1.025 × 10−2 | 0 | 0.224 | 2.94 × 10−3 |
Polynomial Coefficients | R11 (Ω) | R21 (Ω) | C11 (nF) | C21 (nF) | R1 (Ω) | L1 (μH) |
---|---|---|---|---|---|---|
a | 5.149 | −10.77 | 1.603 | 0.178 | 10.269 | 3.4 |
b | 0.087 | 0.076 | 1.408 × 10−3 | −5.522 × 10−4 | −2.764 × 10−3 | −6.813 × 10−3 |
Polynomial Coefficients | R11 (Ω) | R21 (Ω) | C11 (nF) | C21 (nF) | R1 (Ω) | L1 (μH) |
---|---|---|---|---|---|---|
a | 1.599 | 0.808 | 2.554 | 8.986 | −1.848 | 6.013 |
b | 0.061 | 0.05 | 1.243 × 10−3 | −6.437 × 10−4 | 0.008 | −2.32 × 10−3 |
Polynomial Coefficients | R11 (Ω) | R21 (Ω) | C11 (nF) | C21 (nF) | R1 (Ω) | L1 (μH) |
---|---|---|---|---|---|---|
a | −1.328 | −0.541 | 4.337 | 25.923 | 1.299 | 12.804 |
B | 0.04 | 0.036 | −2.51 × 10−4 | −1.289 × 10−2 | 0.001 | −2.399 × 10−3 |
Polynomial Coefficients | R11 (Ω) | R21 (Ω) | C11 (nF) | C21 (nF) | R1 (Ω) | L1 (μH) |
---|---|---|---|---|---|---|
a | −6.785 | 853.704 | 15.306 | 8.525 | 45.454 | 58.489 |
b | 2.083 × 10−2 | −32.455 × 10−2 | −0.466 × 10−2 | −0.135 × 10−2 | −0.421 × 10−2 | −2.012 × 10−2 |
Polynomial Coefficients | α11 (Ω) | α21 (Ω) | β11 (A−1) | β21 (A−1) |
---|---|---|---|---|
a | −0.115 | −0.114 | 1.678 | 1.29 |
b | 0.018 | 0.018 | 0.025 | 0.033 |
Polynomial Coefficients | α11 (Ω) | α21 (Ω) | β11 (A−1) | β21 (A−1) |
---|---|---|---|---|
a | 0.207 | −0.073 | 0.093 | 0.062 |
b | 0.003 | 0.004 | 0 | 0 |
Polynomial Coefficients | α11 (Ω) | α21 (Ω) | β11 (A−1) | β21 (A−1) |
---|---|---|---|---|
a | 0.13 | 0 | 2 | 0.01 |
b | 0.004 | 0 | 0.02 | 0 |
Polynomial Coefficients | α11 (Ω) | α21 (Ω) | β11 (A−1) | β21 (A−1) |
---|---|---|---|---|
a | −0.012 | −0.137 | 0.633 | 850.5 |
b | 6.67 × 10−4 | 0.002 | 0 | 0 |
Polynomial Coefficients | α11 (Ω) | α21 (Ω) | β11 (A−1) | β21 (A−1) |
---|---|---|---|---|
a | −0.483 | −0.037 | 14.234 | 234.112 |
b | 0.001 | 0.001 | 0 | 0 |
Polynomial Coefficients | α11 (Ω) | α21 (Ω) | β11 (A−1) | β21 (A−1) |
---|---|---|---|---|
a | −1.059 | 64.163 | 1024.8 | 122.215 |
b | 0.135 × 10−2 | −2.724 × 10−2 | 0 | 0 |
c | −3.664 × 10−7 | 0 | 0 | 0 |
Grounding Arrangement | ρg (Ω·m) | BFOR (Faults/100 km/Year) |
---|---|---|
MT1 | 50 | 0.279 |
MT2 | 50 | 0.203 |
MT2 | 150 | 0.370 |
MT3 | 150 | 0.276 |
MT3 | 300 | 0.640 |
MT4 | 300 | 0.490 |
MT4 | 600 | 1.112 |
MT5 | 600 | 0.706 |
MT5 | 1300 | 1.676 |
MT6 | 1300 | 1.126 |
MT6 | 2000 | 2.759 |
Grounding Arrangement | ρg (Ω·m) | R50Hz (Ω) | ΔR50Hz (%) | ΔBFOR (%) |
---|---|---|---|---|
MT2 | 50 | 3.16 | −59.4 | −27.2 |
MT3 | 150 | 6.34 | −33.2 | −25.3 |
MT4 | 300 | 8.66 | −31.7 | −23.4 |
MT5 | 600 | 11.15 | −35.7 | −36.5 |
MT6 | 1300 | 18.80 | −22.2 | −32.8 |
Grounding Arrangement | ρg (Ω·m) | ΔBFOR (%) |
---|---|---|
MT3 | 300 | −47.7 |
MT4 | 600 | −46.7 |
MT5 | 1300 | −45.2 |
MT6 | 2000 | −42.7 |
Grounding Arrangement | ρg (Ω·m) | R50Hz (Ω) | ΔR50Hz (%) | BFOR (Faults/100 km/Year) | ΔBFOR (%) |
---|---|---|---|---|---|
MT4 | 600 | 15.59 | −10.0 | 0.960 | −13.7 |
MT5 | 1300 | 23.15 | −4.1 | 1.605 | −4.2 |
MT6 | 2000 | 28.80 | −0.4 | 2.740 | −0.7 |
Grounding Arrangement | ρg (Ω·m) | R50Hz (Ω) | ΔR50Hz (%) | BFOR (Faults/100 km/Year) | ΔBFOR (%) |
---|---|---|---|---|---|
MT4 | 600 | 11.61 | −33.0 | 0.414 | −62.8 |
MT5 | 1300 | 15.76 | −34.7 | 0.910 | −45.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M.; Palone, F. Lightning Performance Evaluation of Italian 150 kV Sub-Transmission Lines. Energies 2020, 13, 2142. https://doi.org/10.3390/en13092142
Gatta FM, Geri A, Lauria S, Maccioni M, Palone F. Lightning Performance Evaluation of Italian 150 kV Sub-Transmission Lines. Energies. 2020; 13(9):2142. https://doi.org/10.3390/en13092142
Chicago/Turabian StyleGatta, Fabio Massimo, Alberto Geri, Stefano Lauria, Marco Maccioni, and Francesco Palone. 2020. "Lightning Performance Evaluation of Italian 150 kV Sub-Transmission Lines" Energies 13, no. 9: 2142. https://doi.org/10.3390/en13092142
APA StyleGatta, F. M., Geri, A., Lauria, S., Maccioni, M., & Palone, F. (2020). Lightning Performance Evaluation of Italian 150 kV Sub-Transmission Lines. Energies, 13(9), 2142. https://doi.org/10.3390/en13092142