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Abstract: Multi-level converters are widely used in various industrial applications. Among various
space vector modulation (SVM) schemes, the multi-level SVM scheme based on two-level space
vector pulse width modulation (SVPWM) is recognised as a simplified multi-level SVM scheme,
which can reduce the computation complexity. However, this scheme is still complicated when the
number of the voltage levels is large. This paper proposes a modified SVM scheme that can further
simplify the multi-level SVM scheme based on two-level SVPWM. The proposed SVM scheme can
directly determine the two-level hexagon where the reference voltage vector is located by calculating
a simple formula. The whole modulation process can be completed by only three steps. Meanwhile,
the proposed method is generic for any n-level converter without adding much calculation, which
greatly simplifies the modulation process. Experimental results have been provided, which verify the
effectiveness and generality of the proposed SVM scheme for two types of multi-level converters.
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1. Introduction

Compared to the two-level converter, multi-level converters demonstrate clear advantages such
as higher voltage operation capability, lower voltage stress (dv/dt), output harmonics and switching
loss, higher efficiency, etc. [1–3]. However, there are also challenges associated with multi-level
converters such as increased control and modulation complexity, the need for capacitor voltage
balancing, reliability challenges, etc. [4], and this paper will focus on the modulation aspect.

Common multi-level space vector modulation (SVM) schemes can be classified into two typical
categories: (1) carrier-based sinusoidal pulse width modulation (SPWM), including phase disposition
PWM (PD-PWM) [5–7] and phase shifted PWM (PS-PWM) [8–10]; and (2) space vector PWM
(SVPWM) [11]. With the appropriate zero-sequence signal injection, carrier based PWM is equivalent
to SVPWM [12–14]. Both the two methods can achieve a high DC-link voltage utilization ratio, and
the relationship between control objectives—such as neutral point voltage balancing and common
mode voltage, and the space vectors and zero-sequence—can be well defined. Therefore, SPWM and
SVPWM can have the same performance for multi-level converters. This paper mainly focuses on
multi-level SVM.

For multi-level SVM, the research is mainly focused on two aspects: application and
implementation. It is well known that multi-level SVM has redundant voltage space vectors, which have
different effects on the multi-level converters. The converters can be controlled to output the required
performance through selecting the appropriate voltage space vectors. Therefore, multi-level SVM has
various applications, such as common-mode voltage reduction [15,16], harmonic suppression [17,18],
balancing capacitor voltage [19], reducing switching losses [20], conferring fault tolerance [21], etc.
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Meanwhile, the multi-level SVM schemes can also be applied to some special multi-level converter
topologies [22–24].

Although multi-level SVM has high flexibility, implementation is still challenging for the multi-level
converters with more than three levels [25]. The conventional SVM is based on the α-β coordinate
system. The modulation process includes complex sector judgement and trigonometric function
operation. For a three-phase n-level system, the converter has n3 switching states and 6(n–1)2 triangles
in total [26]. Due to plenty of triangles and voltage space vectors being involved, the conventional
method is quite tedious to implement.

To simplify multi-level SVM implementation, many improved SVM schemes have been developed.
One of the ideas is to use alternative coordinate transformations. The g-h coordinate system (60◦

space) [27] is a typical and fast method. In the g-h coordinate system, all coordinate components are
transformed to integers, and it can quickly select the nearest three vectors and compute their duty
cycles through simple calculation. Another method called the K-L coordinate system [11] is similar
to the g-h coordinate system, and it is transformed into a 120◦ coordinate system. Other alternative
coordinate transformations were proposed to implement multi-level SVM. For example, the imaginary
coordinate system is defined as the line voltage and three axes of imaginary coordinates ja, jb and jc
which are perpendicular to the three-phase axes a, b and c, respectively [28]. A generalized SVPWM
coordinate system based on the convenient definition of three nonorthogonal static reference frames,
alternative to the αβ coordinate system, was proposed in [29]. Moreover, these methods can be used in
the multiphase multi-level converters [30,31].

Another idea to simplify multi-level SVM is based on the concept of two-level SVM [32]. It is well
known that two-level SVM is very simple and easy to implement. Hence, the idea is to decompose
Vref into a two-level hexagon and then implement the modulation based on two-level SVM. However,
when the number of levels increases, determining the location of Vref among many two-level hexagons
is very complex. Therefore, the key part of this kind of multi-level SVM is determining how to simply
and accurately decompose Vref into the two-level hexagon.

There are several ways to decompose Vref. The well-known multi-level SVM scheme based
on two-level SVPWM is the three-level to two-level SVM scheme [32]. This method is to divide
the three-level space vector diagram into six two-level hexagons and then determine the two-level
hexagon where Vref is located depending on its location. For a three-level converter, the principle
of this algorithm is to divide the three-level space vector diagram into six two-level hexagons and
then determine the two-level hexagon where Vref is located depending on its location. This method is
simple to apply in the three-level converter. In [33], the scheme is initially applied in the five-level
inverter. The implementation process is that the five-level space vector diagram should be divided
into six three-level hexagons, and the three-level hexagons should first be determined. Then, each
three-level hexagon is further divided into six two-level hexagons, and each two-level hexagon can be
finally determined. Therefore, the decomposition by this method is layer by layer. It implies that as
the number of levels increases, both the complexity and the computation increase. For determining
the location of Vref, ref. [34] determines the two-level hexagons through identifying the triangle that
encloses the tip of Vref.

Another idea to achieve the multi-level SVM scheme based on two-level SVPWM more quickly
is proposed in [35]. In order to identify the center of the two-level hexagon where Vref is located,
this method needs to calculate a “distance term” and compare for each vector on the inner side of a
particular layer (the hexagonal ring where Vref is located). Therefore, the process of determining the
two-hexagon has two steps. Step 1: identifying the layer. This step divides the space vector diagram
into layers. For example, for a five-level converter, the space vector diagram can be viewed as being
formed of four layers. The layer number where Vref is located should be obtained firstly. Step 2:
generating candidate vectors for the two-level hexagon center. After identifying the layer, the distance
of each vector on the inner side of the particular layer from Vref should be calculated and compared.
The vector that is closest to Vref is chosen as the center of the two-level hexagon where Vref is located.
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However, when this algorithm is applied in converters with higher number of levels, the multiple
comparisons still require significant computation resources.

For the multi-level SVM scheme based on two-level SVPWM, the problem is that the process of
decomposing Vref is too complex and difficult to implement as the number of levels increases. In order
to solve this issue, this paper proposes a new, generic, simplified multi-level SVM. This scheme can
easily and effectively decompose Vref into the two-level hexagon, and the whole modulation process
can be achieved by three simple steps. The proposed scheme has the following salient advantages
compared with existing the methods mentioned above:

(1) The center of the two-level hexagon where Vref is located can be directly expressed through a
simple calculation. The decomposition does not require the layer calculations.

(2) No lookup table or coordinate transformation are required.
(3) For any n-level converter, the whole modulation process can be implemented within three-step

calculations without adding much calculation, regardless of the number of levels.

The rest of this paper is organized as follows: Section 2 introduces the space vector diagram of the
five-level converter and the coordinate normalization; Section 3 presents the proposed multi-level SVM
scheme; Section 4 shows experimental results for two kinds of multi-level inverter, which validate the
effectiveness of the proposed method; and Section 5 concludes the paper.

2. Space Voltage Vector Distribution

A five-level cascaded H-bridge inverter (CHB) as shown in Figure 1 is employed as an example
for evaluation. Figure 2 shows the space vector diagram of the five-level converter.
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Figure 3 shows the coordinate components of the voltage space vectors in the a-b-c coordinate
system. The coordinate components Va, Vb, Vc are per unit values after division by Vdc, and Vdc is the
DC-link voltage of each cell. Then, the whole hexagon can be divided into six sectors (I–VI), as shown
in Figure 3.
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From Figure 3, it can be seen that the coordinate components of the voltage space vectors are
symmetrically distributed in the six sectors. Therefore, in order to simplify the calculation process, the
voltage space vectors in other sectors can be normalized to Sector I by interchanging the coordinate
components [36]. Figure 4 shows the symmetry of the vector distributions (θ1 = θ2 = θ3 = θ4 = θ5 = θ6).
The voltage space vectors in two adjacent sectors are symmetrically distributed with respect to the axis
on which the two adjacent sectors coincide. For example, the voltage space vectors in Sectors I and II
are symmetrically distributed with respect to the c-axis. Therefore, it is only necessary to interchange
the coordinate components of the a-axis and b-axis to normalize the voltage space vectors of Sector II to
Sector I, such as if the coordinate is (1/3, 4/3, −5/3) in Sector II, then the equivalent coordinate is (4/3,
1/3, −5/3) after normalizing it to Sector I. Similarly, the voltage space vectors in other sectors can also
be normalized to Sector I according to this method. The equivalent coordinate components (Va1, Vb1,
Vc1) of the voltage space vectors in Sector I are shown in Table 1. This coordinate normalization only
needs to interchange the coordinate components and is easy to implement.
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3. Principle of the Proposed SVM Scheme

The proposed simplified multi-level SVM scheme only needs three steps to be completed. The
whole modulation process is as follows.

Step 1: Determining the Generalized Zero Vector

For the multi-level SVM scheme based on two-level SVPWM, the two-level hexagon where the
reference voltage vector is located should be determined firstly, and this process is also the most
important part. In this paper, the centers of the two-level hexagon are defined as the generalized zero
vectors (GZV), as the red dots show in Figure 5.
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Sector I is analyzed as an example to show how to locate the GVZ, and there are six GVZs in total,
as shown in Figure 6 (Point 1O~ 6O). In order to clearly locate the positions of GVZs, Sector I can be
divided into six regions as shown by the dashed lines in Figure 6, denoted by different colors. The
benefit of the idea of dividing into regions is that each region only has one GVZ, and the regions are
not overlapping.
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The expressions of the dashed lines can be obtained based on the coordinate components of the
voltage space vectors shown in Figure 3 that are on the lines. The expressions are as follows:

B1C1 3Va1 + 3Vc1 = −2
OC2 3Va1 + 3Vc1 = 0
A1C3 3Va1 + 3Vc1 = 2
A1B1 Va1 − Vc1 = 2
A2B2 Va1 − Vc1 = 4

(1)

Here, Vref in Region 4O is analyzed as an example, and the Point P is the GVZ in Region 4O. In
order to determine the location of the Point P, the intersection of the region borders should be firstly
obtained. As shown in Figure 6, the Point C2 is the intersection of the borders of Region 4O (A2B2 and
OC2). Therefore, the process of locating the GVZ (Point P) is shown in Figure 7, and the GVZ can be
expressed as:

→

OP =
→

OC2 −
→

PC2 (2)
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As shown in Equation (2), the coordinates of the GVZ can be determined by subtracting the

coordinates of the vector
→

PC2 from the coordinates of the intersection (Point C2) of the region borders.

In Figure 3, it can be seen that the voltage space vector
→

PC2 (∆Va, ∆Vb, ∆Vc) has constant values
(2/3, −1/3, −1/3), which is the shortest voltage space vector in the five-level converter. Hence, the only

unknown in Equation (2) is the coordinates of
→

OC2, which should be obtained as follows.
Based on the characteristics of Equation (1), the common terms of all dashed lines are

(3Va1 + 3Vc1, Va1 − Vc1), and all the constants are integers. Therefore, two variables x, y can
be defined as in Equation (3) by using the coordinate components of Vref.

x = ceil(Va1_ref−Vc1_ref
2 )

y = ceil( 3(Va1_ref+Vc1_ref)
2 )

(3)
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where (Va1_ref, Vb1_ref, Vc1_ref) are the equivalent coordinate components of Vref in Sector I, and the ceil
(·) function means rounding up to the next larger integer. Based on the coordinate components of the
voltage space vectors in Figure 3, the values of x, y corresponding to each region (where each GVZ
1O– 6O locates) can be summarized in Table 2.

Table 2. The values of x and y corresponding to each region.

Region 1O 2O 3O 4O 5O 6O

x 1 1 2 2 2 2
y 0 1 −1 0 1 2

As shown in Table 2, x = 2 and y = 0 when Vref is in Region 4O. Therefore, the coordinates (Va_C2,
Vb_C2, Vc_C2) of the intersection (Point C2) of the region borders (A2B2 and OC2) can be expressed as

A2B2: Va_C2−Vc_C2
2 = 2 =x

OC2: 3(Va_C2+Vc_C2)
2 = 0 =y

(4)

In Equation (4) are the expressions of A2B2 and OC2 by using the variables x and y, which are
the same as in Equation (1). Then, based on (4) and Va_C2 + Vb_C2 + Vc_C2 = 0 (i.e., there is no
zero-sequence component in a three-phase three-wire system), the coordinate components of Point C2

can be expressed by using x and y, as shown in Equation (5).
Va_C2 = x + y

3
Vb_C2= −

2y
3

Vc_C2= −x + y
3

(5)

Finally, based on the Equation (2), the coordinate components (Va0, Vb0, Vc0) of the GVZ (Point P)
can be expressed as 

Va0 = Va_C2 − ∆Va = x + y
3 −

2
3

Vb0 = Vb_C2 − ∆Vb = −
2y
3 + 1

3
Vc0 = Vc_C2 − ∆Vc = −x + y

3 + 1
3

(6)

It can be seen that the coordinate components of all GVZs can be easily obtained by calculating
Equation (6). According to the relationship of the multi-level space vector distribution, this SVM
scheme can be extended to any n-level converter. Additionally, the variables x, y can be redefined as in
Equation (7) to account for any n-level converter.

x= ceil(Va1_ref−Vc1_ref+z−1
2 )

y= ceil( 3(Va1_ref+Vc1_ref)+z−1
2 )

z= rem( n
2 )

(7)

where the function rem (·) means the remainder of n/2, and n is the number of voltage levels. If n is
odd, z = 1, and if n is even, z = 0. By adding the variable z, this simplified multi-level SVM scheme can
be extended to any n-level converter without much increase in calculation.

According to the above analysis, Step 1, which is the most important part of the multi-level SVM
scheme for determining the GVZs, can be easily achieved by calculating Equation (6). The process
proposed here is much simpler than other SVM schemes based on two-level SVM in references [33,35]
and does not require the layer calculations.
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Step 2: Space Vector State (Redundant Vector) Selection

For the SVM scheme, Vref is synthesized by the voltage space vectors around it. Therefore, it is
necessary to select the most appropriate voltage space vectors.

For the multi-level converters, there are a large number of voltage space vectors, including
redundant vectors. For a five-level converter, there are 125 voltage space vectors in total. The
redundant voltage space vectors have different effects on the performance of the multi-level converters,
such as reducing common-mode voltage [15,16], harmonic suppression [17,18], balancing capacitor
voltage [19], reducing switching losses [20], conferring fault tolerance [21], etc. Therefore, the redundant
voltage space vectors can be selected to achieve a certain objective. In this paper, common-mode
voltage reduction is selected as the primary objective and is used as an example. The common-mode
voltage can cause issues in motor drive systems, such as motor bearing damage, insulation breakdown
and electromagnetic interface (EMI).

The common-mode voltage is different when different voltage space vectors are used. For a
five-level converter, when all voltage space vectors are used, the common-mode voltages are ± 2Vdc,
±5Vdc/3, ±4Vdc/3, ±Vdc, ±2Vdc/3, ±Vdc/3, and 0, and the maximum common-mode voltage is ±2Vdc.
Therefore, the common-mode voltage can be reduced by selecting the appropriate voltage space
vectors. For example, the zero space vector at the origin in the space vector diagram in Figure 2 has
five available vector states: (2 2 2), (1 1 1), (0 0 0), (−1 −1 −1) and (−2 −2 −2), and the corresponding
common-mode voltages are 2Vdc, Vdc, 0, −Vdc and −2Vdc. Here, −2, −1, 0, 1 and 2 represent the five
voltage levels in a five-level converter. The common-mode voltage is minimized when the middle
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Based on Figure 5 or Figure 8, it can be seen that each GVZ has two voltage space vectors.
Therefore, the initial space vector state should be determined at the beginning of the modulation cycle.
The voltage space vectors within brackets are defined as the initial space vector states in Figure 8. For
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instance, when Vref is in Region 4O as shown in Figure 6, the initial space vector state is (1 0 –2), and the
switching sequence is [(1 0 −2)-(2 0 −2)-(2 1 −2)-(2 1 −1)-(2 1 −2)-(2 0 −2)-(1 0 −2)].

The two voltage space vectors of each GVZ can be defined as Sup and Sdown. Sup is the starting
vector state for the current cycle, Sdown is the ending vector state for the current cycle and also the
starting space vector state of the next modulation cycle, and Sdown is defined as the initial space vector
state. By analyzing the relationship between the values of x, y in Table 2 and the two voltage space
vectors of the GVZs in Sector I in Figure 8, Sup and Sdown can be directly expressed by using the
variables x and y as {

Sup : [Sa_up, Sb_up, Sc_up] = [x, 1− y, 1− x]
Sdown : [Sa_down, Sb_down, Sc_down] = [x− 1,−y,−x]

(8)

Based on the above analysis, the initial space vector state can be directly expressed by using the
variables x and y in Equation (8) when common-mode voltage reduction is the control objective. The
main contribution of Step 2 is to reveal the relationship between the common-mode voltage reduction
and the defined variables x and y, and it provides a theoretical approach to linking the common-mode
reduction to the variables x and y.

When other control objectives need to be considered, such as harmonic (THD, WTHD) suppression,
reducing switching losses, etc., in theory, the relationship between these control objectives and the
variables x and y can also be determined based on the above-presented approach, and these control
objectives have been implemented for many other SVPWM methods through selecting the redundant
voltage space vectors [17–21]. The identification of these relationships needs to be further researched.

Step 3: ON-Time Duration Based on Two-Level Simplified SVM

After decomposing Vref into the two-level hexagon, the ON-times of each phase can be calculated
based on two-level SVM. The two-level equivalent reference voltage vector V′ref can be expressed as

Va
′ = Va1_ref −Va0

Vb
′ = Vb1_ref −Vb0

Vc
′ = Vc1_ref −Vc0

(9)

where (Va
′, Vb

′, Vc
′) are the coordinate components of the two-level equivalent reference voltage

vector V′ref, and (Va0, Vb0, Vc0) are the coordinate components of the GVZ.
Then, the ON-times of each phase can be calculated. Compared to conventional two-level SVM,

two-level simplified SVM can directly calculate the ON-times through the three-phase reference voltage
without judging the sector, calculating the ON-times of the basic space vectors and determining the
switching sequence. The calculation can be greatly simplified [37]. Therefore, based on two-level
simplified SVM, the ON-times of each phase can be directly expressed as

T j= (
1
4
+ Vavg −

V j
′

2
)Ts (10)

where Vavg = [max(Va
′,Vb

′,Vc
′) + min(Va

′,Vb
′,Vc

′)]/4, Ts is the switching cycle, and j = a, b, c.
Therefore, Step 3 can be directly completed only through calculating the Equations (9) and (10).

After calculating the three steps (Equations (6), (8)–(10)), the proposed SVM scheme is complete
when Vref is located in Sector I. Based on the coordinate normalization in Table 1, the coordinate
components of the GVZs and the initial space vector Sdown (Sa0, Sb0, Sc0) in other sectors can be directly
obtained through anti-normalization by interchanging the coordinate components. For example, the
coordinate components of the GVZ and the initial space vector in Sector I are (Va0, Vb0, Vc0) and
(x−1, −y, −x), respectively. If they are anti-normalized from Sector I to Sector II, it is only necessary
to interchange the coordinate components of a-axis and b-axis, i.e., the coordinate components of the



Energies 2020, 13, 2143 10 of 18

GVZ and the initial space vector are (Vb0, Va0, Vc0) and (−y, x−1, −x) in Sector II, respectively. The
anti-normalization for the other sectors is the same, as shown in Table 3.

Table 3. The anti-normalization of coordinate components of GVZs and initial voltage space vector states.

Sector V0 (Sa0, Sb0, Sc0)

I (Va0, Vb0, Vc0) (x−1, −y, −x)
II (Vb0, Va0, Vc0) (−y, x−1, −x)
III (Vc0, Va0, Vb0) (−x, x−1, −y)
IV (Vc0, Vb0, Va0) (−x, −y, x−1)
V (Vb0, Vc0, Va0) (−y, −x, x−1)
VI (Va0, Vc0, Vb0) (x−1, −x, −y)

A flowchart of the proposed SVM scheme is shown in Figure 9. It shows the whole process of the
proposed SVM schemes. By summarizing the above analysis, the normalization and anti-normalization
only need to interchange the coordinate components without adding calculations. Therefore, the
proposed SVM scheme only needs to calculate Steps 1, 2, and 3, and each step is only a simple
mathematical calculation, which greatly simplifies the process of decomposing Vref. The whole
modulation process does not require the layer calculations. Therefore, this SVM scheme can be
extended to the higher level converters without adding much calculation. 11 of 19 
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Figure 9. Flowchart of the proposed space vector modulation (SVM) scheme.

4. Experimental Results

The proposed SVM scheme is validated on a three-phase five-level CHB inverter prototype. The
experimental setup is shown in Figure 10. The power switches are insulated gate bipolar transistors
(IGBT) (BSM50GB120DLC, 1200 V/50 A). The phase currents and voltages are measured by LEM
voltage and current sensors (LA55-P and LV 25-P). The master controller board contains one DSP
TMS320F28335 and one Xilinx Spartan3E FPGA XC3S500E. The whole SVM process is executed on the
DSP, and the FPGA is only responsible for extending pulse signals. The experimental parameters are
shown in Table 4.
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Table 4. Experimental parameters.

Description Symbol Values

DC Voltage of Each Cell Vdc 50 V
DC Capacitor C 3300 µF

Output Frequency f 50 Hz
Load Inductance L 10 mH
Load Resistance R 10 Ω

Switching Frequency f s 2 kHz

Here, the modulation index m is defined as

m =

√
3Vref

4Vdc
(11)

Figures 11 and 12 show the performance of the proposed SVM scheme under different modulation
indexes. Figure 13 shows the common-mode voltage waveform. Figure 11 shows the experimental
results when m = 0.6. The line voltage vab has seven levels as expected, the total harmonic distortion
(THD) is 23.46%, and the weight THD (WTHD) is 0.39%. Meanwhile, the harmonics of vab are
mainly distributed around the integer multiples of the switching frequency of 2 kHz (nf s, n = 1, 2,
3, . . . ). The three phase currents are highly sinusoidal, and the THD is 1.13%. Figure 12 shows the
experimental results when m = 0.9. vab has nine levels as expected, the THD is 16.91%, and the WTHD
is 0.27%. The three phase currents are also highly sinusoidal, and the THD is 0.8%. The line voltage in
Figures 11 and 12 contains a slight DC offset due to the DC bias of the voltage probe, which was not
calibrated to zero. The main waveforms are correct as expected that the line voltage is seven levels
when the modulation index is 0.6 and the line voltage is nine levels when the modulation index is 0.9.
Meanwhile, the THD and WTHD of the proposed SVM scheme are very low, and the main components
of the harmonics are switching frequency harmonics (around nf s). Therefore, the waveforms and THD
results show that the proposed SVM scheme can ensure the converter can work properly with low
harmonics. It should be noted that from the harmonics (THD) point of view, the proposed method has
similar performance to other SVPWM methods. The focus of the proposed multi-level SVM scheme is
not to reduce the THD but to reduce the computation time.
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Figure 13. The common-mode voltage waveform.

As shown in Figure 13, the common-mode voltage has seven values of ±Vdc, ±2Vdc/3, ±Vdc/3 and
0 in total, and the maximum common-mode voltage is Vdc = 50 V. It is consistent with the analysis in
Step 2. Therefore, the selected voltage space vectors can effectively reduce the common-mode voltage,
where the common-mode voltages ± 2Vdc, ±5Vdc/3 and ±4Vdc/3 have been removed.

The experimental results prove that the proposed SVM scheme can work well with low harmonics
under different modulation indexes.
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In order to verify the generality of the SVM scheme, another experimental validation is carried
out on an existing four-level inverter [38] in the laboratory. The topology is shown in Figure 14. The
four-level converter needs to control the flying capacitor (FC) voltages, and the control method has
been given in [38]. For the four-level inverter, each output voltage level may correspond to multiple
switching states. Therefore, before outputting the pulse signals, the converter needs to select the
appropriate switching states according to the FC voltages. In other words, the FC voltage is controlled
through choosing the appropriate (redundant) switching states within each phase leg, not through
choosing the redundant space vectors in the three-phase SVPWM. Therefore, the modulation strategy
only needs to be modified when the pulse signals are generated, to select the appropriate switching
states for FC voltage control, as shown in Figure 15 (FC voltage control), and the three calculation
steps of the proposed SVM scheme in the paper do not need to be changed. In order to accurately and
objectively evaluate the SVM scheme for different multi-level converters, the computational time of the
FC voltage control method is not counted when calculating the time for the four-level converter.
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In order to verify the feasibility of the proposed scheme for the four-level converter, a down-scaled
prototype is built in the laboratory. The controller of the prototype is based on a TI TMS320F28335 DSP
and a Xilinx XC3S400 FPGA. The whole SVM scheme are also executed on the DSP, and the FPGA is
responsible for extending pulse signals, as same as in the five-level CHB experimental validation. The
phase currents and the FC voltages are measured by sensors from LEM (LA 55-P and LV 25-P). The
power switches are IGBTs (IKW40N120T2 from Infineon, 1200 V/40 A). The experimental parameters
are shown in Table 5.

Table 5. Experimental parameters of the four-level converter.

Parameters Values

DC Voltage 240 V
Flying Capacitor 1000 µF

Output Frequency 50 Hz
Load Inductance 7.5 mH
Load Resistance 20 Ω

Switching Frequency 2 kHz

The experimental results are shown in Figure 16. Figure 16 shows the line voltage, the three phase
currents and the FC voltages when the modulation index is dynamically changed from 0.9 to 0.6. The
comparison of the experimental results and theoretical results is shown in Table 6.
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Table 6. Comparison of experimental results and theoretical results.

Theoretical Result Experimental Result

M = 0.9 M = 0.6 M = 0.9 M = 0.6

Output Phase Voltage Amplitude 108 V 72 V 106.7 V 70.2 V
Output Phase Current Amplitude 5.36 A 3.58 A 5.29 A 3.49 A

FC Voltage 80 V 80 V 79.3 V(±1 V) 79 V(±1.5 V)

As shown in Figure 16, when the modulation index is 0.9, the waveform of the line voltage is
seven voltage levels, as expected for theoretical analysis, and when the modulation index is 0.6, the
waveform of the line voltage is five voltage levels, as expected for theoretical analysis. The three phase
currents are highly sinusoidal, and all FC voltages can always be regulated near the desired value of
Vdc/3 = 80 V. Meanwhile, as shown in Table 6, the experimental results for the four-level inverter are
almost the same as the theoretical results. This proves that the proposed SVM scheme can also be used
for the four-level converter and the converter can work normally.

The proposed SVM scheme is a simplified multi-level SVM scheme based on the two-level SVPWM.
The main contribution is that the scheme greatly simplifies the process of decomposing Vref, and the
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whole modulation process does not require the layer calculations. In order to evaluate the efficiency
of the proposed SVM scheme, a comparison with an existing same type of SVM is necessary. The
well-known and representative multi-level SVMs based on two-level SVPWM are described in [33,35].
Therefore, the computational times of three SVM schemes (the proposed SVM and the SVM schemes
based on two-level SVM in [33,35]) were measured and compared in the DSP, as shown in Figure 17.
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It can be seen that the computational time of the proposed SVM scheme is less than that of the two
SVM schemes in [33,35]. Meanwhile, the computational times are slightly different for the four-level
and five-level converters with the proposed SVM method. The reason is that the variables x and y are
calculated differently in four-level and five-level SVM. Based on the Equation (7), when the voltage
level is even, x and y are expressed as x = ceil(Va1_ref−Vc1_ref−1

2 )

y = ceil( 3(Va1_ref+Vc1_ref)−1
2 )

(12)

When the voltage level is odd, the variables x and y are expressed as Equation (3), which is slightly
different to in Equation (12). Therefore, the computational time of the four-level SVM is slightly more
than the computational time of the five-level SVM.

For a three-level converter, the computational time of the algorithm in [33] is 5.713 µs and the
computational time of the algorithm in [35] is 5.207 µs. It is shown that the two methods are relatively
simple for a three-level converter, but the computational time of the two methods in [33,35] increases
as the number of voltage levels increases due to the layer calculations, as shown in Figure 17. However,
no matter how many the voltage levels there are, the process of the proposed algorithm is the same
as shown in the flowchart in Figure 9. The whole modulation only needs to calculate Equations (6),
(8)–(10). The only difference is that expressions of the variables x and y are different for the odd- and
even-level converters. Therefore, for any odd-level converter, the computational time of the proposed
SVM scheme is the same according to the Equation (3). For any even-level converter, the computational
time is also the same according to the Equation (12). Both of them are almost the same, as shown in
Figure 17 (the blue one and the green one). The comparison proves that the proposed SVM scheme
greatly simplifies the modulation process of the multi-level SVM scheme based on two-level SVPWM
and can be expanded to any n-level converter, and the computational times are almost the same.

5. Conclusions

In order to solve the issue that the multi-level SVM scheme is difficult to implement, this paper
proposes a generic simplified multi-level SVM scheme based on the two-level SVM scheme. Compared
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to the existing multi-level SVM schemes based on the two-level SVM scheme, the proposed SVM
scheme does not require a lookup table, coordinate transformation or layer calculations. The whole
modulation process can be completed by only three steps, and each step only needs to calculate
simple mathematical equations, which greatly simplifies the process of decomposing Vref. The whole
modulation scheme is easy to implement. For any odd-level converter, the computational time of the
proposed SVM scheme is the same, as is so for any even-level converter, and both of these times are
almost the same. Therefore, the proposed SVM scheme can be used for any n-level converter without
adding much calculation, regardless of the number of levels. Common-mode voltage reduction is
selected as the primary objective and is used as an example, and the common-mode voltage can
be reduced by half. Meanwhile, the proposed SVM scheme reveals the relationship between the
common-mode voltage reduction and the switching sequence, and provides a theoretical approach to
linking the common-mode reduction to the initial space vector states. When other control objectives
are considered, the relationships between these control objectives and the switching sequence can
also be determined based on the presented theoretical approach. In order to verify the feasibility and
generality of the proposed SVM scheme, the experimental results for the four-level and five-level
converters are provided. The experimental results prove that the proposed SVM scheme can ensure
that the two types of converter work normally and that the computation effort does not increase with
number of levels, so it can be readily applied to any n-level converter. Meanwhile, the proposed SVM
scheme is more efficient than other multi-level SVM schemes based on two-level SVPWM, which
greatly simplifies the modulation process.
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