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Abstract: A data-driven methodology to improve the energy disaggregation accuracy during
Non-Intrusive Load Monitoring is proposed. In detail, the method uses a two-stage classification
scheme, with the first stage consisting of classification models processing the aggregated signal
in parallel and each of them producing a binary device detection score, and the second stage
consisting of fusion regression models for estimating the power consumption for each of the electrical
appliances. The accuracy of the proposed approach was tested on three datasets—ECO (Electricity
Consumption & Occupancy), REDD (Reference Energy Disaggregation Data Set), and iAWE (Indian
Dataset for Ambient Water and Energy)—which are available online, using four different classifiers.
The presented approach improves the estimation accuracy by up to 4.1% with respect to a basic energy
disaggregation architecture, while the improvement on device level was up to 10.1%. Analysis on
device level showed significant improvement of power consumption estimation accuracy especially
for continuous and nonlinear appliances across all evaluated datasets.

Keywords: energy disaggregation; non-intrusive load monitoring; regression fusion

1. Introduction

Between 25% and 40% of the global energy consumption and the corresponding amount of carbon
dioxide emissions comes from residential buildings [1–4]. It is estimated that in the next two decades
the average number of electrical devices used in houses is going to rise [4]. In parallel, climate change
and urbanization are affecting the energy load of urban buildings, with the energy load demand
growing two times faster than the expansion of urbanization [5] have shown that roughly 20% of
households consumed energy is due to faulty equipment or poor operational strategies [6–8]. Therefore,
to detect faulty device operation and improve operation strategies, optimization techniques in terms of
device detection and load scheduling have been developed to find optimal and suboptimal operational
strategies [9]. Additionally, significant progress in smart grids, smart systems, and smart devices
was made in the last few decades, considering optimized energy generation and distribution [9,10].
Accordingly, energy management and the deployment of Information and Communication Technologies
(ICT) in residential buildings increased as well, in order to reduce households’ energy consumption
without decreasing living quality levels or violating consumers personality rights and privacy [11,12].
In general, the amount of information gathered is increased progressively with respect to consumer
behavior. Especially, usage of energy is monitored to reduce overall energy consumption and peak
loads, while improvement of the well-being of consumers is tried to be achieved as well [13].

Studies have shown that for achieving significant decrease in energy consumption smart energy
management, smart grids, fine-grained energy monitoring, as well as load forecasting on household
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level are indispensable [14,15]. However, nowadays energy monitoring is mostly done via an
aggregated measure of energy on monthly bills and does not offer detailed information about energy
monitoring. Therefore, to accurately measure energy consumption, smart meters are utilized usually
measuring with sampling frequency equal to 1 Hz or more. Smart meters are devices used to
measure energy consumption of electrical appliances, based on voltage and current measurements.
The energy consumption is calculated at periods of time which usually are every 1 second or more
frequently, e.g., up to 30,000 samples per second [16]. The more frequently energy consumption is
calculated the more detailed is the captured information of energy consumption; however, increasing
the sampling frequency will linearly increase the data to be stored, processed, or transmitted which
in turn increases the hardware cost exponentially [17]. Therefore, most recent studies focus on low
sampling frequency data, as the majority of commercial smart meters collect data usually at 0.1 Hz or up
to 1 Hz to minimize the hardware cost of smart meters and to address the transmission and data-storage
capacity limitations [18,19]. Energy saving enhancement can be achieved on device level by detecting
faulty device operation and inefficient operating strategies [7]. Knowledge about the appliances’
consumption can lead to a reduction of total consumption through increased awareness of energy
consumption [20]. Recent studies have shown that households are usually bad at estimating individual
power consumption (e.g., overrating small appliances consumption and under-rating the amount of
energy for heating) [21]. This means that the energy consumption must be either measured on device
level, which disadvantageously results in increased cost due to wiring issues and data acquisition [19],
or that the aggregated energy (consumed energy measured centrally for each household) must be split
to appliance level automatically, which is called energy disaggregation. Energy disaggregation as
defined in [22] is the Non-Intrusive Load Monitoring (NILM) determining the consumption of energy
from each individual appliance of a house, performed by processing of measurements of the current
and voltage of the overall household’s load. The term non-intrusive is used to point out the distinction
to Intrusive Load Monitoring (ILM) methods utilizing several measurements and smart meters and set
the focus on determining the per device consumption. In other words, NILM is extracting electrical
energy consumption at appliance-level based on one central measurement, thus to identify the onsets
ton (switch-on times) and to f f (switch-off times) of appliances from the aggregated energy signal in
order to find the corresponding consumptions per appliance [23].

Several methods to solve the NILM energy disaggregation challenge can be found in the
bibliography. These methods are briefly classified in methods using Source Separation (SS) algorithms
and in approaches that do not use SS algorithms. Common for all NILM approaches is that they use
measurements of the aggregated energy consumption of a household with a sampling frequency fs in
the order of a sample per second up to few tens of kHz [16]. NILM methods may use macroscopic
signal parameters (e.g., active/reactive power [24,25]) or microscopic ones (e.g., transient energy and
harmonics [26–28]), depending on the sampling rate fs, to split the aggregated signal in appliance
level [29]. Appliance identification methods not using SS algorithms are based mainly on supervised
methods and the extraction of features, which will be used either for training a Machine Learning
(ML) algorithm (e.g., Support Vector Machines (SVM) [30], Artificial Neural Network (ANN) [31],
Decision Tree (DT) [32], K-Nearest Neighbours (KNN) [33]), or defining a set of rules or thresholds [28].
As regards appliance identification methods using SS algorithms, they are based on single-channel
source separation and solve the task with optimization criteria. Approaches using source separation
extract the power consumption characteristic pattern of every appliance from the aggregated signal
using an optimization algorithm with constrains [19,34,35]. Commonly reported SS algorithms in
the NILM task are Independent Component Analysis (ICA) [36], Non-Negative Matrix Factorization
(NMF) [37], and Sparse Component Analysis (SCA) [38]. Source Separation-based NILM approaches
are unsupervised; however, a priori knowledge is needed as only the aggregated signal measurements
are used, thus making them semi-unsupervised [19], in contrast to the NILM approaches without using
SS algorithms, which are supervised. Furthermore, cutting edge technology in machine learning has
led to a number of recently proposed in the literature deep learning approaches using big datasets,
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like the Almanac of Minutely Power Dataset (AMPds) [39]. Methodologies using Convolutional
Neural Networks (CNNs) [40–42], Recurrent Neural Networks (RNNs) [43,44] and Long Short-Term
Memory (LSTM) architectures [44,45], denoising autoencoders (dAEs) [46], and Gated Recurrent Units
(GRUs) [40] can be found in the bibliography. Furthermore, additional questions regarding consumer
privacy and real-time capability arise with the high frequent measurements of energy consumption,
and have been discussed in [47,48] for security relevant issues and in [17] and [49] for low cost
disaggregation and real-time capability.

There is still no established approach for solving the NILM problem and literature reports multiple
solutions with and without source separation. There are numerous electrical devices which have
steady state behavior [22] and are typically modeled as finite state machines [22,50] as well as electrical
devices with non-steady behavior, which have nonlinear and/or continuous characteristics [51,52].
The identification of such appliances when working in parallel or showing strong time-dependent
behaviors [53] is still an unsolved problem, especially for nonlinear and continuous devices. In this
paper a two-stage fusion approach is proposed aiming at representing different device combinations
and their time varying behavior more accurately. The proposed methodology is based on supervised
learning and utilizes low frequency data as well as steady-state features, similar as in [54–56].

The remaining of this article is organized as follows. Section 2 presents the proposed two-stage
fusion methodology. In Sections 3 and 4, the experimental set-up and the experimental results are
given, respectively. Finally, in Section 5 conclusions are provided.

2. Two-Stage Fusion Methodology

The NILM energy disaggregation task can be described as the problem of estimation of the power
consumption of each electrical appliance using the measurements acquired from one central smart
meter, within time windows (frames or epochs). In detail, given a set of M− 1 known appliances each
consuming power pm, with 1 ≤ m ≤ M, the aggregated power Pagg measured by the central smart
meter will be

Pagg = f
(
p1, p2, . . . , pM−1, pg

)
=

M−1∑
m=1

pm + pg =
M∑

m=1

pm (1)

where pg = pM is a “ghost” power consumption, which is usually consumed by one or more unknown
appliances. In NILM, the aim is to calculate estimations P̂ =

{
p̂m, 1 ≤ m ≤M

}
of the power consumption

of each electrical appliance m using an estimation method f−1 with minimal estimation error and
p̂M = p̂g, i.e.,

P̂ =
{
p̂1, p̂2, . . . , p̂M−1, p̂g

}
= f−1(Pagg

)
s.t. argmin

f−1

{(
Pagg − P̂

)2
}
= argmin

f−1


(
Pagg −

M∑
1

p̂m

)2
 (2)

As Equation (2) is practically impossible to be solved using an analytical solution, most energy
disaggregation methodologies are based on segmentation of the aggregated signal into frames and
estimation of the power consumption on device level within each frame using a machine learning
based model, which can either be one model per device following the “one vs. all” approach [57] or a
multi-class device identification model [58]. The architecture of the baseline one-stage NILM approach
based on regression estimators of power consumption is presented in Figure 1.

Specifically, the one-stage NILM methodology consists of preprocessing, feature extraction, and a
regression model for estimating the appliances power consumption P̂. During preprocessing the
aggregated signal is initially filtered, in order to remove peaks as proposed in [59], frame blocked in time
frames ht of length L, and a feature vector vt, vt ∈ RK, is calculated for each frame ht, where 1 ≤ t ≤ T
and T is the last frame of the aggregated signal. Finally, a regression model is used to estimate power
consumption values P̂ =

{
p̂1, p̂2, . . . , p̂M−1, p̂g

}
for each of the M devices. The estimation of each device’s

power consumption can be done either using in parallel one regression model per device or using one
regression model with M output-estimations.
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Figure 1. Block diagram of the baseline NILM architecture consisting of preprocessing, feature extraction,
and regression estimation of power consumption.

In this work, the one-stage NILM methodology is extended to two stages. In detail, the first stage
consisting of classifiers (device detectors) processing the aggregated signal in parallel and each of
them producing a binary device-specific detection score, while the second stage consists of regression
fusion models for estimating the power consumption of each appliance using as input the stage I
results concatenated with the feature vector. The architecture of the proposed two-stage methodology
is presented in Figure 2.
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In detail, during stage I the feature vectors are initially processed by a set of M classification
models C =

{
c1, c2, . . . , cM−1, cg

}
, one for each of the M− 1 known devices and one for the unknown

ghost-power according to the “one vs. all” approach. The output before the last layer of stage I,
P̂′ =

{
p̂′1, p̂′2, . . . , p̂′M−1, p̂′g

}
is the classification score for each of the M devices:

p̂′m = cm(vt) (3)

where cm is the classification model for the mth device and vt is the feature vector as calculated in the
feature extraction stage. The predicted class is the one with the highest score p̂′m. To get the binary
decision at the end of stage I, a threshold Θ is applied to transform the initial classification scores p̂′m to
their binary representation, thus labeling if a device is working (1) or not (0):

d̂′m =

{
0 if p̂′m < Θ
1 if p̂′m ≥ Θ

(4)
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Subsequently, the initial binary estimations, D̂′ =
{
d̂′1, d̂′2, . . . , d̂′M−1, d̂′g

}
with D̂′ ∈ RM, from stage I

are concatenated together with the feature vector, vt to an new feature vector Vt =
{
D̂′

∣∣∣vt
}
∈ R(K+M),

so as to estimate the power consumptions of the M appliances. Specifically, in the second stage M
fusion models, R =

{
r1, r2, . . . , rM−1, rg

}
with R ∈ RM, are receiving as input the new feature vector

Vt, giving a numerical estimation (regression) for the appliance power consumption for each of the
M devices.

p̂m = rm(Vt) s.t. p̂m ∈
{
0, . . . , max(ht)

}
(5)

The initial binary estimates of device operation D̂′ from the first stage are used from the
regression models of the second stage to model any power consumption correlations between the
different appliances, i.e., the devices that are likely to work simultaneously within the time frame vt.
Additionally, the restriction on Equation (5) assures that the prediction of power consumption for
each single device p̂m at frame instance t cannot exceed the aggregated power consumption within
that frame.

The proposed methodology combines binary device estimates from a first classification stage with
a second regression fusion stage, thus any complementary information from the first stage will be
captured and learned by the fusion model. Moreover, with the existence of ghost power in the first
level, the output of the binary classifiers will be used as a feature for the detection of unknown devices,
which offers advantage to the present methodology in real set-up evaluations where unknown devices
exist quite often.

3. Experimental Set-up

A detailed description of the databases used to evaluate the one-stage and the proposed two-stage
fusion methodology as well as the description of the parameterization of the machine learning
algorithms are provided in this section.

3.1. Evaluation Data

To evaluate the proposed methodology presented in Section 2 the data collections Electricity
Consumption & Occupancy (ECO) [59], Reference Energy Disaggregation Data Set (REDD) [60],
and Indian Dataset for Ambient Water and Energy (iAWE) [61], which are freely and online accessible,
were used as they contain low frequency samples from the aggregated data and individual power
measurements from each device, respectively. The three databases consist of several datasets with
different monitored houses in each. For the present evaluation from the ECO database houses, 1, 2,
and 4–6 were used, while the ECO-3 dataset was not used because it does not include the power
consumption signals of each appliance but only the aggregated signal. Further, from the REDD
database, house 5 was excluded as its measurement duration is significantly shorter than for the rest
of the datasets in the REDD database [62]. The datasets used in the present evaluation are shown
in Table 1 with column “#App” tabulating the total number of appliances (App) in each dataset and
in brackets the number of devices with power consumption above 25 W, with the remaining ones
considered as “ghost device”, in alignment with the experimental protocol introduced in [57,58].
The remaining columns of Table 1 are listing the sampling period Ts, the duration T, and the device
types included in every dataset. As regards the REDD database, all of it was utilized, ignoring the
gaps in the measurements as in [63]. Regarding the ECO and iAWE databases, one week of energy
consumption recordings was used in order to the size of training data to be similar with the REDD
dataset. Specifically, we used the week from 05/07/2012 until 11/07/2012 for the ECO database and the
week from 08/06/2013 until 14/06/2013 for the iAWE database.
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Table 1. Overview of the evaluated datasets.

Dataset #App Ts T App. Type Appliances

ECO-1 7(6) 1s 7d One/Multi-State (1) fridge, (2) dryer, (3) coffee machine, (4) kettle,
(5) washing machine, (6) PC, (7) freezer

ECO-2 12(9) 1s 7d One/Multi-State
(1) tablet, (2) dishwasher, (3) air exhaust, (4) fridge,
(5) entertainment, (6) freezer, (7) kettle, (8) lamp,

(9) laptop, (10) Stove, (11) TV, (12) Stereo

ECO-4 8(8) 1s 7d One/Multi-State/
Nonlinear

(1) fridge, (2) kitchen appliances, (3) lamp,
(4) stereo/laptop, (5) freezer, (6) tablet,

(7) entertainment, (8) microwave

ECO-5 8(6) 1s 7d One/Multi-State/
Nonlinear

(1) tablet, (2) coffee machine, (3) kettle,
(4) microwave, (5) fridge, (6) entertainment, (7) PC,

router/printer, (8) fountain

ECO-6 7(6) 1s 7d One/Multi-State/
Nonlinear

(1) lamp, (2) laptop/printer, (3) routers, (4) coffee
machine, (5) entertainment, (6) fridge, (7) kettle

REDD-1 18(17) 3s All One/Multi-State/
Continuous

(1) oven, (2) oven, (3) refrigerator, (4) dishwasher,
(5) kitchen-outlets, (6) kitchen-outlets, (7) lighting,

(8) washer-dryer, (9) microwave, (10) bathroom,
(11) electric- heat, (12) stove, (13) kitchen-outlets,

(14) kitchen-outlets, (15) lighting, (16) lighting,
(17) Washer-dryer, (18) Washer-dryer

REDD-2 9(10) 3s All One/Multi-State
(1) kitchen-outlets, (2) lighting, (3) stove,

(4) microwave, (5) washer-dryer, (6) kitchen-outlets,
(7) refrigerator, (8) dishwasher, (9) disposal

REDD-3 20(18) 3s All One/Multi-State/
Nonlinear

(1) outlets-unknown, (2) outlets-unknown,
(3) lighting, (4) electronics, (5) refrigerator,

(6) disposal, (7) dishwasher, (8) furnace,
(9) lighting, (10) outlets-unknown,

(11) washer-dryer, (12) washer-dryer, (13) lighting,
(14) microwave, (15) lighting, (16) smoke-alarms,
(17) lighting, (18) bathroom, (19) kitchen-outlets,

(20) kitchen-outlets

REDD-4 18(16) 3s All One/Multi-State/
Nonlinear

(1) lighting, (2) furnace, (3) kitchen-outlets,
(4) outlets-unknown, (5) washer-dryer, (6) stove,

(7) air-conditioning, (8) air-conditioning,
(9) miscellaneous, (10) smoke-alarms, (11) lighting,

(12) kitchen-outlets, (13) dishwasher,
(14) bathroom, (15) bathroom, (16) lighting,

(17) lighting, (18) air-conditioning

REDD-6 15(14) 3s All One/Multi-State/
Nonlinear

(1) kitchen-outlets, (2) washer-dryer, (3) stove,
(4) electronics, (5) bathroom, (6) refrigerator,

(7) dishwasher, (8) outlets-unknown,
(9) outlets-unknown, (10) electric- heat,
(11) kitchen-outlets, (12) lighting, (13)

air-conditioning, (14) air-conditioning, (15)
air-conditioning

iAWE 10(9) 1s 7d
One/Multi-State/

Nonlinear/
Continuous

(1) fridge, (2) air-condition, (3) air-conditioning,
(4) washing machine, (5) laptop, (6) iron,

(7) kitchen, (8) TV, (9) waterfilter, (10) watermotor

These weeks were chosen with the intention of having as many appliances as possible in the
selected time interval of the aggregated signal. Except this, in [59,64], where the ECO and the iAWE
databases were also used the selected time interval has not been specified. The classification of device
types is based on their operation as described in [65,66], i.e., one-state electrical appliances have
only on/off status (for example resistive lamps, kettles or fridges without significant power spikes),
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multi-state devices have a number of discrete power consumption states (e.g., washing machines
with numerous washing cycles), nonlinear devices (e.g., electronics) and electrical appliances with
continuous power consumption pattern, which are controlled by power electronics (e.g., air condition)
and usually have an exponential decay signature. The device signatures may present an amplitude
peak in the beginning of the signature, as, for example, in the case of refrigerators. An example
power signature for each of the four device categories was extracted from the REDD databases and is
illustrated in Figure 3.
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Figure 3. Examples of appliance signatures for (a) one-state appliance with significant peak (refrigerator),
(b) multi-state appliance without significant peak (dishwasher), (c) nonlinear appliance (laptop), and (d)
continuous appliance with decay (air- conditioning) from the REDD database.

As can be seen from Table 1, the evaluated datasets vary in terms of number of appliances,
monitoring durations, as well appliance type, and therefore are accurately representing the various
characteristics of nowadays households [59,60]. All evaluated datasets have a low sampling rate in the
order of seconds and only the active power samples of the aggregated signal is utilized offering a good
trade-off between computational load and real-time operation [64].

3.2. Prameterization and Feature Selection

At the preprocessing of the aggregated signal a median filter of five samples was used for
smoothing as proposed in [59], and afterwards the preprocessed signal was segmented in overlapping
frames of length equal to L = 10 samples and time shift between successive frames equal to 5 samples.
The optimal number of samples per frame was determined through grid search on a bootstrap dataset
with ideal aggregated data (without ghost power), consisting of one dataset out of each database
(ECO-2, REDD-2 and iAWE) similar as in [67,68].

All devices with constant power consumptions of less than 25 W were removed from the datasets
and added to the ghost-power, while the aggregated data was not modified, which ensures that the
training as well as the testing was done with real measurements of the aggregated data and not with
an artificial dataset created through summing consumptions of all appliances [69]. The set of binary
classifiers C was trained, one for every device m and separately for each dataset according to the “one
vs. all” approach, whereas the threshold was set equally to Θ = 25 W for all appliances. During the
training phase the set of features, vt, was determined from a time window of active power samples
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ht and the Min/Max, Mean, Energy, RMS, Percentiles25/75, Median, Zero Crossing rate, Peak2Rms,
Range, Standard Deviation, Skewness, Kurtosis, and Variance values were extracted according to
their statistical importance determined by the ReliefF algorithm [70] resulting to a K = 15 dimensional
feature vector similar as in [71,72]. Specifically, Mean, Energy, RMS were used to model steady-state
behavior, while Min/Max, Percentile75/25, Median, Zero Crossing rate, Peak2Rms, Range, Standard
Deviation, Skewness, Kurtosis, and Variance was used to model for the transient behavior and the
variation within the frames [73]. As all databases are sampled with relatively low sampling frequencies
the feature vector only contains steady-state features.

Similarly, the regression fusion models were trained using the intermediate binary scores from
the first stage, D̂′, as well as the original feature vector vt. In detail D̂′ and vt where concatenated
into a single feature vector and used to train the set of fusion regression models R, one for each of
the M devices. Both the one-stage architecture (Figure 1) and proposed two-stage fusion architecture
(Figure 2) were trained with the first half of each dataset and tested on the second half of each dataset,
thus without overlap between training and test subsets.

For building the models of the one-stage and two-stage architecture Deep Neural Networks
(DNNs), K-Nearest-Neighbors (KNNs), Decision Trees (DTs) in a Random Forest (RF) implementation,
and Support Vector Machines (SVM) were used. Short description and free parameters of the evaluated
classifiers are tabulated in Table 2. The values of the adjustable parameters of the evaluated regression
algorithms were fine-tuned empirically by performing grid search on a bootstrap subset of the training
data composed of the ECO-1/2/4/5/6 database which didn’t include any ghost power. The performance
was evaluated in terms of appliance power estimation accuracy (EACC), as proposed in [60] and defined
in Equation (6).

EACC = 1−

∑T
t=1

∑M
m=1

∣∣∣p̂t
m − pt

m

∣∣∣
2
∑T

t=1
∑M

m=1

∣∣∣pt
m

∣∣∣ (6)

where p̂m is the estimated power, pm the ground-truth power consumption of the mth device, T denotes
the total number of frames, and M is the number of electrical appliances including the ghost power.
The free parameters optimization of the regression models with respect to the power estimation
accuracy EACC at the end of the one-stage architecture, p̂m, are shown in Table 2.

Table 2. Parameterization results EACC (%) for four different classifiers, namely, Deep Neural Networks
(DNNs), Random Forest (RFs), K-Nearest-Neighbors (KNNs), and Support Vector Machines (SVMs).

Deep Neural Network (DNN)
Nodes/Layers 4 8 16 32 64 128

1 80.4 87.5 87.9 83.7 86.4 81.7

2 70.1 86.4 86.9 87.5 82.7 83.6

3 80.4 86.7 87.9 88.7 88.4 84.2

4 75.4 87.9 87 87.2 85.3 83.7

Random Forest (RF)

Trees 8 16 32 64 128 256

85.5 85.3 85.5 85.4 85.4 85.4

K-Nearest-Neighbours (KNN)

K 1 2 3 4 5 6

82.2 82.7 82.7 83.1 83.3 82.4

Support Vector Machine (SVM)

Kernel Linear Gaussian Rbf Pol-2 Pol-3 Pol-4

55.0 72.3 76.3 59.2 63.6 67.8
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As shown from Table 2, the optimized parameters (in bold) of the regression models are a DNN
model with 3 hidden layers and 32 sigmoid nodes per layer, a KNN with K = 5 nearest neighbors,
a RF with 32 trees per forest and a SVM with Radial Basis Function (RBF) as kernel with parameters
gamma equal to 12.8 and C equal to 1.45. The DNN model achieved accuracy equal to 88.7% and
outperformed all other evaluated regression models on the bootstrap subset of the training data.

4. Experimental Results

The NILM methodology described in Section 2 was tested based on the experimental protocol
presented in Section 3 using the parameter optimization results of Table 2. To evaluate NILM accuracy
on electrical appliance level, Equation (6) was modified by removing the sum across the M appliances,
thus resulting to

Ei
ACC = 1−

∑T
t=1

∣∣∣p̂t
m − pt

m

∣∣∣
2
∑T

t=1

∣∣∣pt
m

∣∣∣ (7)

The experimental results in terms of EACC (%) for all evaluated datasets, all evaluated classification
algorithms and for both the one-stage and proposed two-stage architecture are tabulated in Table 3.
The best performing energy disaggregation scores per dataset are indicated in bold for both one- and
two-stage results.

Table 3. Performance of energy disaggregation in terms of EACC (%) for different datasets using the
one-stage (I) and the proposed two-stage fusion methodology (II).

Dataset
DNN RF KNN SVM

I II I II I II I II

ECO-1 74.5 76.2 78.4 79.4 76.0 77.7 67.0 67.0

ECO-2 85.5 87.5 86.3 89.3 85.4 86.4 78.5 80.5

ECO-4 83.8 84.6 83.8 86.9 82.1 82.2 81.5 81.5

ECO-5 88.3 90.3 89.2 90.2 88.1 89.1 88.4 89.4

ECO-6 78.4 80.1 84.6 86.1 83.7 84.2 71.9 74.6

REDD-1 71.3 73.1 78.0 79.0 74.9 75.3 66.3 66.3

REDD-2 74.9 79.0 85.3 87.3 84.4 84.4 81.1 81.1

REDD-3 67.6 69.6 70.6 71.7 69.2 69.9 66.3 66.3

REDD-4 73.9 75.3 74.5 75.1 72.6 73.5 72.5 73.3

REDD-6 79.9 81.3 81.6 82.7 79.3 79.5 70.8 70.8

iAWE 64.7 66.0 67.2 69.2 66.9 67.9 77.4 80.8

As shown in Table 3, the best performing classifier amongst all tested datasets, when using the
one-stage architecture, is RF outperforming all other classifiers except for the case of iAWE dataset
where the SVM classifier achieves significant higher performance in terms of energy disaggregation.
Furthermore, the results in Table 3 show that the two-stage fusion methodology improves the overall
EACC performance across all evaluated datasets. In terms of average improvement per dataset EACC
increases between 0.6% and 4.1% depending on the dataset and the classifier. The most significant
improvements in terms of relative performance were observed when using DNN as classifier where
performance was improved by 4.1% (REDD-2 dataset). The improvement in terms of absolute EACC
values, i.e., the average increase in estimation accuracy when considering the best experiment for the
first stage as the baseline performance, ranges between 0.6% and 3.4% when using SVM and RF as
classifiers and the results were statistically significant when comparing their accuracy scores on frame
level of the one-stage and the two-stage fusion architectures. In detail, RF outperformed SVM in ten
out of eleven datasets with exception of the iAWE database, which is probably due to the significant
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higher proportion of continues appliances which is in line with results in literature reporting high
accuracies for SVM in case of appliances with strong time varying behavior [73,74]. The evaluation
results demonstrate the validity of the proposed method as it has offered improved performance when
tested in several and highly dissimilar (with respect to the sampling rate fs, the number and the type
of devices) datasets as presented in Section 3 and shown in Table 1.

In a next step we performed analysis of energy disaggregation performance on device level for
one dataset out of each database. Table 4 tabulates the EACC on device level for the ECO-2, REDD-2,
and iAWE datasets. The choice for the three datasets was made according to the characteristics
of the datasets shown in Table 1. Specifically, datasets which have roughly the same number of
appliances (<10) and are similar in their collection of appliances thus having appliances of the same
type were chosen.

Table 4. Per device performance Em
ACC (%) of the one-stage (I) and the proposed two-stage fusion (II)

architecture using the best performance classifier (RF) conducted from the per dataset results. The
superior method is given in bold while in the column “category” appliances with significant power
spike are marked as “PS”.

Device Category ECO-2 REDD-2 iAWE

I II I II I II

Air exhaust one-state 98.4 98.4 - - - -

Fridge one-state (PS) 74.7 79.2 86.1 92.3 48.3 55.6

Entertainment nonlinear 83.9 91.6 - - - -

Freezer one-state (PS) 83.6 87.5 - - - -

Lamp/Light one-state/nonlinear 55.6 55.6 71.8 78.8 - -

Laptop nonlinear 59.9 65.6 - 73.7 54.3 59.0

Stove multi-state - - 73.5 - - -

TV nonlinear 84.6 94.7 - - 59.0 65.5

Stereo nonlinear 84.5 85.5 - 68.1 - -

Kitchen - - - 67.8 74.1 - -

Microwave one-state - - 75.8 89.7 - -

WM multi-state - - 89.6 79.5 78.8 78.7

DW multi-state - - 79.1 97.5 - -

Disposal one-state - - 97.5 - - -

Iron one-state - - - - 91.2 91.2

Air Condition continuous (PS) - - - - 45.4 50.3

Watermotor continuous - - - 87.8 57.4 62.3

Ghost - 80.5 87.0 84.4 80.1 87.6

As can be seen in Table 4, there is a relation between performance improvement and
appliance category with one/multi-state devices without significant power peak signature showing no
performance improvement and nonlinear and continuous appliances as well as one-state appliances
with significant power peak showing significant performance improvement. Depending on the dataset,
the performance increase varies up to 0.4% for one/multi-state devices without power spikes, up to
7.4% for devices with power spike, up to 10.1% for nonlinear devices and up to 4.9% for continuous
devices respectively. In detail the highest performance increase in the three tested datasets was
observed for nonlinear appliances namely the TV (10.1%) and the Entertainment (7.7%) in the ECO-2
dataset. Significant increase in performance was also observed for devices with power spikes (PS) in



Energies 2020, 13, 2148 11 of 17

their signature, like the Fridge, the Freezer, and the A/C with maximum improvement equal to 7.4%,
3.9%, and 4.9%, respectively. The lowest or no performance improvement was observed for one-state
appliances without power spikes, e.g., resistive lamps or disposal.

In order to directly compare the proposed methodology with other approaches proposed in
the literature we additionally tested our method on five selected loads from the REDD-2 dataset,
namely the refrigerator, lighting, dishwasher, microwave, and furnace. These loads were used in [55]
because they carry a large percentage of the overall consumed energy and they have been used in
other publications [67,75]. Furthermore, the disaggregation results were evaluated both in a noisy
(with ghost data) and a noiseless (with synthetic data) setup as in [75] for both the one-stage and the
proposed two-stage fusion architecture. The results are tabulated in Table 5.

Table 5. Performance evaluation EACC (%) for five selected appliances from the REDD-2 dataset for
both one-stage (I) and proposed two-stage fusion (II) methodology.

Device Category REDD-2 (noisy) REDD-2 (noiseless)

I II I II

Fridge one-state 80.2 93.2 87.5 94.2

Light nonlinear 78.7 81.5 77.9 81.6

Dishwasher multi-state 87.0 88.7 93.8 94.2

Microwave one-state 93.1 93.7 95.6 95.8

Furnace multi-state 82.4 83.9 87.2 87.8

Average - 90.7 93.4 93.2 95.7

From Table 5 it is seen that the presented two-stage fusion model outperforms the baseline
one-stage system in both the noisy and noiseless setup with 93.4% (2.7% improvement) and 95.7% (2.5%
improvement), respectively. Moreover, the largest improvements can be observed for the appliances
with significant power spikes and nonlinear behavior, i.e., the fridge and the light with 13.0% (6.7%)
and 2.8% (3.7%), respectively. For the purpose of comparison with previously published NILM
approaches the summary of methods using the same databases and the EACC performance metric
presented in [76] was used. Furthermore, the summary of results of [76] was updated by incorporating
very recent results found in the literature utilizing deep learning. However in the latest published
deep learning approaches many researchers started utilizing databases with even lower sampling
frequency and longer monitoring duration (e.g., AMPds [39] or UK- DALE [77]) as in [41,42,44,78],
or utilizing different accuracy metrics (e.g., normalized RMSE in [45]) making direct comparison
impossible. The results are tabulated in Table 6.

From Table 6, it is shown that the two-stage fusion methodology achieves higher accuracy than all
other published methods evaluated on the REDD datasets 1–4 and 6. As regards the experimental
setup using five appliances of the REDD- 2 dataset (initially proposed in [55]) the proposed fusion
architecture performs better than all reported NILM methods, except the method of Makonin et al. [75]
utilizing HMM sparsity which achieved 1.4% higher accuracy than our proposed fusion methodology
in the noisy set-up; however, the energy data used in [75] were manually modified to time align data
acquired from two different smart meter devices while we have used the original data from the REDD-2
dataset without any modification. Moreover, for the approach presented in [75], the performance
on the full REDD dataset with all 18 appliances across all houses (1, 2, 3, 4, and 6) has not been
reported in the literature and thus direct comparison with our approach is possible only using the
REDD-2 dataset with five devices. Regarding the results presented in [40] are not directly comparable
with our approach (which performs 8.8% better) as a modified training/test setup has been used.
To compare our performance with the one reported in [45] we calculated the normalized RMSE used
in [45]. Our proposed methodology has normalized RMSE equal to 0.24, which is 0.11 better than
the score reported in [45]. Considering the results from Tables 3 and 4, the proposed two-stage
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fusion methodology demonstrated improvements both in average and per device performance across
all evaluated datasets with all evaluated classifiers, demonstrating the validity of the methodology.
As regards the effect of different datasets when using the same classifier, the improvement in terms of
EACC varies between 0.6% and 4.1% as can be seen in Table 3. The main reasons are the different number
of devices in each dataset and the distribution of appliance types, i.e., how many appliances of a specific
type (e.g., one-state or nonlinear) can be found in each dataset. Considering the results in Table 3 in
combination with the database categorization in Table 1 it can be seen that datasets with small number
of appliances (e.g., ECO-1 or REDD-2) have a slightly higher improvement in estimation accuracy and
show improvements of approximately 1.0–4.1%, while datasets with larger number of appliances (e.g.,
REDD-1 or REDD-3) show improvements of up to 1.6%. Moreover, the datasets including significant
number of continuous appliances or nonlinear appliances (e.g., ECO-2 or iAWE) benefit more from
the two-stage fusion architecture. Continuous or nonlinear devices may have high correlation with
the daily routine of the users/consumers as well as they may have dependencies between them, e.g.,
the Entertainment appliances which in the general case are interconnected with the TV. For electrical
appliances having dependencies with other devices or depending on residents’ everyday routine, the a
priori information of the devices operating together or following similar everyday routine patterns,
e.g., most of the times working or not working at the same time, can boost the estimation of the power
consumption of those devices. For such appliances, power consumption estimation can be improved
from the proposed two-stage fusion methodology in which estimates of the operation of other devices
(identified at the first stage of the proposed architecture) are utilized. In addition, energy consumption
estimation for appliances presenting power spikes, i.e., peaks that appear during the switching on
of electrical motors, e.g., in fridges or freezers, was found to get improved by the fusion stage of
the proposed NILM architecture, given that the existence of a power spike in a frame changes the
total amount of energy to be disaggregated. Therefore, it is beneficial having an initial estimate of
which appliances are likely to be working (calculated from the first stage in the two-stage architecture),
to discriminate power spikes from appliances with constant high-power consumption.

Table 6. Comparison of EACC (%) values for recently proposed NILM methodologies (methods marked
with an asterisk are not directly comparable because of a dataset transferability set-up used in [40] and
a slight change in the accuracy metric in [4,5]).

NILM Method Publication Year Dataset EACC Fusion (EACC)

Powerlets-PED [79] 2015 REDD-1/2/3/4/6 72.0

79.3

Exact Deep SC [80] 2017 REDD-1/2/3/4/6 66.1

Greedy Deep SC [80] 2017 REDD-1/2/3/4/6 62.6

Discriminate SC [81] 2010 REDD-1/2/3/4/6 59.3

General SC [81] 2010 REDD-1/2/3/4/6 56.4

Temporal ML [82] 2011 REDD-1/2/3/4/6 53.3

Sparse HMM [75] 2015 REDD-2 (5 App.) 94.8

93.4

SIQCP [83] 2018 REDD-2 (5 App.) 86.4

F-HDP-HSMM [55] 2013 REDD-2 (5 App.) 84.8

F-HDP-HMM [55] 2013 REDD-2 (5 App.) 70.7

EM-FHMM [55] 2013 REDD-2 (5 App.) 50.8

CNN-RNN [43] 2019 REDD-2 (Fridge) 87.9

92.3 (0.24)CNN* [40] 2019 REDD-2 (Fridge) 83.5

LSTM* [45] 2015 REDD-2 (Fridge) 0.35
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It was shown in Tables 3–6 that the two-stage fusion methodology improved the estimation
accuracy across all datasets. Especially in Table 4, it was shown that the two-stage fusion methodology
shows higher performance increase for appliances with power spikes as well as nonlinear and
continuous appliances. In Table 5, the results were compared to state-of-the-art literature for five
selected appliances for both one-stage and proposed two-stage architecture, while a comparison of
average estimation accuracy scores was presented in Table 6, showing the improvement of the method
when using the complete dataset.

5. Conclusions

In this paper, a two-stage fusion energy disaggregation approach for non-intrusive load monitoring
was presented. The fusion approach combines multiple classifiers producing a binary detection score in
the first stage of the architecture, and further uses a fusion of the initial binary estimates to enhance the
energy disaggregation accuracy during a second fusion stage. The proposed architecture was evaluated
on three different databases using four different classification algorithms and proved to increase
the power estimation accuracies for all evaluated databases and classifiers with Random Forests
outperforming all other classifiers. Specifically, the proposed two-stage fusion methodology achieved
improvement of up to 3.4% among the evaluated datasets and in device level the estimation accuracy
was improved by 10.1% when compared to the best performing baseline non-intrusive load monitoring
setup. As regards different appliance types, the two-stage methodology significantly improved the
power consumption estimation accuracy of continuous and nonlinear devices as well as the power
consumption estimation of appliances with high power spikes. The proposed two-stage fusion
methodology demonstrated robust performance across several datasets with different characteristics
and types of devices as well as estimated well the ghost power produced from unknown devices which
is common in households, demonstrating the appropriateness of it in real-life setups. Non-intrusive
load monitoring is a difficult task especially when considering nonlinear and continuous appliances.
With the evolution of usage of smart meters, large amounts of energy data with duration of several
continuous years of recordings is anticipated to be collected in the next years based on which deep
learning approaches will be used to develop device identification and energy consumption models.
Another future direction is the incorporation of temporal information into the device models to
further improve disaggregation accuracy especially in the case of appliances with strongly time
varying behavior.
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43. Çavdar, İ.; Faryad, V. New design of a supervised energy disaggregation model based on the deep neural
network for a smart grid. Energies 2019, 12, 1217. [CrossRef]

http://dx.doi.org/10.1016/j.enbuild.2018.11.013
http://dx.doi.org/10.1016/j.enbuild.2017.06.042
http://dx.doi.org/10.1109/TSG.2013.2271282
http://dx.doi.org/10.1109/TSG.2015.2388492
http://dx.doi.org/10.1109/TIM.2013.2278596
http://dx.doi.org/10.1109/TCST.2015.2476777
http://dx.doi.org/10.1049/iet-gtd.2018.6125
http://dx.doi.org/10.3390/en12071217


Energies 2020, 13, 2148 16 of 17

44. He, W.; Chai, Y. An empirical study on energy disaggregation via deep learning. In Proceedings of the 2nd
International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2016), Beijing, China,
19 September–20 November 2016.

45. Mauch, L.; Yang, B. A new approach for supervised power disaggregation by using a deep recurrent LSTM
network. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Orlando, FL, USA, 14–16 December 2015; pp. 63–67.

46. Garcia, F.C.C.; Creayla, C.M.C.; Macabebe, E.Q.B. Development of an intelligent system for smart home
energy disaggregation using stacked denoising autoencoders. Procedia Comput. Sci. 2017, 105, 248–255.
[CrossRef]

47. Li, Z.; Oechtering, T.J.; Skoglund, M. Privacy-preserving energy flow control in smart grids. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Shanghai, China, 20–25
March 2016; pp. 2194–2198.

48. Chin, J.-X.; De Rubira, T.; Hug, G. Privacy-protecting energy management unit through model-distribution
predictive control. IEEE Trans. Smart Grid 2017, 8, 3084–3093. [CrossRef]

49. Schirmer, P.A.; Mporas, I. Energy disaggregation from low sampling frequency measurements using
multi-layer zero crossing rate. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 3777–3781.

50. Ridi, A.; Gisler, C.; Hennebert, J. A survey on intrusive load monitoring for appliance recognition.
In Proceedings of the 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28
August 2014; pp. 3702–3707.

51. Chang, H.-H.; Lian, K.-L.; Su, Y.-C.; Lee, W.-J. Power-spectrum-based wavelet transform for nonintrusive
demand monitoring and load identification. IEEE Trans. Ind. Appl. 2014, 50, 2081–2089. [CrossRef]

52. Zhu, Y.; Lu, S. Load profile disaggregation by Blind source separation: A wavelets-assisted independent
component analysis approach. In Proceedings of the IEEE PES General Meeting: Conference & Exposition,
National Harbor, MD, USA, 27–31 July 2014; pp. 1–5.

53. Schirmer, P.A.; Mporas, I. Integration of temporal contextual information for robust energy disaggregation.
In Proceedings of the IEEE 38th International Performance Computing and Communications Conference
(IPCCC), London, UK, 29–31 October 2019; pp. 1–6.
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