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Abstract: Various mitigation strategies have been proposed to reduce the CO2 emissions from ships,
which have become a major contributor to global emissions. The fuel consumption under different
mitigation strategies can be evaluated based on two data sources, real data from the real ship systems
and simulated data from the simulation models. In practice, the uncertainties in the obtained data
may have non-negligible impacts on the evaluation of mitigation strategies. In this paper, a Gaussian
process metamodel-based approach is proposed to evaluate the ship fuel consumption under different
mitigation strategies. The proposed method not only can incorporate different data sources but
also consider the uncertainties in the data to obtain a more reliable evaluation. A cost-effectiveness
analysis based on the fuel consumption prediction is then applied to rank the mitigation strategies
under uncertainty. The accuracy and efficiency of the proposed method is illustrated in a chemical
tanker case study, and the results indicate that it is critical to consider the uncertainty, as they can
lead to suboptimal decisions when ignored. Here, trim optimisation is ranked more effective than
draft optimisation when the uncertainty is ignored, but the reverse is the case when the uncertainty
in the estimations are fully accounted for.

Keywords: ship energy system; mitigation strategies; uncertainty; Gaussian process; emission
reduction; cost assessment

1. Introduction

The transportation sector contributes to nearly one-quarter of the total global CO2 emission in
2018 [1]. Among them, road transport is the largest emission source and is responsible for 75% of the
transportation sector emission. The aviation and the rail account for around 2.5% and 0.3% of the
global CO2 emission, respectively. International shipping transports 90% of the international traded
goods and contributes around 693 million metric tons of CO2 in 2018, accounting for about 2.1% of total
global CO2 emissions. Although the international shipping is considered as the most energy-efficient
way for freight transport, the carbon emission from international shipping is likely to increase by
50–250% in 2050 under current business trends [2].

In an attempt to reduce CO2 emissions, the International Maritime Organization (IMO) [3]
identified more than 50 technical and operational mitigation strategies for improving the efficiency
of international shipping and, hence, reducing CO2 emissions. However, due to economic and other
constraints, it is not practical to implement all relevant mitigation strategies at the same time. Very
often, selected strategies are evaluated and ranked according to costs and CO2 emission reduction
potentials so as to minimise impacts on business competitiveness and the environment [4,5].
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Fuel consumptions account for the bulk of the life cycle CO2 emissions of a ship [6,7]. Reduction
in fuel consumptions after implementing the mitigation strategies can be used to compute the CO2

emission reductions [8]. The cost of a mitigation strategy typically can be calculated from the
investment cost, operational cost, opportunity cost and savings of fuel cost resulting from reduction in
fuel consumptions after implementing the mitigation strategy [9]. Since emissions reductions and costs
usually represent two conflicting objectives, it is necessary to address both objectives when selecting
the most cost-effective strategies for improving efficiency [10].

In the case of international shipping, there are three main approaches in estimating reductions in
fuel consumptions by different mitigation strategies. The first approach is based on expert judgement.
The IMO Marine Environment Protection Committee (MEPC) 62 report [3] examined reductions in fuel
consumptions for 28 mitigation strategies, including 8 operational strategies and 20 technical strategies.
This approach is usually considered to be subjective [2]. The second approach is based on data from
experiments conducted on real ships. Wärtsilä [11] investigated reductions in fuel consumptions
for several mitigation strategies, such as lightweight construction, optimisation of hull dimensions,
propulsion upgrade and optimisation of the trim and ballast through experiments on real ships. This
approach is usually reliable and accurate but can be expensive and time-consuming. The third approach
is to use stochastic simulation models of an energy system of a ship. Baldi and Gabrielii [12] employed
a stochastic simulation model to evaluate the feasibility of a waste heat recovery system for a ship.
Simulation models are much more economical and efficient in deriving insights on mitigation strategies
and are thus more appealing as compared to experiments on a real ship. However, simulation models
can be expensive to develop and require sufficient expert knowledge.

Recently, there is an increasing trend to use metamodels, simpler and cheaper statistical
approximation models to simulation models, to evaluate fuel consumptions in the literature [13,14].
Among the various approaches, Gaussian process (GP)-based metamodels [15,16] are widely applied
and shown to have advantages in representing ship’s energy systems [17,18]. Such metamodels can be
built using real and/or simulated data on fuel consumptions. Real data obtained through on-board
measurements are usually more reliable than simulated data, but the quantity of real observed data is
usually much lower than that of simulated data [12]. In the attempt to leverage on the advantages of
both real and simulated data, Yuan et al. [19] proposed a GP-based model that uses both data sources
simultaneously. Results from their study suggest that the simultaneous use of different data sources
can lead to more reliable predictions on fuel consumptions as compared to the use of only one data
source. However, their model did not consider the uncertainties associated with the data.

There are two types of inputs influencing the fuel consumptions of a ship, namely, control and
environmental inputs. Control inputs literally refer to variables that can be controlled by human
intervention, such as the ship speed and trim. In existing studies, control inputs are always assumed to
be known and/or fixed when analysing the fuel consumptions of ships. However, the observed “control
inputs” can be subject to the influence of external uncontrollable factors, leading to uncertainties in the
observed control inputs [20,21]. For example, signal errors can cause uncertainties in the speed over
ground (SOG) obtained from the Automatic Identification System (AIS), which is a system that uses
transponders on ships for the automatic tracking of vessels. In the past, the SOG obtained from the
AIS was always used directly as the true control input. Neglecting the uncertainties associated with
observed SOG can lead to erroneous decisions in mitigation strategies, as discussed in [21].

The environmental inputs refer to inputs that cannot be controlled by humans but have an
influence on the ship’s fuel consumptions [22]. For example, the distribution of the random electricity
demand on a ship is considered as an environmental input. Very often, only a limited set of historical
data can be obtained and used to estimate the distribution of the electricity demand, leading to
uncertainty in the estimation [23,24]. Neglecting the uncertainties associated with the environmental
inputs can lead to suboptimal or misinformed decisions [25]. As such, there is a need to consider the
uncertainty associated with the environmental inputs [26,27] to hedge against those uncertainties in a
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metamodel [28] and an optimisation model [22]. Ignoring those uncertainties can lead to non-negligible
impacts on the ranking results of the mitigation strategies.

In this work, the GP metamodel-based method is proposed to investigate the fuel consumptions
of ships. The proposed model is capable of accounting for the uncertainties in the input data source
while utilising both real and simulated data. The ability to account for uncertainties in the model
formulation is considered an important extension from the previous model, as described in [19], to
more realistically reflect the characteristics of the data collected. Findings from the case study suggest
that the proposed GP metamodel is advantageous over models that ignore these input uncertainties.
Based on the predicted fuel consumptions by the proposed model, the CO2 emission reductions and
costs of mitigation strategies are further assessed. These selected mitigation strategies are ranked
according to their marginal cost-effectiveness (MCE) in reducing CO2 emissions, as proposed in [9].

The main contributions of this study can be summarised as follows:

• A data-driven approach utilising both real data and simulated data is proposed to evaluate the
fuel consumptions of a ship under different mitigation strategies.

• The proposed GP model is able to account for the uncertainty associated with control inputs and
environmental inputs and propagates such input uncertainty when predicting the distribution of
the fuel consumptions.

• A more reliable and robust ranking of mitigation strategies is developed by accounting for the
uncertainty in CO2 emission reductions and costs.

The rest of the paper is organised as follows: The proposed GP metamodel used to evaluate
the fuel consumptions is presented in Section 2. The CO2 emission reduction and cost assessments,
including the MCE criterion for ranking the mitigation strategies, are presented in Section 3. The case
study is presented in Section 4. Conclusions and recommendations for future research are presented in
Section 5.

2. Methodology

2.1. Energy System of a Ship

Fuel consumed in a ship is converted to different energy forms, such as mechanical power,
electricity power and thermal power, for different purposes. From an energy perspective, the entire
ship can be treated as an energy system. An example of a ship energy system for a chemical tanker is
shown in Figure 1.
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In this ship energy system, fuel is converted to mechanical energy through the main engines. The
mechanical energy is mainly used for propulsion. The propulsion is mostly influenced by resistance,
which depends on various control input factors, such as speed, trim and draft. As mentioned earlier,
control inputs refer to those inputs that can be controlled or designed in practice [23]. Electricity power
can be generated from both auxiliary engines and main engines. Electricity is the most common form
of energy used for powering on-board facilities such as the HVAC (acronym for heating ventilation and
air-conditioning), cargo pumps and nitrogen compressor. Due to the random nature of demand for an
HVAC and other electrical systems, the distribution of electricity demand is treated as an environmental
input. Thermal power can be generated from the boilers, auxiliary engines and main engines. The
thermal power is mainly used for fuel heating, accommodation and tank cleaning. Thermal energy is
not modelled in this study due to its complexity and lack of data.

2.2. Data Sources

In general, fuel consumption data can be obtained through two sources, namely real fuel
consumption data observed from on-board measurements and simulated fuel consumption data
simulated from simulation models. As explained earlier, the real fuel consumption data are low
in quantity due to limited reporting but tend to be more accurate. In comparison, the simulated
fuel consumption data can be much higher in quantity but heavily rely on the assumptions of the
simulation model.

The control inputs for the real fuel consumption data can be obtained directly from both the
on-board measurements and AIS. More specifically, control inputs such as the fan and pump speed
can be obtained from on-board measurements. SOG, trim and draft values and the navigating course
can be obtained from the AIS. The environmental input considered in this paper is the distribution of
the electricity demand. Electricity demand can be estimated based on historical data obtained from
on-board measurements. These data are summarised in Table 1.

Table 1. Sources and variables from real data. AIS: Automatic Identification System and SOG: speed
over ground.

Data Source Variable

Output On-board measurements Real fuel consumption

Control input On-board measurements Speed of pumps and fans

AIS SOG, trim, draft and course

Environmental input On-board measurements Distribution of electricity demand

There are uncertainties associated with control inputs obtained from the AIS mainly due to signal
errors caused by transponders. On the other hand, the uncertainties associated with control inputs
obtained from on-board measurements are caused by inaccuracies in the ship’s control system. For
example, the speed of pumps and fans can be set using the monitor on-board, but the actual speed of
pumps and fans may differ slightly due to engine, weather and sea conditions. The distribution of
electricity demand as the environmental input is also subject to uncertainties due to the fact that only
limited historical data of on-board measurements can be obtained to estimate the distribution of the
electricity demand.

For the simulated data, the control and environmental inputs can be directly obtained from the
simulation model. In addition, as the stochastic simulation model can be evaluated at every precise
control and environmental input, there is no control and environmental input uncertainty associated
with the inputs of the simulation data.

Both real and simulated data are used simultaneously to build a GP model in this study in two
steps. The first step is a GP model without considering the uncertainties, and the next step is a GP
metamodel incorporating uncertainties in the formulation.
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2.3. Model Formulation without Input Uncertainties

In this model, x ∈ Rd is defined as a vector of control inputs in the ship energy system, such as
the speed, course and trim. λ ∈ Rl is defined as a vector of the environmental input, which is the
distribution of electricity demand in our setting. A known parametric form for the distribution of the
environmental input is assumed, and the associated parameter λ is used as the environmental input.
This parametric assumption is commonly used in studies dealing with environmental inputs [26,27].
In this study, the electricity demand is assumed to follow an exponential distribution exp(λ), where λ
is the rate of the exponential distribution.

yr(x,λ) is defined as the real system output (real fuel consumptions observed from the on-board
measurements), and ys(x,λ) is defined as the simulation output (simulated fuel consumptions obtained
from the simulation model) for a specific control input x and environmental input λ. Since the
simulation model is an approximation to the real ship, the relationship between the expected simulation
output and the real system output can be represented as

yr(x,λ) = z(x,λ) + e, (1)

where z(x,λ) represents the true system output (true fuel consumption), and e represents the
observation error.

The model as described in Equation (1) has been commonly used to represent the relationship
between different outputs [29–31]. For stochastic simulation models, there is also a stochastic error.
The relationship between the observed simulation output of fuel consumption (with noise) and the
expected simulation output of fuel consumption can be expressed as

ys(x,λ) = S(x,λ) + ε = z(x,λ) − δ(x,λ) + ε, (2)

where S(x,λ) represents the expected simulation output of fuel consumption, δ(x,λ) represents the
discrepancy between the true fuel consumption and the expected simulation output of fuel consumption
and ε represents the stochastic error.

As explained earlier, there are two types of data sources for a ship’s fuel consumption, namely
observed fuel consumption data from on-board measurements and estimated data from a simulation
model. The objective is to develop a model based on these two sources of data to predict the true fuel
consumption z(x,λ) of a ship under input control x and environmental conditions λ.

A GP is a stochastic process in which a finite collection of random variables has a multivariate
normal distribution [22]. Due to its flexibility and efficiency, the GP has been widely used as a
metamodel to study complex simulation models and real systems. We adopt this form and model
both the true fuel consumption z(x,λ) and the discrepancy δ(x,λ) in Equation (2) with independent
GPs. The same assumption is also used in [19,23] and has been shown to be reasonable in practice [23].
More specifically, the true fuel consumption z(x,λ) is assumed to be a GP with a mean function βz(x,λ)
and covariance function σ2

zRz((x,λ), (x′,λ′)). The discrepancy δ(x,λ) is assumed to be a GP with a
mean function βδ(x,λ) and a covariance function σ2

δRδ((x,λ), (x′,λ′)).
With reference to [23], several mean and covariance functions can be used to specify the GP. In

this case, the mean functions for z(x,λ) and δ(x,λ) are assumed to be unknown constants βz and βδ,
respectively. The correlation function is assumed to be Gaussian. The covariance function for the true
system output z(x,λ) can be expressed as

σ2
zRz((x,λ), (x′,λ′)) = σ2

z exp
(
−

1
2
(x− x′)TWz,x

−1(x− x′)
)

exp
(
−

1
2
(λ− λ′)TWz,λ

−1(λ− λ′)
)
. (3)

The covariance function for the discrepancy δ(x,λ) can be expressed as

σ2
δRδ((x,λ), (x′,λ′)) = σ2

δ exp
(
−

1
2
(x− x′)TWδ,x

−1(x− x′)
)

exp
(
−

1
2
(λ− λ′)TWδ,λ

−1(λ− λ′)
)
, (4)



Energies 2020, 13, 2213 6 of 20

where Wz,x, Wz,λ, Wδ,x, Wδ,λ represent the diagonal matrices. The covariance functions
σ2

zRz((x,λ), (x′,λ′)) and σ2
δRδ((x,λ), (x′,λ′)) are used to capture the spatial correlation of the true fuel

consumptions and the discrepancy between the real fuel consumption and simulated consumption
under different control and environmental input pairs. A smaller Euclidean norm between (x,λ)
and (x′,λ′) signifies a higher correlation. A higher value along the diagonal of the diagonal matrices
signifies a higher spatial correlation in that dimension of control input and environmental input.

Based on Equations (1) and (2), there is also an observation error term e for the real system output
and a stochastic error term ε for the stochastic simulation model output. It is assumed that these two
terms follow a normal distribution with a mean of zero and variances of σ2

e and σ2
ε , respectively. These

assumptions are reasonable according to the central limit theorem [32]. Under these assumptions,
the unknown parameters can be represented as

{
β, W, σ2

}
, where β =

{
βz, βδ

}
represent the unknown

constant mean values for the GP, W =
{
Wz,x, Wz,λ, Wδ,x, Wδ,λ

}
represent the unknown decaying

parameters in the Gaussian correlation functions and σ2 =
{
σ2

z , σ2
δ, σ

2
e , σ2

ε

}
represent the unknown

variances in the model.
The purpose is to derive the predictive distribution of the true fuel consumption z(x,λ) given the

available data sources. Yr is defined as the real fuel consumption observed from the ship on-board
measurements at the input settings (xr,λr) in the ship energy system. Ys is defined as the simulated
fuel consumption at the input settings (xs, λs) specified in the simulation model. Based on the
characteristics of the multivariate normal distribution, the predictive distribution of the true fuel
consumption z(x,λ) for any unknown input settings (x,λ) can be derived as a conditional normal
distribution with the following form:

z(x,λ)
∣∣∣Yr, xr,λr, Ys, xs,λs ∼ N

(
m(x,λ),σ2(x,λ)

)
, (5)

in which

m(x,λ) = βz + Σ((x,λ), (xD, λD))
TΣ((xD,λD), (xD,λD))

−1
(
YD −

[
βz1m

(βz − βδ)1n

] )
, (6)

σ2(x,λ) = Σ((x,λ), (x,λ)) − Σ((x,λ), (xD, λD))
TΣ((xD,λD), (xD,λD))

−1Σ((x,λ), (xD, λD)), (7)

where m(x,λ) represents the predictive mean of fuel consumptions, and σ2(x,λ) represents the

predictive variance. (xD,λD) =

[
(xr,λr)

(xs,λs)

]
represents the concatenated input settings, including

both real system inputs (xr,λr) and simulation inputs (xs,λs), where (xr,λr) is a subset of (xs,λs).
YD = (Yr, Ys) represents the outputs, including both real-system observations and simulated outputs.
1m represents an m-dimensional vector of 1, where m is the number of real observations, and n is the
number of simulation outputs. Σ((x,λ), (xD, λD)) = σ2

zRz((x,λ)), (xD,λD)) represents the covariance
between (x,λ) and (xD,λD) with a Gaussian correlation. Σ((x,λ), (x,λ)) = σ2

zRz((x,λ)), (x,λ))
represents the variance at (x,λ). Σ((xD,λD), (xD, λD)) represents the covariance of (xD,λD), which
can be represented as

Σ((xD,λD), (xD,λD)) =

 σ2
zRz((xr,λr), (xr,λr)) + σ2

e Im σ2
zRz((xr,λr), (xs,λs))

σ2
zRz((xs,λs), (xr,λr)) σ2

zRz((xs,λs), (xs,λs)) + σ2
δRδ((xs,λs), (xs,λs)) + σ2

εIn

, (8)

where Im represents an m×m identity matrix, and In represents an n× n identity matrix.
The MLE estimation method [32] can be used to estimate the parameters. The loglikelihood

function of these unknown parameters, l
(
β, σ2, W

)
, can be expressed as:

l
(
β, W, σ2

)
= − ln

[
(2π)

d
2
]
−

1
2

ln
[∣∣∣Σ((xD,λD), (xD,λD))

∣∣∣]− 1
2

YD −

 βz1m

(βz − βδ)1n




T

[Σ((xD,λD), (xD,λD))]
−1

YD −

 βz1m

(βz − βδ)1n


, (9)
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The parameters β, W and σ2 can be estimated by maximising l
(
β, W, σ2

)
. Various standard

optimisation packages can be used for this estimation, such as “mle.tools” in the R package used in
this study.

2.4. Model Formulation with Input Uncertainties

2.4.1. Uncertainties in Observed Inputs

As mentioned earlier, in reality, the observed control inputs such as SOG in a real system suffer
from control input uncertainty due to AIS noise. The uncertainty in the observed control input location,
denoted as ui, can be assumed to be represented by a distribution ui ∼ Pui , N(xi, Σi), i = 1 · · · n,
where Σi is assumed to be known. Besides, the uncertainties of the control inputs at different locations
are independent.

Input uncertainty is also present in the environmental inputs. Typically, a parametric form is
assumed for the environmental inputs, and for our ship electricity demand case, we assume a known
parametric form with parameter λ as the environmental input. The uncertainty associated with λ
happens due to the finiteness of the historical data used to estimate λ. In order to account for the
environmental input uncertainty, a Bayesian perspective is taken by treating λ as a random variable.
More specifically, the Bayesian approach is to compute the posterior distribution of λ, defined as
p(λ

∣∣∣Dh) , where Dh is the historical electricity demand obtained from on-board measurements and h
is the data volume. Then, the uncertainty in the environmental input locations λi, i = 1 · · · n can be
characterised as λi ∼ Pλi , p(λ

∣∣∣Dh) .

2.4.2. Modelling Real Fuel Consumption yr with Input Uncertainty

With reference to Equation (1), when uncertainties are not considered, the real fuel consumption
z(x,λ) can be modelled using GP with a mean βz and a covariance σ2

zRz
(
(xi,λi),

(
x j,λ j

))
. Thus,

E(yr(xi,λi)) = βz, (10)

Cov[yr(xi,λi), yr

(
x j,λ j

)
] = σ2

zRz
(
(xi,λi),

(
x j,λ j

))
+ γi jσ

2
e , (11)

where γi j is the Kronecker delta.
When the input uncertainties are considered in the modelling, the input locations are now{(

Pui , Pλi

)}n

i=1
instead of the fixed input locations

{
(xi, λi)

}n
i=1. The resulting real system output (fuel

consumption) can be defined as follows:

yr

(
Pui , Pλi

)
= Eui∼Pui

Eλi∼Pλi

[
yr(ui, λi)

]
=

∫ ∫
yr(ui, λi)p(ui)p(λi)duidλi. (12)

yr

(
Pui , Pλi

)
can be modelled as a GP, as it can be rewritten as a Riemann sum of Gaussian random

variables [33]. The mean and the covariance function of yr

(
Pui , Pλi

)
can be derived to obtain its

distribution:
E
(
yr

(
Pui , Pλi

))
= Eui∼Pui

Eλi∼Pλi

[
E
[
yr(ui,λi)

]]
= EuiEλi [βz] = βz, (13)

Cov
(
yr(Pui , Pλi), yr

(
Pu j , Pλ j

))
= σ2

zEui∼Pui
Eu j∼Pu j

[
Rz,x

(
ui, u j

)]
Eλi∼Pλi

Eλ j∼Pλ j

[
Rz,λ

(
λi, λ j

)]
+ γi jσ

2
e , (14)

where Rz,x
(
ui, u j

)
= exp

(
−

1
2

(
ui − u j

)T
Wz,x

−1
(
ui − u j

))
and Rz,λ

(
λi, λ j

)
=

exp
(
−

1
2

(
λi − λ j

)T
Wz,λ

−1
(
λi − λ j

))
.
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Suppose that the control input uncertainty follows a normal distribution ui ∼ N(xi, Σi), u j ∼

N
(
x j, Σ j

)
and Σi, Σ j are assumed to be known, then EuiEu j [Rz,x

(
ui, u j

)
] can be computed analytically,

as shown in [20]:

EuiEu j [Rz,x
(
ui, u j

)
] =

exp
(
−

1
2

(
xi − x j

)T(
Wz,x + Σi + Σ j

)−1(
xi − x j

))
∣∣∣∣I + Wz,x−1

(
Σi + Σ j

)∣∣∣∣ 1
2

. (15)

In addition, as Pλi= Pλ j = p(λ
∣∣∣Dh) , we have

Eλi∼Pλi
Eλ j∼Pλ j

[
Rz,λ

(
λi, λ j

)]
= Rz,λ

(
Pλi , Pλ j

)
= Rz,λ

(
Pλi , Pλi

)
= 1. (16)

Then, with the above results, Equation (14) can be calculated as follows:

Cov[yr
(
Pu j , Pλi

)
, yr

(
Pu j , Pλ j

)
] = σ′

2
z exp

(
−

1
2

(
ui − u j

)T(
W′z,x

)−1(
ui − u j

))
. (17)

Equation (17) is still a Gaussian covariance function with σ′2z = σ2
z

∣∣∣∣I + Wz,x
−1

(
Σi + Σ j

)∣∣∣∣− 1
2 , W′z,x

= Wz,x + Σi + Σ j. Furthermore, the covariance between z(xi, λi), yr
(
Pu j , Pλ j

)
and the covariance

between ys(xi, λi), yr
(
Pu j , Pλ j

)
can be derived as

Cov
[
z(xi, λi), yr

(
Pu j , Pλ j

)]
= Cov

[
ys(xi, λi), yr

(
Pu j , Pλ j

)]
= σ2

zEu j∼Pu j

[
Rz,x

(
xi, u j

)]
Eλ j∼Pλ j

[
Rz,λ

(
λi, λ j

)]
, (18)

where Eu j∼Pu j

[
Rz,x

(
xi, u j

)]
=

exp
(
−

1
2 (xi−x j)

T
(Wz,x+Σ j)

−1
(xi−x j)

)
∣∣∣I+Wz,x−1Σ j

∣∣∣ 1
2

. Eλ j∼Pλ j

[
Rz,λ

(
λi, λ j

)]
can be hard to

compute, even when the posterior distribution has an analytical form. In order to generalise our
approach, we use a Laplace approximation for the posterior distribution; i.e., we use a Gaussian
distribution to approximate the posterior distribution of λ. Assuming the approximated posterior

distribution is N(v, Σλ), then Eλ j∼Pλ j

[
Rz,λ

(
λi, λ j

)]
=

exp
(
−

1
2 (λi−v)T

(
Wz,λ+Σλ j

)−1
(λi−v)

)
|I+Wz,λ

−1Σλ|
1
2

, and Equation (18)

can be computed accordingly.

2.4.3. Predictive Distribution for the True Fuel Consumption z(x, λ) with Input Uncertainty

Based on the characteristics of the multivariate normal distribution, the predictive distribution
for z(x,λ), the true fuel consumption at exact control input x and exact environmental input λ can be
derived as

z(x,λ)
∣∣∣Yr, Pur, Pλr, Ys, xs, λs ∼ N(m(x,λ),σ2(x,λ)

)
(19)

with

m(x,λ) = βz + Σ

(x,λ),

 (Pur, Pλr)

(xs,λs)




T

Σ


 (Pur, Pλr)

(xs,λs)

,
 (Pur, Pλr)

(xs,λs)



−1

 Yr

Ys

−
 βz1m

(βz − βδ)1n


, (20)

σ2(x,λ)
= Σ((x,λ), (x,λ))

−Σ
(
(x,λ),

[
(Pur, Pλr)

(xs,λs)

])T

Σ
([

(Pur, Pλr)

(xs,λs)

]
,
[
(Pur, Pλr)

(xs,λs)

])−1

Σ
(
(x,λ),

[
(Pur, Pλr)

(xs,λs)

])
,

(21)
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k
(
(x,λ),

(
x′,λ

′
))

=

 Σ((x,λ), (x,λ)) Σ
(
(x,λ),

(
x′,λ

′
))

Σ
((

x′,λ
′
)
, (x,λ)

)
Σ
((

x′,λ
′
)
,
(
x′,λ

′
)) 

−


Σ

(x,λ),

 (Pur, Pλr)

(xs,λs)




T

Σ

(x′,λ′ ),
 (Pur, Pλr)

(xs,λs)




T


Σ


 (Pur, Pλr)

(xs,λs)

,
 (Pur, Pλr)

(xs,λs)



−1Σ

(x,λ),

 (Pur, Pλr)

(xs,λs)


 Σ

(x′,λ′ ),
 (Pur, Pλr)

(xs,λs)


,


(22)

where m(x,λ) denotes the predictive mean for the true fuel consumption z(x,λ) and σ2(x,λ) denotes
the predictive variance for z(x,λ). k((x,λ), (x′,λ′)) denotes the predictive covariance between z(x,λ)

and z(x′,λ′).
[
(Pur, Pλr)

(xs,λs)

]
represents the input settings, including both real system inputs (Pur, Pλr)

and simulation inputs (xs,λs). (Yr, Ys) are the overall outputs, including both the real fuel consumption
and simulated fuel consumption, and 1m is an m-dimensional vector of 1, where m is the number of
real observations and n is the number of simulation outputs. Σ((x,λ), (x,λ)) = σ2

zRz((x,λ)), (x,λ)) is

the variance at z(x,λ). Σ
(
(x,λ),

[
(Pur, Pλr)

(xs,λs)

])
is the covariance between z(x,λ) and

[
yr(Pur, Pλr)

ys(xs,λs)

]
,

which can be calculated as

Σ
(
(x,λ),

[
(Pur, Pλr)

(xs,λs)

])
=

[
cov[z(x,λ), yr(Pur, Pλr)]

cov[z(x,λ), ys(xs,λs)]

]
=

[
cov[z(x,λ), yr(Pur, Pλr)]

cov[z(x,λ), z(xs,λs)]

]
, (23)

where cov[z(x,λ), yr(Pur, Pλr)] can be computed using Equation (18) and cov[z(x,λ), z(xs,λs)] =

σ2
zRz((x,λ)), (xs,λs)). Similarly, Σ

([
(Pur, Pλr)

(xs,λs)

]
,
[
(Pur, Pλr)

(xs,λs)

])
is the covariance matrix of[

yr(Pur, Pλr)

ys(xs,λs)

]
, which can be calculated as

Σ

 (Pur, Pλr)

(xs,λs)

,  (Pur, Pλr)

(xs,λs)

 =  Cov[yr(Pur, Pλr)] Cov[ys(xs,λs), yr(Pur, Pλr)]
T

Cov[ys(xs,λs), yr(Pur, Pλr)] Cov[ys(xs,λs)]

, (24)

where Cov[yr(Pur, Pλr)] is the m × m covariance matrix for yr(Pur, Pλr), whose elements can be
computed using Equation (17). Cov[ys(xs,λs), yr(Pur, Pλr)] is the n × m covariance matrix between
ys(xs,λs) and yr(Pur, Pλr), whose elements can be computed using Equation (18). Cov[ys(xs,λs)] =

σ2
zRz((xs,λs), (xs,λs)) + σ2

δRδ((xs,λs), (xs,λs)) + σ2
εIn is the n× n covariance matrix for ys(xs,λs). In is

an n× n identity matrix.
The MLE estimation method can be used to estimate the parameters. With the mean function

in Equation (20) as the covariance function in Equation (22), the resulting predicted distribution for
the true fuel consumption z(x,λ) now takes both the control input uncertainty and the environmental
input uncertainty into account and can be used for the prediction of fuel consumption.

2.4.4. Integrating out the Environmental Input Uncertainty in z(x, λ)

Using the above predictive distribution for z(x,λ) given by Equations (20)–(22), we can evaluate
the fuel consumption at any control input setting x given the environmental input setting λ. Clearly,
for different values of λ, the fuel consumption evaluation may be quite different. Ideally, we want to
evaluate the fuel consumption given the true environmental input, but unfortunately, the true value of
the environmental input is unknown. As stated above, we use the Bayesian approach to quantify the
environmental input uncertainty. The posterior distribution of the environmental input parameter is
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p(λ
∣∣∣Dh) based on the historical electricity demand Dh obtained from on-board measurements. Then,

we can use

G(x) =
∫

z(x,λ)p(λ|Dh )dλ (25)

as the GP model for the true fuel consumption to hedge against the environmental input uncertainty.
According to [22], G(x) is also a GP, but there is usually no general analytical form for G(x) due to
the integration with respect to the posterior distribution. A Monte Carlo approach can be applied to
approximate the mean and covariance of G(x). Specifically, NMC samples:

{
λ1, λ2, · · · , λNMC

}
can be

generated from p(λ
∣∣∣Dh) ; then,

Ĝ(x) =
1

NMC

NMC∑
i=1

z(x,λi) (26)

is used as the approximated GP model for Ĝ(x). This Ĝ(x) is also a GP, as it is a finite sum of a GP.
Then, the mean and variance of Ĝ(x) can be calculated as

E
[
Ĝ(x)

]
=

1
NMC

NMC∑
i=1

m(x,λi), (27)

VAR
[
Ĝ(x)

]
=

1

N2
MC

NMC∑
i=1

NMC∑
j=1

k((x,λi),
(
x,λ j

)
). (28)

To hedge against the environmental input uncertainty, the true fuel consumption at any control
input location x can be estimated with E

[
Ĝ(x)

]
, and VAR

[
Ĝ(x)

]
can be used to measure the uncertainty

of this estimation.

3. Assessment and Ranking of Mitigation Strategies

In this section, we will illustrate how the proposed GP model can be used to evaluate the fuel
consumption and further used to assess the emission reduction and cost for various mitigation strategies.

3.1. Assessment of Emission Reduction

The emission reduction before and after applying the i-th mitigation strategy, denoted as ERi,
can be computed using the reduction of fuel consumption and the corresponding emission factor as
follows:

ERi = FRi × EF =
(
FCbe f ore

i − FCa f ter
i

)
× EF, (29)

where EF denotes the emission factor, and FRi denotes the reduction of fuel consumption for the i-th
strategy. FCbe f ore

i and FCa f ter
i denote the fuel consumption before and after implementing strategy i,

respectively. Both FCbe f ore
i and FCa f ter

i can be modelled by the predictive distribution Ĝ(x) based on
Equations (27) and (28). However, it is more accurate to use the real ship consumption, if available,
to obtain FCbe f ore

i . For the case study in Section 4, FCbe f ore
i are directly obtained from real ship

on-board measurements.
By using the GP metamodel Ĝ(x) to predict the fuel consumption, the control and environmental

input uncertainties from the observed real data can be incorporated, and thus, the prediction results
are more reliable. The reduction of fuel consumption is then obtained from the difference between the
fuel consumption before (directly obtained from on-board measurements) and after (computed from
E[Ĝ(x)]) a certain strategy is applied.

It is worthwhile to mention that, while the uncertainty in the observed control input due to the
signal error from the AIS is incorporated when building the GP model, the prediction Ĝ(x) is the fuel
consumption evaluated at the exact control input x, which has no uncertainty with respect to x. This
is because, in the ranking of mitigation strategies, we assume that the control on-board the vessel is
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completely deterministic; i.e., we can set the control inputs to exact values on-board so as to fairly
compare different mitigation strategies. In reality, when there do exist control variability on-board the
vessel, the practitioners can adjust the control inputs according to their experiences to hedge against
the control variability, but this is out of the scope of our research.

3.2. Assessment of Cost

3.2.1. Cost Components

The cost of implementing a mitigation strategy includes the capital cost/investment cost,
operational cost and opportunity cost. In addition, there is a fuel consumption saving cost from
implementing a certain mitigation strategy i. The total cost for a mitigation strategy i can be represented
as follows:

TCi = ICi + RCi + OCi − SCi, (30)

where ICi is the annual investment cost, which can be obtained by annualising the initial investment
cost over the remaining years. The initial investment cost is the cost invested at time zero, which
can be calculated as the net present value of the total capital cost. The remaining years may be the
lifetime of the strategy or the remaining lifetime of the ship, whichever is shorter. Let I0,i denote the
initial investment for strategy i, Ti the remaining years and r the discount rate; then, the annualised
investment cost is ICi =

I0,i·r

1−1/(1+r)Ti
. RCi is the annual operational cost or recurring cost when a strategy

i is implemented. OCi is the annual opportunity cost due to the loss of service when implementing
strategy i. SCi is the cost savings due to the fuel consumption saved when implementing strategy i. The
fuel consumption savings can be obtained as SCi =

(
FCbe f ore

i FCa f ter
i

)
·FP = FRi·FP, where FP is the fuel

price. Similarly, FCbe f ore
i can be directly obtained from real ship on-board measurements if available

(otherwise can be evaluated by Ĝ(x)), and FCa f ter
i is evaluated using the predictive distribution of Ĝ(x)

given by Equations (27) and (28) in Section 2.4.4.

3.2.2. Cost Assessment with Uncertainty

There are various uncertainties in assessing the total cost TCi of implementing strategy i, including
the uncertainties arising from the investment cost ICi, the operational cost RCi, the opportunity cost
OCi and the fuel consumption saving cost SCi. In addition to these, there are also uncertainties in some
input factors when computing the total cost, such as the discount rate r and the fuel price FP. It is
important to consider all of these uncertainties in the total cost assessment [34].

To assess the total cost uncertainty, we use a general approach based on the Monte Carlo
method [35]. Given the uncertain factors, one straightforward way to quantify these uncertainties is by
using their density functions. Based on the distribution of the fuel consumption, discount rate and
fuel price, the Monte Carlo method can be applied. This requires random samples to be generated
from each of the distributions, and the sampled total cost is then computed. These random samples of
the uncertain factors (the discount rate r, fuel consumption FCa f ter

i and fuel price FP) are generated
from their corresponding densities to obtain samples of the total cost. The uncertainty (distribution),
including the sample mean and sample variance of the total cost TCi, can then be assessed from the
obtained total cost samples.

3.3. Ranking of Mitigation Strategies with Uncertainty

Given the uncertainties in the total cost and emission reduction for different strategies, the ranking
under uncertainty method proposed in [9] can be used to rank the mitigation strategies. Let TCi
and ERi denote the cost and emission reduction for strategy i and TC j and ER j denote the cost and
emission reduction for strategy j. Here, TCi is computed from Equation (30), and ERi is computed
from Equation (29). To compare strategies i and j, three situations must be considered:
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1. The first is that strategy i dominates strategy j, for which the probability can be obtained as

p(i > j) = p
(
TCi < TC j

)
∩ p

(
ERi > ER j

)
, (31)

which is the probability of strategy i with less cost and larger emission reductions compared to
strategy j.

2. The second situation is that strategy j dominates strategy i, for which the probability can be
obtained as

p(i < j) = p
(
TCi > TC j

)
∩ p

(
ERi < ER j

)
, (32)

which is the probability of strategy j with less cost and larger emission reductions compared to
strategy i.

3. The third situation is nondominance between strategy i and strategy j, for which the probability
can be calculated as

p(i ∼ j) = 1− p(i > j) − p(i < j). (33)

A further comparison of strategies i and j needs to be carried out in the nondominated case. In
this situation, the MCE criterion proposed in [9,36] can be used. The MCE can be obtained as

MCEi j =
TCi − TC j

ERi − ER j
(34)

Given the uncertainties, the total probability of strategy i being better than strategy j, also called
preference probability (pp) of strategy i over strategy j, can be obtained by

p(i � j) = p(i > j) + p(i ∼ j)p
(
MCEi j ≤ CE0

)
, (35)

where p
(
MCEi j ≤ CE0

)
is the probability of strategy i being preferable to strategy j in the nondominance

situation. CE0 denotes the accepted additional cost for one additional unit of emission reduction.
Similarly, the probability of strategy j being better than strategy i can be obtained as

p(i ≺ j) = p(i < j) + p(i ∼ j)p(MCEi j > CE0). (36)

All of these probability computations can be approximated by the Monte Carlo method described
in Section 3.2.2.

4. Case Study

A chemical tanker is taken as an example here in order to evaluate several different mitigation
strategies. The emission reductions for several mitigation strategies are evaluated using the developed
GP metamodel based on the fuel consumption reductions. The predictive performances of the model
are compared, with and without taking input uncertainty into consideration. An assessment of the
cost-effectiveness of these different mitigation strategies is also carried out.

4.1. Mitigation Strategies

The chemical tanker studied here was built in 2014. It has a double hull, and the length and width
of the ship are 181 and 31.3 m, respectively. The maximum capacity of the ship is 51,000 m3, and the
maximum draft of the ship is 12.4 m. It has two main engines and two auxiliary engines. Based on the
ship’s energy system and the available data, five mitigation strategies are evaluated: speed reduction
(10%), trim optimisation, draft optimisation, autopilot adjustment and speed control of pumps and
fans. The distribution of the electricity demand of this ship is also considered in this study and is



Energies 2020, 13, 2213 13 of 20

treated as an environmental input. The corresponding control inputs for these mitigation strategies are
shown in Table 2.

Table 2. Control inputs for different mitigation strategies.

Mitigation Strategy Control Input

Speed reduction (10%) Vessel speed
Trim optimisation Trim value
Draft optimisation Draft value

Autopilot adjustment Course
Speed control of pumps and fans Speed of pumps and fans

From the real fuel consumption data collected from real ship on-board measurements and the
simulated fuel consumption data obtained from a Simulink simulator, as in [19], a GP model can
be developed (as described in Section 2.4) for all the strategies. As we consider five strategies, the
GP model has control input x ∈ R5 and environmental input λ ∈ R1. Speed reduction has been
comprehensively studied in recent years and is an important mitigation strategy, as it can provide large
emission reductions. The recorded speed in the AIS data is the SOG, and this is taken as the input of
the energy system. Here, the relationship between the SOG and the engine speed (the control input
of the simulation model) is translated using an equation adopted from [37]. Here, a speed reduction
of 10% from the design speed of the ship is considered. The reduction of 10% is acceptable by most
ships in practice. However, the potential for speed reduction is limited. This is because the engines can
be damaged if the ship is sailing in off-design conditions. The minimum load of the engine depends
on the technical specification of each individual engine. Based on the developed GP model, the fuel
consumption can be predicted for different vessel speeds. Trim and draft are two further control inputs
that can have impacts on the fuel consumption, as both of them can influence the ship’s resistance.
Again, with the developed GP model, the fuel consumptions for different values of trim and draft can be
predicted, and the emission reductions can be evaluated for the optimal values. Autopilot adjustment
can keep the ship on course and can save on fuel consumption by preventing the unnecessary use of
the rudder. The course over ground (COG) is taken as the control input for this mitigation strategy,
and the emission reduction for the optimal COG is evaluated. Speed control of the pumps and fans is
another mitigation strategy considered in this paper, in which the speed of the pumps and fans is the
corresponding control input, and the fuel consumption for different speeds is evaluated.

4.2. Data and Assumptions

Data are collected for both the emission reduction evaluation and the cost assessment. As
explained in Section 2.2, there are two types of data: real data and simulation data. For real data,
real fuel consumptions (outputs) are directly observed from on-board measurements. The control
inputs such as SOG, trim, draft and COG for real data are obtained from the AIS, while speeds of
the pumps and fans are observed from on-board measurements. The historical electricity demand
is also observed from on-board measurements. The available on-board measurements and AIS data
are from January 2017 to March 2018. For the simulation data, the simulated fuel consumptions
(outputs), control inputs and environmental inputs are all obtained from the simulation model through
experimental design. The simulation model is built using Simulink to represent the ship energy system,
as in [18]. The relationship between the inputs (e.g., engine speed, trim and draft) and the output (i.e.,
fuel consumption) in the simulation model is either based on the physical process or the regression
model. Based on the real data and simulation data, the GP metamodel can be developed, and the total
emission reduction for different mitigation strategies can be predicted using this metamodel.

In the cost assessment, the total costs of different mitigation strategies are assessed. The total
costs include nonrecurring costs, recurring costs and opportunity costs. Here, the estimated values of
low and high nonrecurring and recurring costs are adopted from the IMO MEPC 62 report [3]. The
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nonrecurring costs of speed reduction also includes the additional cost arising from the fleet increase
needed to transport in time to meet the demand, where the cost of building a new ship is estimated
based on the Review of Maritime Transport series [38]. The lifetime of a new ship is assumed to be
30 years. The reference discount rate is estimated using the weighted average cost of capital over 12
major shipping companies, which is 7%. Opportunity costs occur due to the loss of service when the
mitigation strategy is implemented. Most operational strategies do not have this opportunity cost, as
they usually do not require extra dry docking days for updating. However, some technical strategies
may have this cost, such as the speed control of pumps and fans [3]. Here, the opportunity cost is
obtained by multiplying the term-chartered rate and the expected dry docking days for updating. The
term-chartered rate is computed using the new build cost divided by the vessel’s life [38]. The extra
dry docking days are adopted from the IMO MEPC 62 report [3].

When mitigation strategies are implemented, there are also fuel consumption saving costs due
to the reduction in fuel consumption. The total fuel consumption reduction and the fuel price are
required in order to compute this cost. The total fuel consumption reduction can be predicted using
the developed GP model, and the fuel price is adopted from the IMO MEPC 62 report [3], where the
low and high estimates for fuel price are US$500 and US$900, respectively. These prices are close to the
estimates provided in the Annual Energy Outlook [39].

To estimate the distribution of the electricity demand, we assume the distribution of the electricity
is exponential with rate parameter λ and use the noninformative Jeffreys prior p(λ) ∝ 1/λ for the rate
parameter. The posterior is calculated based on the recorded electricity demand in 2017 and the first
quarter of 2018, adopted from on-board measurements.

4.3. Results and Discussion

The developed GP metamodel is first validated before it is applied for further analysis. The data
obtained in 2017 is used for model development, and the data obtained in the first quarter of 2018
is used for model validation. The predictive performance of the two models is compared, i.e., with
and without input uncertainty. The mean and 95% confidence interval (CI) of the predicted versus
observed fuel consumptions for both training and validation data are shown in Figures 2 and 3. The
absolute error between the predicted and observed fuel consumptions versus the predictive error (half
of the 95% CI) for both the training and validation data are also shown in Figures 2 and 3. The figures
indicate that the 95% CI of the predicted fuel consumptions can cover the observed fuel consumptions
most of the time in the model with uncertainty, and that it is better than the model without uncertainty.
The widths of the CIs for the model with input uncertainty are larger than those of the model without
input uncertainty. The coverage rate indicates the number of real observed values that are within
the 95% CI of the predicted values. The coverage rate of the 95% CI of the real observations for both
models is also given in Table 3, and it can be seen that the performance of the model with uncertainty
is better, as its coverage rate is closer to the nominal 95% level as compared with the model without
uncertainty. The root mean square errors (RMSEs) for both models are also computed in Table 3. The
results show that the RMSE for the model with uncertainty is smaller than for the model without
uncertainty, indicating that the former has better accuracy. In addition, a goodness-of-fit test is used
to test the difference between the predicted and the observed values, and the results indicate that
the difference is not significant at an α level of 0.05. The RMSEs are accepted for accuracy. Hence,
the developed GP metamodel is valid and can accurately account for uncertainties in this case study.
Furthermore, the GP metamodel with input uncertainty can provide more reliable and accurate results,
especially when the effects of input uncertainty cannot be ignored.
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Figure 2. Predicted versus observed results for the training data. The first row shows the mean and
95% confidence interval (CI) of the predicted versus the real observed fuel consumptions, with (left)
and without (right) considering input uncertainty. The second row shows the absolute error between
the predicted mean fuel consumption and the real observation (blue line), as well as the predicted error
(half of the 95% CI, orange line), both with (left) and without (right) considering input uncertainty.

Table 3. Coverage rate that the 95% confidence interval (CI) covers the observed value and the root
mean square error (RMSE) for different models.

Model
Coverage Rate RMSE

Training Data Validation Data Training Data Validation Data

Model without uncertainty 0.702 0.625 0.1496 0.2241
Model with uncertainty 0.992 0.937 0.1445 0.2173
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Figure 3. Predicted versus observed results for the validation data. The first row shows the mean and
95% CI of the predicted versus the real observed fuel consumptions, with (left) and without (right)
considering input uncertainty. The second row shows the absolute error between the predicted mean
fuel consumptions and the real observation (blue line), as well as the predicted error (half of the 95%
CI, orange line), both with (left) and without (right) considering input uncertainty.

The validated GP metamodel-incorporated input uncertainty is then used to evaluate the fuel
consumption reduction for different mitigation strategies. The estimated annual fuel consumption
for the chemical tanker in 2017 was 2846 metric tons (MT). The predicted annual fuel consumption
reduction, its predictive variance and the corresponding mean percentage of the fuel reduction with its
variance for different mitigation strategies are given in Table 4. It can be seen that a speed reduction of
10% has the largest fuel consumption reduction (523.47 MT), which accounts for 18.39% of the annual
fuel consumption. Compared to speed reduction, the other four mitigation strategies have lower fuel
consumption reductions of less than 2%. This result is reasonable and is as expected, since the speed
reduction has a significant influence on the fuel consumption. The emission reduction for different
mitigation strategies can also be computed by multiplying the fuel consumption reduction and the
emission factor. Here, the emission factor adopted from the third IMO GHG study for heavy fuel oil is
3.114 g/g fuel. In terms of both fuel consumption reduction and emission reduction, speed reduction is
therefore the best choice. Compared to the results given in [18], where the input uncertainty is not
considered, it can be found that the variances of the fuel consumption reduction and the emission
reduction are larger using the GP metamodel-incorporated input uncertainty. This is expected as more
uncertainties are taken into account. The results with input uncertainty can also provide more robust
comparisons among different mitigation strategies.
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Table 4. Annual fuel consumption reduction, emission reduction and percentage fuel reduction for
different mitigation strategies.

Mitigation strategy Speed
Reduction (10%)

Trim
Optimisation

Draft
Optimisation

Autopilot
Adjustment

Speed Control of
Pumps and Fans

Annual fuel
consumption reduction
(MT), mean (variance)

523.47 (50.32) 48.56 (6.81) 46.76 (6.18) 33.14 (5.25) 18.08 (2.27)

Annual emission
reduction (MT), mean

(variance)
1669.90 (487.95) 151.22 (66.04) 145.61 (59.93) 103.20 (50.91) 56.30 (22.01)

Percentage of fuel
reduction, mean

(variance)
18.39% (1.77%) 1.71% (0.24%) 1.64% (0.22%) 1.16% (0.18%) 0.64% (0.08%)

In addition to the emission reduction evaluation, the cost of the different mitigation strategies is
also assessed, where the cost data are described in Section 4.2. The 95% CIs of the assessed costs for the
different mitigation strategies are given in Table 5.

Table 5. Costs for different mitigation strategies.

Mitigation Strategy

Annual cost (US$)

Investment
Cost (min,

max)

Operational
Cost (min,

max)

Opportunity
Cost (min,

max)

Cost Saved from
Fuel Reduction
(−95%, +95%)

Total Cost
(min, max)

Speed reduction (10%) (184,171,
225,097) (80,289, 98,131) (0, 0) (367,109, 461,383) (−43,881,

−196,923)

Trim optimisation (2392, 2924) (806, 986) (0, 0) (22,486, 30,422) (−18,577,
−27,224)

Draft optimisation (2146, 2687) (753, 942) (0, 0) (24,973, 29,347) (−20,169,
−26,846)

Autopilot adjustment (3339, 4081) (0, 0) (0, 0) (16,899, 22,863) (−12,818,
−19,524)

Speed control of pumps and fans (1396, 1706) (0, 0) (695, 849) (8177, 11,063) (−5622, −8972)

Based on the emission reduction and cost assessment, the mitigation strategies are then ranked
according to different criteria, including the total emission reduction, cost, MCE without uncertainty
and MCE with uncertainty. The ranking results are given in Table 6. It can be seen that the results are
different for different criteria; for example, the trim optimisation is better than the draft optimisation
in terms of emission reduction, although it is worse in terms of cost. It can also be seen that the
ranking results may be different when the input uncertainty is taken into account. When the mitigation
strategies are ranked using the MCE without considering the input uncertainty (see Section 3), the trim
optimisation is better than the draft optimisation; when the input uncertainty is taken into account, the
draft optimisation becomes better. It is therefore important to consider the input uncertainty in order
to provide more reliable ranking results. The MCE with uncertainty ranks the speed reduction (10%)
as the most effective mitigation strategy, followed by the draft optimisation and trim optimisation.
Autopilot adjustment and the speed control of pumps and fans are ranked last. In summary, mitigation
strategies may have different rankings using different criteria, such as emission reduction, cost and
MCE. Therefore, which mitigation strategy is better depends on the priority of the target. In addition,
the input uncertainty may have an impact on prioritising the mitigation strategies. This uncertainty
is usually ignored in practice, which may result in suboptimal choices in mitigation strategies. To
provide more reliable choices, it is better to consider the input uncertainty in mitigation strategies’
ranking and selection.
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Table 6. Ranking of the mitigation strategies. MCE: marginal cost-effectiveness.

Mitigation Strategy

Mean
Emission

Reduction
(MT)

Rank
Mean
Cost

(US$)
Rank

MCE
without

Uncertainty
Rank

MCE with
Uncertainty

(pp)
Rank

Speed reduction (10%) 1669.90 1 −101,983 1 −52.20 1 1 1
Trim optimisation 151.22 2 −22,715 3 2.50 2 0.4816 3
Draft optimisation 145.61 3 −22,729 2 −148.36 3 0.9987 2

Autopilot adjustment 103.20 4 −16,437 4 −202.11 4 0.9938 4
Speed control of pumps

and fans 56.30 5 −6,958 5 - 5 - 5

5. Conclusions

In this paper, a Gaussian process metamodel is developed to integrate real-world data and
simulation data for evaluation of the emission reduction. As an important improvement to the existing
methods in the literature, the uncertainties in the various sources of data are explicitly accounted for in
the model. Furthermore, it is shown that neglecting such uncertainties by existing methods can lead
to errors in evaluating mitigation strategies for emission reduction. The proposed improvement can
significantly improve the reliability and robustness of GP-based metamodels in evaluating mitigation
strategies for emission reductions. In turn, the method can improve the reliability in the ranking of
mitigation strategies for better-informed decision-making. Specifically, in this paper, we show how
this model can be applied into the marginal cost-effectiveness (MCE) approach for the ranking of
mitigation strategies.

A case study of a chemical tanker is developed to demonstrate the advantages of the proposed
improvements. The case study is developed based on multiple data sources, including both real and
simulated data. The results show that the proposed GP model with input uncertainties has a better
coverage rate and a smaller root mean square error than the model that does not account for these
uncertainties. This highlights the importance of considering uncertainties in the model formulation.
Similar to the GP modelling results on emission reductions, accounting for uncertainties in the model
formulation also leads to different ranking results for the MCE criteria as compared to not accounting
for uncertainties. The observed differences in results further demonstrate the risks of ignoring the
uncertainties in the ranking of mitigation strategies by GP metamodels.

The proposed method can be particularly useful when attempting to evaluate mitigation strategies
under different types and values of control inputs so as to choose the optimal one. Findings of this study
can benefit both the policymakers and business owners in identifying the most cost-effective strategies
in attaining decarbonisation goals and pathways for the shipping industry. The proposed method
can provide an express alternative to expensive experimental investigations and time-consuming
simulation exercises.

In this paper, all the considered control inputs are continuous variables. A possible direction for
future work could be to consider strategies with discrete control inputs in a ship’s energy system. This
direction would require further development of the proposed GP model’s mathematical formulations.
In addition, only one specific type of ship’s energy system is considered in this paper. The other possible
direction for future work could be to examine different types of ships so as to derive generalised
conclusions and insights on mitigation strategies for the shipping industry.

In addition, the focus of the paper is to evaluate strategies with the use of fuel oil. In order to
more efficiently reduce the emissions from international shipping, more advanced technology other
than the traditional mitigation strategies will need to be implemented. For example, the designation of
alternative propulsion systems, the use of renewable energy sources and the improvement of the cargo
management system would have great potential in reducing emissions. The proposed method may
also be applied to compare the performance of these alternative strategies in reducing emissions, and
this is worth investigating in the future.
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