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Abstract: Integrated microchannel cooling is a very promising concept for thermal management of 3D
ICs, because it offers much higher cooling performance than conventional forced-air convection. The
thermo-fluidic simulations of such chips are usually performed using a computational fluid dynamics
(CFD) approach. However, due to the complexity of the fluid flow modelling, such simulations
are typically very long and faster models are therefore considered. This paper demonstrates the
advantages of TIMiTIC—a compact thermal simulator for chips with liquid cooling—and shows its
practical usefulness in design space exploration of 3D ICs with integrated microchannels. Moreover,
thermal simulations of a 3D processor model using the proposed tool are used to estimate the optimal
power dissipation profile in the chip and to prove that such an optimal profile allows for a very
significant (more than 10 ◦C) peak temperature reduction. Finally, a custom correlation metric is
introduced which allows the comparison of the power distribution profiles in terms of the peak chip
temperature that they produce. Statistical analysis of the simulation results demonstrates that this
metric is very accurate and can be used for example in thermal-aware task scheduling or dynamic
voltage and frequency scaling (DVFS) algorithms.

Keywords: 3D IC; microchannels; liquid cooling; compact thermal model; thermal simulation;
hotspot; thermal-aware task scheduling; DVFS; statistical analysis

1. Introduction

Vertically stacked 3D integrated circuits [1–3] have many important advantages, like smaller
footprint, lower delay, higher operating speed, potentially higher yield, combining different technologies
on a single die, etc. With the first 3D memory chips already on the market, it seems inevitable that this
trend will continue, and soon the first processors with multiple silicon layers will be produced. While
going 3D is certainly a major step towards maintaining Moore’s Law, there are still many challenges
which need to be addressed. Most importantly, the technology of vertical interconnections using
through-silicon vias (TSV) has to be mastered. Recent breakthroughs in this field [4–7] indicate that
chip manufacturers are close to achieving this goal. The bonding technology and mechanical stability
is another crucial issue [8,9].

From a thermal perspective, 3D stacking poses significant challenges due to quite obvious reasons:
each stacked layer increases the power dissipated in almost the same area. As a consequence, the
power density and the resulting temperatures increase rapidly as more and more layers are stacked.
Another issue is the difficulty of removing heat from the bottom layers. In a conventional cooling
system, most heat is dissipated to ambient through the heat spreader and heat sink, which are put on
the top layer. In a 3D chip, as the layers are usually bonded with a material with very low thermal
conductivity (typically around several W/(mK)), the vertical thermal resistance between the layers is
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high (compared to the thermal resistance of the silicon layer itself). With multiple layers present, this
results in a very high thermal resistance between the bottom layer and the heat sink and, therefore,
higher peak temperatures are produced.

To tackle these two problems, integrated microchannel cooling [10,11] has been suggested. In fact,
it was even considered before as a potential cooling solution for 2D chips, but this particular idea is
especially promising when considering 3D ICs. The reason is that it perfectly addresses the two issues
mentioned in the previous paragraph. First, liquid cooling offers much higher cooling performance:
it is estimated that the heat transfer coefficient may be several orders of magnitude higher than in
the case of the classic approach based on forced air convection [12]. Second, if microchannels are
implemented in all chip layers, the problem of high vertical thermal resistance is eliminated, and the
heat is removed almost equally from all chip layers. In other words, the performance of microchannel
cooling is scalable: stacking more layers increases power density, but also proportionally increases
cooling, so the resulting peak temperature should remain almost the same.

The most valuable research on microchannel cooling is based on real measurements using specially
designed test chips [13,14]. However, often, measurements of 3D ICs with liquid cooling are not
possible for various reasons. Sometimes, the manufacturing technology is not yet available, or the
costs may be too high. Therefore, researchers use simulations as a means to estimate the influence
of chip and cooling parameters on chip temperatures. The most commonly used approach is based
on the finite element method (FEM), using commercial CFD tools like Ansys [15], Comsol [16] or
FloTherm [17]. The main advantage of this method is its relatively high accuracy [18,19]. However, this
approach uses a coupled thermo-fluidic simulation and, as modelling fluid dynamics requires a very
fine mesh, the resulting number of model nodes is very high (hundreds of thousands) and simulation
times are very long [20,21]. In an attempt to shorten the simulation time, many authors have suggested
simpler models. In [22], a compact thermal modelling tool 3D-ICE for 3D ICs with microchannels
was proposed. By comparing its results with measurements, it was shown that the average error
introduced by the model is below 10%. In [23], the authors suggested using a time-variant resistor
model to describe the convective heat transfer in heated microchannels. The authors validated their
model against Ansys Fluent and obtained an error of 5%. The authors of [24] developed an algorithm
allowing the simulation of microchannel-cooled 3D ICs on GPUs. These authors reported errors
below 0.5 ◦C with respect to the traditional CPU-based approach while also achieving considerable
speedup with their method. The model based on thermal wake function was introduced in [25].
Numerical pre-simulation was used to extract the function and build a thermal wake aware resistance
network model. The authors compared their model with a commercial CFD tool and reported an error
of less than 2.0% and a 400× speedup. In [26], the authors extended the existing compact thermal
simulator with an equivalent 3D resistive network to model liquid cooling. The model was then used
to validate a dynamic thermal management scheme, which allowed up to 95% reduction in hotspots
on average. The authors of [27] describe an analytically derived T-equivalent analytical thermal model
of a microchannel. Validation of the proposed approach was based on the simulation of one channel in
SPICE. Authors reported a good agreement of their model (errors below 2%) with the results obtained
with a full CFD simulation.

This paper demonstrates the advantages of TIMiTIC—a compact thermal simulator for chips
with liquid cooling—and shows its practical usefulness in design space exploration of 3D ICs with
integrated microchannels. In comparison with other approaches, more focus is given on the modelling
of convection resistance between the solid and the fluid, especially the thermal entry effects and the
variation of the Nusselt number along the channel. The accuracy of the simulator was already analyzed
in [28], where its results were extensively compared with the ones obtained using CFD simulation
in Comsol. The validation with respect to full CFD simulation showed a very good agreement (the
average absolute error of 1.3 ◦C and the average relative error of 3.7% for the worst analyzed case).

Moreover, thermal simulations of a 3D processor model using the proposed tool are used to
estimate the optimal power dissipation profile in the chip and to prove that such an optimal profile
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allows for a very significant (more than 10 ◦C) peak temperature reduction. Finally, a custom
correlation metric is proposed which allows comparing the power distribution profiles in terms of the
peak temperature that they produce. Statistical analysis of the simulation results demonstrates that
this metric is very accurate and can be used, for example, in task scheduling or dynamic voltage and
frequency scaling (DVFS) algorithms.

2. Characteristics of Microchannel Cooling

A sample 3D chip with microchannels etched in each silicon layer is shown in Figure 1. The
inlets/outlets to the chip can be implemented as tubes connected on top of the chip [29] or as channels
in the interposer (see Figure 1). Then, the liquid is distributed among the layers using microchannels.
The exact description of the manufacturing process of such liquid-cooled chips is beyond the scope of
this paper. However, understanding how the heat is removed in such a liquid cooling system is crucial,
therefore it will be described in detail.
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Figure 1. Sample 3D IC with three dies cooled by microchannels. The fluid is inserted into the dies
through the interposer.

Figure 2 shows the three phases of heat removal. In the first phase, the heat generated in the active
layer of silicon travels to the border of the microchannel by means of conduction (1). The conduction
thermal resistance is inversely proportional to the thermal conductivity of silicon k and is comparably
low. In the second phase, the heat from the solid is absorbed by the fluid by means of convection. The
thermal resistance across the solid–fluid border is inversely proportional to the channel surface area
Awall and to the heat transfer coefficient (HTC) h, see (1). It is worth emphasizing that the HTC is not
constant: in fact, it is proportional to the Nusselt number Nu, which decreases significantly from the
channel inlet to channel outlet [30,31]. Therefore, the convection thermal resistance is always higher at
the inlet side of the chip and lower at the outlet side. In the third and final phase, the heat is transported
by the fluid by means of advection (1). The important detail to notice is that the temperature of the
flowing fluid is increased because of all the heat absorbed upstream.

Rcond =
l

kA
q =

.
mcpTm Rconv =

1
hAwall

h =
kNu
Dh

(1)

where l is the length of the solid block, A is the cross-section of the solid block,
.

m is the mass flow, cP is
the specific heat of the fluid, Tm is the mean temperature of the fluid and Dh is the hydraulic diameter
of the channel.

Consequently, there are two mechanisms which cause gradually worse cooling performance as
we move from inlets to outlets, one related to convection and one related to advection.

• HTC between the solid and the fluid decreases from inlets to outlets.
• The temperature of the cooling fluid increases from inlets to outlets.

Thus, the thermal behavior of microchannel-cooled chips is significantly different than that of
chips cooled by a heatsink and a fan. In a 3D chip with a conventional air-cooled system, the top chip
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layers will be cooled best, and the cooling performance will decrease for each layer farther from the
heat sink. However, there is no intra-layer cooling performance variability, so all places located in the
same layer are cooled almost equally. Meanwhile, in a 3D IC with microchannel-based system, there is
no inter-layer cooling performance variability (all layers are cooled equally, provided that channels are
implemented in all layers). However, within the same layer, the cooling performance varies: it is the
highest near the inlets and the lowest at the outlets.
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This leads to two important repercussions:

• The floorplanning strategies which worked the best for chips cooled by forced air convection are
not going to work well for IC cooled by microchannels.

• The same applies for all thermal-aware task scheduling mechanisms and DVFS algorithms.

There have been a number of works which tackled the problem of thermal-aware floorplanning in
3D ICs and proposed algorithms to find the optimal floorplan for a given power distribution (power
dissipation of every chip unit) [32]. In this paper, this issue will not be analyzed. The reason is
that chip floorplans (and especially high-end processors) are primarily optimized for performance
(minimizing interconnect delay) and chip manufacturers are unlikely to change this based on the
thermal performance. Therefore, in what follows, we will concentrate on demonstrating the usefulness
of the proposed model for:

• Thermal-aware task scheduling for multi-core processors, which aims at reducing the peak chip
temperature by optimally distributing tasks among processor cores;

• DVFS algorithms which minimize the peak temperature by appropriately changing the voltage
and frequency of the cores.

3. TIMiTIC Simulator

The TIMiTIC tool was already extensively described in the previous paper [28]; therefore, here, only
its most unique and important aspects will be presented. In general, TIMiTIC follows a widely accepted
approach to discretize the chip model into a large number of cells (or nodes). Using the equivalence
between the thermal and electrical domain, each cell is then represented by a lumped-capacitance
model. The resulting circuit can be then described with Equation (2).

C
dT
dt

= −GT(t) + Q (2)

where G is the conductance matrix, C is the capacitance matrix and Q is the heat source matrix. This
differential equation can be then solved using standard methods.
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The first idea which differentiates TIMiTIC from other published compact models is the improved
and flexible approach to convection modeling. While both conduction and advection are quite
accurately described by their respective analytical descriptions (1), convection modeling is the weakest
link in every compact thermal model. The reason is the dependence of the HTC on the Nusselt number
(Nu), which varies depending on many factors:

• The type of flow. The fluid flow can be both hydrodynamically and thermally developing or
hydrodynamically developed and thermally developing; see [30] for more detailed information.

• Channel cross-sectional shape. Nu differs not only depending on the channel shape, but also
varies for different aspect ratios for rectangular channels [30].

• The distance from the inlet. As already stated in the previous section, Nu decreases quickly from
the inlet [30] until the flow becomes thermally developed and Nu becomes constant. The exact
shape of the curve Nu(x), which describes Nu in the entrance region depending on the distance
from the inlet x, is difficult to estimate.

• The boundary conditions. In the literature, Nu(x) is usually given for two very specific cases
(UWF - uniform heat flux or UWT - uniform wall temperature). However, for any other boundary
conditions, Nu(x) will be different. It is also worth noting that this Nu variation is quite high. Let
us give the simplest example. For a developed flow in a circular channel, Nu equals 4.36 for the
UWF boundary condition and 3.66 for the UWT boundary condition, which means that it changes
by a factor of 1.19. Thus, significant error when modelling convection thermal resistance can be
produced if it is not taken into consideration.

Therefore, it is very difficult to find a Nusselt number formula which would encompass all
above-mentioned cases. Most models presented in the literature just use one Nu(x) formula and
assume that it should work in all cases. However, it can be estimated that errors up to dozens of percent
may be produced when following this approach. In TIMiTIC, the user can choose from many Nusselt
number correlations described in literature [33,34], but, more importantly, he can specify his own
correlation. In other words, when the user knows the flow type, channel dimensions and boundary
conditions, he can easily implement in the simulator the Nusselt number correlation Nu(x) which most
accurately describes his case.

Another important feature of the proposed tool is the use of well-established and thoroughly
optimized mathematical libraries, like EigenSparseLU [35] or odeint [36], which allow for fast simulation.
Especially in steady-state cases, TIMiTIC visibly outperforms FEM simulators, even by a factor of
100,000. The speedup is possible thanks to the use of the C++ language and the use of the solver
dedicated to operate on sparse matrices. It was shown in [28] that the simulation time which took
20 min in COMSOL produced almost the same results in just 10 milliseconds using TIMiTIC.

Moreover, as 3D ICs contain a large number of very thin layers, TIMiTIC allows reducing the
simulation time by treating these layers as resistances and neglecting their thermal capacity. Thus, the
number of nodes in the model can be greatly reduced, and the resulting error should be negligible
because the thermal capacity of such thin layers is negligible compared to others.

Lastly, the TIMiTIC simulator is available for everyone to use through the Internet website [37].
The user just has to prepare two files: the first file describes the 3D stack, material properties, channel
parameters, etc., and the second file contains the power trace for all chip units. Using the website, the
user can then upload these two files and run the simulation. There is no need to download or compile any
code, the entire simulation takes place in a browser thanks to the use of Webassembly [38] technology.

4. Simulation Model

4.1. 3D Processor Model

The 3D processor model considered in this paper is based on a modern Intel octa-core processor,
namely i9-9900k (see Figure 3). The original design consists of eight cores, each surrounded by two
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banks of L3 cache, four ring interconnection agents (RIA), the system agent unit (SA) and the GPU.
To create a virtual design of a 3D processor based on this design, the following assumptions were made:

• The footprint is reduced so that one layer consists of 8 cores, 16 L3 cache banks and 4 RIAs.
• Two such layers are stacked on top of each other to create a 16-core processor.
• GPU and SA units are moved to the third stacked layer.
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Figure 3. The original floorplan of an Intel i9-9900K processor (source: Intel). GPU–graphics processing
unit, RIA–ring interconnection agent. The total die area is about 178 mm2.

The final 16-core 3D processor design is shown in Figures 4 and 5 whereas its parameters are
listed in Table 1. Note that the total power dissipation was increased from 95 W (the original TDP of
the Intel processor) to 185 W. Since the 3D processor model also has a smaller footprint, the resulting
power density is so high that conventional air-based cooling would not be able to maintain acceptable
temperatures. Therefore, the chip is cooled by implementing microchannels in two processor layers.
The parameters of the cooling system are also listed in Table 1. Except for the die, the model also
includes the thermal interface material (TIM) and the heat spreader. Although the heat dissipated
through the spreader to the air is negligible compared to the heat removed by the fluid, it was decided
to include it in the model. The use of the spreader may be helpful for the mechanical stability of the chip
and it may also make the temperature distribution more uniform, thus reducing the peak temperature.

Table 1. 3D processor design parameters.

Parameter Value

Die area 9.13 mm × 11.69 mm (106.7 mm2)

Chip layers 5 (two layers with microchannels, three layers
without microchannels)

Cores 16
L3 caches 32
Microchannel layers 2
Number of microchannels in a layer 28
Microchannel cross-sectional size 100 µm × 100 µm (unless otherwise specified)
Silicon layer thickness 200 µm
TIM thickness 60 µm
Heat spreader thickness 1000 µm
Microchannel cover/ILD/underfill equivalent thermal
conductance coefficient 1,000,000 W/(m2K)

Convection to air 10 W/(m2K)
Secondary path convection (through underfill/C4
bumps and PCB) 1 W/(m2K)

Number of solid nodes per layer 28 × 96
Number of fluid nodes per layer 28 × 96
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Table 1. Cont.

Parameter Value

Total number of nodes 18,816
Inlet fluid temperature 300 K
Inlet fluid velocity 1.5 m/s (unless otherwise specified)
Ambient air temperature 300 K
Solver EigenSparseLU

Chip layers silicon, k = 130 W/(mK), ρ = 2330 kg/m3,
cP = 700 J/(kgK)

Thermal interface material k = 2 W/mK, ρ = 2000 kg/m3, cP = 700 (J/kgK)

Heat spreader copper, k = 400 W/(mK), ρ = 8960 kg/m3,
cP = 385 J/(kgK)

Cooling fluid water, k = 0.591 W/(mK), ρ = 1000 kg/m3,
cP = 4184 J/(kgK), µ = 0.000653 Ns/m2, Pr = 3.56
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Figure 4. The model of the 3D processor based on the floorplan of Intel i9-9900K. The 3D chip contains
two octa-core processors in two layers. The system agent and the GPU occupy the third layer. The total
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4.2. Smulation Parameters

Based on the processor model described in the previous section, a simulation model in TIMiTIC
was created. Each solid layer was divided into multiple cells: 96 cells in the direction along the channels
and 28 cells in the direction perpendicular to the channels. Additionally, two processor layers contain
channels which add additional fluid nodes to the model. Thus, the total number of nodes in the model
is equal to 18,816 (two layers with channels, each consisting of 5376 nodes, and three layers without
channels, each consisting of 2688 nodes). Bonding layers, inter-layer dielectric, and microchannel
covers are considered very thin layers and are modeled using the thermal contact approach: their
thermal resistance is added to the model, but their thermal capacity is neglected. All other simulation
parameters are listed in Table 1.
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4.3. Power Data

The default power distribution among chip units is shown in Table 2. Note that it is based on the
thermal design power (TDP) of the original Intel processor, which was equal to 95 W. It was assumed
that for a compute-intensive application which does not use graphic processing the power dissipated
in the GPU and SA units is low and equal to 5 W, while the rest of the power (90 W) is dissipated
by other units (8 cores, 16 L3 caches and 4 RIAs). Therefore, in the 3D chip model, the total power
dissipation equals 185 W which, considering that the die area was reduced compared to the original
Intel processor, results in a 3.2× increase in the power density. The power breakdown into particular
units was assumed based on the idea that cores should have the highest power density followed by L3
caches and RIAs.

Table 2. Power distribution among chip units for the default case.

Processor Unit Dissipater Power

Cores 16 × 9 W
L3 caches 32 × 1 W
RIAs 8 × 0.5 W
GPU and SA 5 W
Total 185 W

5. Results

5.1. Peak Temperature Variability Simulations

The simulations presented in this section have two goals: first, to demonstrate the usefulness of
the simulator and, second, to prove that the appropriate DVFS algorithm or efficient scheduling of tasks
to cores can reduce the maximum temperature by more than 10 ◦C in 3D ICs cooled by microchannels.

The methodology adopted in this section assumes that each core dissipates different power (for
example, it can be seen as equivalent to cores executing different tasks, which vary in terms of how
computationally intensive they are), but the total power dissipation is always constant. Therefore,
1000 power distributions were generated randomly assuming that the maximum power dissipated in a
core can be equal to 13.5 W and the minimum to 4.5 W. Next, 1000 simulations were run using these
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power data (the default power distribution shown in Table 1 was modified). Then, the distribution
of maximum temperatures found in the chip for each case was reported. Note that running 1000
simulations using any FEM-based tool would not be feasible, as one simulation of such a chip can
typically take up to several hours. With the TIMiTIC simulator, one simulation took only about two
seconds, so the total simulation time needed for 1000 iterations was around 40 min. The same set of
simulations was repeated for different values of fluid velocity (mass flow) and channel cross-sectional
area. The results are presented in Figures 6 and 7.Energies 2020, 13, x FOR PEER REVIEW 10 of 20 
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As expected, when increasing the fluid velocity, the temperatures decrease for two reasons: first,
the advection thermal resistance is lower and, second, the thermal entry length is higher, which results
in a higher average HTC between the solid and the fluid. Similarly, when increasing channel height,
the convection resistance is decreased and temperatures goes down. These two observations are quite
obvious, but other more interesting conclusions can be also drawn.

The obtained results resemble a normal distribution. The distribution shape varies only slightly
when the fluid velocity or the channel height are changed, which indicates that, regardless of the
parameters of the cooling system, the difference in maximum and minimum temperatures for different
power distributions remain almost constant. In other words, we can conclude that peak temperature
variability is independent of the cooling system.

It is important to emphasize that the power values were the same in all 1000 cases; just
power-to-core-mapping was changed. This leads us to an important observation: the peak temperature
variability has to be a direct result of the power distribution variation combined with the inherent
property of microchannel cooling (gradually worsening cooling performance from inlets to outlets).
To be more precise, when high-power tasks are executed near the outlets and low-power tasks near the
inlets, a higher peak temperature is observed than in the opposite case.

The temperature difference between the worst and the best case is quite significant. For example,
for the case with 1.5 m/s fluid velocity (right-most distribution in Figure 6), the peak temperature can
be as high as 119 ◦C or as low as 101 ◦C. Therefore, just by appropriately assigning tasks to cores,
a potential 18 ◦C reduction in chip maximum temperature can be achieved. In relative terms, this
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means that the peak temperature rise could be reduced by 22% (where temperature rise is calculated
with respect to the inlet fluid temperature). Even considering the average temperature (which in this
case was about 110 ◦C) the reduction of hotspot temperature from 110 ◦C to 101 ◦C can definitely be
seen as a worthwhile goal for thermal designers.
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5.2. Finding the Optimal Power Dissipation Profile

In the previous section, it was proven that appropriate task scheduling or DVFS can considerably
minimize the peak temperature in liquid-cooled 3D ICs. In case of task-to-core mapping, one can
imagine that the algorithm should take into consideration the cooling performance, which varies
depending on the core’s location in the chip. In case of DVFS, one may consider running cores located
near the inlets at a higher frequency than those located near the outlets. In other words, by using
a non-uniform power dissipation profile, a more uniform temperature distribution can be achieved
resulting in a lower peak temperature. However, the important question is: how uneven should
this power profile be? What should be its exact shape? Clearly, for any chip with a microchannel
cooling system, there must exist a power dissipation profile which is optimal, i.e., results in the lowest
peak temperature.

Therefore, an optimization problem can be formulated: given a microchannel-cooled 3D processor
with multiple cores and a set of tasks with different power dissipation, find the task-to-core mapping
(or, in case of DVFS, core voltage and frequency settings) which minimizes the peak temperature.
To design such an optimization algorithm, one should know how exactly the cooling performance of
microchannels decreases from inlet to outlet. Consequently, once it is known how well each location
in the chip is cooled, a cooling performance coefficient (CPC) to each processor core can be assigned.
Of course, cores with high CPC should be preferred when assigning tasks (or, in case of DVFS, they
should run at higher frequencies). One may think that the optimization problem can be then reduced
to one simple rule: the higher power dissipation of a task, the closer to inlets it should be executed.
However, the problem becomes more complex if we consider processors with multiple layers. Then,
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the power dissipated in cores located one over the other adds up. Therefore, this simple rule does not
work, and a more complex approach has to be implemented. In this section, using the processor model
described in Section 4, the process of finding the optimal power dissipation profile is described.

In [18], the authors analytically calculated the optimal (producing the lowest peak temperature)
power dissipation profile along the channel (3).

dq
dx

= q
hP
.

mcp

1

1− exp
(
−

hPL.
mcp

) exp

− hP
.

mcp
x

 (3)

where dq/dx is the linear power density, x is the distance from the inlet, h is the average heat transfer
coefficient, q is the total dissipated power,

.
m is the mass flow in kg/s, cp is the specific heat, L is the

channel length and P is the channel perimeter.
Based on this profile, the optimal power dissipation in all sixteen cores of the processor model

(see Section 4) can be found using the steps listed below.

• Find the position of the center of the core area along the channel;
• Using the above-mentioned optimal power profile, calculate the optimal power dissipation in the

core area using Equation (3) (note that this area includes all three layers);
• Subtract the power dissipated in the GPU layer in the area directly above cores;
• The remaining power can be divided by two to obtain the optimal power dissipated in both cores

located at this position.

Table 3 shows the power values obtained using the above method for the analyzed 3D processor.
However, the formula from (3) was derived for a constant HTC along the channel and does not take
into consideration the thermal entry effects (higher HTC near the inlets). It can be safely supposed
that the true optimal power distribution will be more uneven, with even more power dissipated in
cores near the inlets. Thus, additional simulations were run: taking the previously calculated power
distribution as a starting point, the power consumption in cores near the inlets was increased and
in cores near the outlets decreased (keeping the total power constant). It was discovered that it was
still possible to reduce the peak temperature using this method. Thus, it was proven that the power
values calculated analytically are in fact a quasi-optimal solution, and a better solution can be found.
Consequently, a Monte Carlo method was employed: 1000 simulations were run, and for each core the
power was generated randomly within a certain range around the previously found quasi-optimal
values. Again, the total power was kept constant. The simulation results are shown in Figure 8. The
lowest maximum temperature was obtained for the power values shown in Table 3 (right column).
It was 3.5 ◦C lower that the one obtained for the quasi-optimal solution.

Table 3. Power dissipated in cores and the respective peak temperatures for three cases. Power
dissipation in cores in the second processor layer is exactly the same, so it was not shown.

Core Number Dissipated
Power (Uniform)

Dissipater Power
(Analytical,

Quasi-optimal Solution)

Dissipater Power (Optimal
Solution Based on Monte

Carlo Simulations)

Cores 1 and 2 (closest to inlets) 9 W 14.59 W 18.24 W
Cores 2 and 3 9 W 9.97 W 9.43 W
Cores 4 and 5 9 W 6.82 W 5.81 W
Cores 6 and 7 (closest to
outlets) 9 W 4.62 W 2.52 W

Peak temperature obtained
with simulations 105 ◦C 97.7 ◦C 94.2 ◦C
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Figure 8. Peak temperature distribution (1000 cases in total) in the simulated 3D processor where
power dissipated in cores was generated randomly around the quasi-optimal values.

Additionally, Figures 9–11 show the temperature maps of the middle chip layer for three cases:
one with uniform power distribution in cores; one with quasi-optimal power distribution; and one
with optimal power distribution, respectively. The temperature maps were superimposed on the chip
floorplan for clarity. By comparing the three figures, it can be clearly seen that the more uniform the
temperature distribution in all cores, the lower the maximum temperature in the chip. Therefore,
it may be argued that the optimal power dissipation in cores should be such that the peak temperature
in each core is the same.
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Table 2. The inlets are located on the left side of the chip.
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in cores was calculated analytically (the quasi-optimal solution). The powers dissipated in other
processor units are listed in Table 2. The inlets are located on the left side of the chip.
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Figure 11. Temperature map of the middle layer of the simulated 3D processor where the power
dissipated in cores was found by running Monte Carlo simulations (the optimal solution). The power
dissipated in other processor units is listed in Table 2. The inlets are located on the left side of the chip.

There are three main findings that can be derived from the obtained results. First, although the
power profile described by Formula (3) allows a considerable reduction in peak temperature, it cannot
be seen as the optimal solution. The true optimal power profile contains quite different power values
(compare columns two and three in Table 3). Therefore, for best results, the thermal entry effects should
not be ignored when developing efficient DVFS or task scheduling schemes. Second, the optimal
power profile is extremely difficult to calculate analytically. However, it was possible to find the
optimal power values by running a large number of simulations. Note that this Monte Carlo approach
would not be possible with CFD simulation, because the simulation time would be prohibitively long.
This highlights the advantages and demonstrates the usefulness of the proposed compact thermal
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modelling tool, which allows exploring the design space in a reasonable time. Third, which may
be surprising, the optimal power profile is very non-uniform (18.24 W for cores near the inlets and
2.25 W for cores near the outlets). This means that more than seven times more power should be
dissipated in “inlet cores” compared to “outlet cores”. Even with very aggressive DVFS, this may not
always be possible to achieve. Therefore, for microchannel-cooled processors, the designers should
perhaps consider floorplanning schemes which take this effect into consideration, e.g., processing cores
should not be put near the outlets, and this outlet area should be reserved for processor units with low
power dissipation.

5.3. Power Distribution Correlation Metric

Knowing the optimal power consumption in each core allows introducing a metric which describes
how a given power distribution correlates with the optimal one. In other words, every possible power
distribution can be quantified in terms of how similar it is to the optimal distribution, which in turn
allows choosing the best one, for example when executing thermal-aware task scheduling or calculating
the best DVFS settings.

Let Po
i be the optimal power dissipation calculated for core i and Pi the actual power consumption

in core i. Let us define Tmax as the maximum chip temperature. In the first approach, one may think
than Tmax will be strongly correlated with the maximum difference between Pi and Po

i calculated for
all cores. To verify this hypothesis, 1000 simulations were run, with random powers generated for
all cores while keeping the total power constant. Figure 12 shows the correlation between such a
metric and the maximum chip temperature. We can see that this correlation is certainly visible, but
the variance is still quite high. For example, let us look at the points A and B in the figure. For the
same value of the metric, the difference in peak temperature is around 14 ◦C, so this metric would not
produce satisfactory results and a more accurate approach is needed. Hence, a simple thermal model
is proposed here. Consider a one-channel system and the area located at the distance x from the inlet.
The temperature of the fluid at location x can be approximated as:

T f (x) = Ti +
QU
.

mcP
(4)

where Ti is the fluid inlet temperature,
.

m is the mass flow, cP is the specific heat of the fluid and QU is
the power dissipated upstream from the location x. The temperature of the solid at point x can then be
calculated as:

T(x) = T f (x) +
Q
hA

= Ti +
QU
.

mcP
+

Q
hA

(5)

where h is the heat transfer coefficient between the solid and the fluid, A is the channel area through
which the convection occurs, and Q is the power consumption in the area. Equation (5) can then be
reformulated to describe the overhead in peak temperature ∆T:

∆T(x) =
∆QU

.
mcP

+
∆Q
hA

(6)

where ∆QU is the overhead power dissipated upstream from location x and ∆Q is the overhead power
consumption in the area. The overhead power is, of course, calculated as the difference between the
actual power and the optimal power. ∆T is the overhead peak temperature: the difference between the
actual peak temperature and the temperature resulting from the optimal power.

Although Equation (6) was derived for a one-channel system, it can be applied to estimate ∆T for
each core in the chip and then to calculate the maximum of these values ∆Tmax. Note that, in this case,
∆Tmax does not give any information about the absolute value of the maximum temperature in the chip;
it is simply a relative metric which can be used to compare power distributions. For example, a power
distribution with a higher value of this metric will always produce higher maximum temperature and
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vice versa. Achieving the linearity of the metric is also important. To make this metric dimensionless,
it was further divided by inlet temperature Ti. Again, 1000 random-power simulations were run to test
the correlation of the metric with the chip peak temperature. Figure 13 shows the obtained results:
despite the fact that the used model is relatively simple, we can see that the linearity of the model is
surprisingly good and that this metric can be effectively used to predict which power distribution is
better, i.e., which power distribution results in lower maximum chip temperature.Energies 2020, 13, x FOR PEER REVIEW 16 of 20 
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In what follows, the utility of the proposed metric will be discussed. The main advantage is that
it is very simple: the optimal power distribution has to be found only once for a given chip. Then,
the metric can be easily calculated analytically, so the cost (for example in terms of time or energy) of
calculating this metric is negligible. Therefore, it can be used not only in static, but also in dynamic task
scheduling algorithms. Such an algorithm could use, for example, the cooling performance coefficient
CPC for each processor core, calculated as the inverse of the proposed metric. Then, assuming that a
set of tasks is to be scheduled on cores, the algorithm can utilize the calculated CPC values to find
the optimal mapping, thus guaranteeing the lowest possible peak temperature in the chip during
task execution. It can be also used to for efficient task swapping: if new tasks appear, a new optimal
mapping can be found on the fly, and all tasks (including those already being executed) can be
rescheduled to different cores. Similarly, researchers who develop DVFS algorithms can make use of
the proposed metric to dynamically adapt the voltage and the frequency of each core. For example,
taking as input the estimated power of tasks to be executed, the dependencies between them and their
potential deadlines, the algorithm can find the optimal frequencies and voltages for the cores which
result in the minimization of the peak temperature during task execution.

6. Conclusions and Future Work

The main contributions provided by this research are the following:

• In Section 2, the characteristics of microchannel cooling are explained, with special emphasis on
how the cooling performance of microchannels decreases from inlet to outlet. The impact of this
phenomenon on other research fields like task scheduling or DVFS algorithms is also discussed.

• In Section 3, the thermal modelling tool used in this paper is presented and its most unique
features are listed. In Section 4, the model of the 3D processor (based on the design of a real
modern Intel processor) which is used in this study is thoroughly described.

• Section 5 constitutes the central part of the paper. First, the simulations in Section 5.1 prove that
the same power distribution can produce drastically different peak temperatures depending on
how powers are mapped to cores. The obtained results also show that this effect is independent of
the cooling system parameters.

• Second, the analysis provided in Section 5.2 calculates the optimal power dissipation profile for
the analyzed chip. It is also shown that the analytical calculation which assumes a constant HTC
along the channel (neglects thermal entry effects) can only be used to obtain a quasi-optimal
solution, which performs considerably worse that the true optimal solution.

• Third, Section 5.3 introduces a simple analytical metric which effectively compares a given power
distribution with the optimal one. It is demonstrated that such a metric can be used to compare
the power distribution profiles in a 3D IC in terms of their thermal efficiency. It is also argued that
this metric can be used by researchers to develop optimal task scheduling or DVFS strategies for
3D ICs with integrated microchannels.

Future work will include the verification of the proposed metric for temperature-aware task
scheduling. The scheduling algorithm using this metric will be implemented in the TIMiTIC simulator
and transient thermal simulations will be run to determine its effectiveness.
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28. Zając, P. TIMiTIC: A C++ based Compact Thermal Simulator for 3D ICs with Microchannel Cooling.
In Proceedings of the 2019 25th International Workshop on Thermal Investigations of ICs and Systems
(THERMINIC), Lecco, Italy, 25–27 September 2019; pp. 1–6.

29. Sekar, D.; King, C.R.; Dang, B.; Spencer, T.; Thacker, H.D.; Joseph, P.K.; Bakir, M.S.; Meindl, J.D. A 3D-IC
Technology with Integrated Microchannel Cooling. In Proceedings of the 2008 International Interconnect
Technology Conference, Burlingame, CA, USA, 1–4 June 2008.

30. Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; Wiley:
Hoboken, NJ, USA, 2007; ISBN 978-0-471-45728-2.

31. Su, L.; Duan, Z.; He, B.; Ma, H.; Xu, Z. Thermally Developing Flow and Heat Transfer in Elliptical
Minichannels with Constant Wall Temperature. Micromachines 2019, 10, 713. [CrossRef] [PubMed]

32. Cuesta, D.; Risco-Martín, J.L.; Ayala, J.L.; Hidalgo, J.I. Thermal-aware floorplanner for 3D IC, including TSVs,
liquid microchannels and thermal domains optimization. Appl. Soft Comput. 2015, 34, 164–177. [CrossRef]

33. Shah, R.K.; London, A.L. Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger
Analytical Data; Academic Press: Cambridge, MA, USA, 1978; ISBN 978-0-12-020051-1.

34. Muzychka, Y.S.; Yovanovich, M.M. Laminar Forced Convection Heat Transfer in the Combined Entry Region
of Non-Circular Ducts. J. Heat Transf. 2004, 126, 54–61. [CrossRef]

35. Guennebaud, G.; Jacob, B.; Avery, P.; Bachrach, A.; Barthelemy, S. Eigen v3. 2010. Available online:
http://eigen.tuxfamily.org (accessed on 23 March 2020).

36. Ahnert, K.; Mulansky, M. Odeint—Solving ordinary differential equations in C++. AIP Conf. Proc. 2011,
1389, 1586–1589.

37. TIMiTIC Simulator Website. Available online: timitic.dmcs.pl (accessed on 16 March 2020).
38. Haas, A.; Rossberg, A.; Schuff, D.L.; Titzer, B.L.; Holman, M.; Gohman, D.; Wagner, L.; Zakai, A.; Bastien, J.

Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Association for Computing Machinery, Barcelona,
Spain, 18–23 June 2017; pp. 185–200.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00542-017-3334-8
http://dx.doi.org/10.1109/TVLSI.2012.2211050
http://dx.doi.org/10.3390/mi10100713
http://www.ncbi.nlm.nih.gov/pubmed/31640254
http://dx.doi.org/10.1016/j.asoc.2015.04.052
http://dx.doi.org/10.1115/1.1643752
http://eigen.tuxfamily.org
timitic.dmcs.pl
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Characteristics of Microchannel Cooling 
	TIMiTIC Simulator 
	Simulation Model 
	3D Processor Model 
	Smulation Parameters 
	Power Data 

	Results 
	Peak Temperature Variability Simulations 
	Finding the Optimal Power Dissipation Profile 
	Power Distribution Correlation Metric 

	Conclusions and Future Work 
	References

