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Abstract: Understanding and analyzing cascading failures in power grids have been the focus
of many researchers for years. However, the complex interactions among the large number of
components in these systems and their contributions to cascading failures are not yet completely
understood. Therefore, various techniques have been developed and used to model and analyze the
underlying interactions among the components of the power grid with respect to cascading failures.
Such methods are important to reveal the essential information that may not be readily available from
power system physical models and topologies. In general, the influences and interactions among the
components of the system may occur both locally and at distance due to the physics of electricity
governing the power flow dynamics as well as other functional and cyber dependencies among
the components of the system. To infer and capture such interactions, data-driven approaches or
techniques based on the physics of electricity have been used to develop graph-based models of
interactions among the components of the power grid. In this survey, various methods of developing
interaction graphs as well as studies on the reliability and cascading failure analysis of power grids
using these graphs have been reviewed.

Keywords: interaction graphs; cascading failures; data-driven; electrical distance; power grids;
system modeling

1. Introduction

1.1. An Overview of the Review and Overall Significance

Cascading failures in power grids are successive interdependent failures of components in the
system, which are usually initiated by few outages due to internal or exogenous disturbances and are
propagated in a relatively short period of time leading to large blackouts [1,2]. Examples of blackouts
that resulted from cascading failures are the case of US Northeast blackout in 2003 [3], Italian blackout
in 2003 [4], Brazilian blackout in 2009 [5], and Indian blackout in 2012 [6]. While large blackouts are
infrequent, their occurrence still has substantial risks associated with the significant economic losses
and social impacts that they cause. Understanding and mitigating cascading failures in power systems
remain a challenge due to the large size of these systems as well as complex and sometimes hidden
interactions among the components. Various studies and models have been developed to understand
and control these complex phenomena including methods based on power system simulation [7,8],
deterministic analytical models [9], probabilistic models [10–12], and graph-based models [13–63].
For a survey of various methods for studying cascading failures, see [64–69]. Each of these approaches
shed light on different aspects of these phenomena.
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Among these categories of approaches, graph-based methods have attracted a lot of attention
due to the simplicity of the models and their ability to describe the propagation behavior of the
failures on the graph of the system [70,71]. Many initial graph-based models were developed based
on the physical topology of the power system, where the connections among the nodes represent
the actual physical connections among the components of the system [72,73]. However, the studies
in [62,74] showed the lack of strong connection between the physical topology of the system and
failure propagation in cascading failures in power grids. In general, influences and interactions among
the components of the system during cascade process may occur both locally and at distance due to
the physics of electricity governing the power flow dynamics as well as other functional and cyber
dependencies among the components of the system. For instance, historical as well as simulation
data verify that failure of a critical transmission line in the power grid may cause overload/failure
of another transmission line that may or may not be topologically close. Therefore, graph models
based on the physical topology of the system are not adequate in describing the propagation behavior
of failures in power grids. Hence, new methods are emerging to reveal the complex and hidden
interactions that may not be readily available from physical topology of the power system. These new
approaches are focused on extracting and modeling the underlying graph of interactions among the
components of the system. While the focus of this survey is on graph-based methods, other modeling
approaches such as probabilistic, risk analysis-based, and agent-based approaches [75] can also be
used for modeling interactions among the components of the system.

1.2. Review Methodology

In this survey, various techniques for building the interaction graphs are reviewed. While the
main focus of this survey is on the methods for constructing interaction graphs, reliability studies,
and analyses performed using such graphs are also briefly discussed.The benefit of interaction graphs
is that the interactions among the components are topologically local, which simplifies the study
and analysis of propagation behavior of failures and properties/roles of various components in the
system during the cascade process. Note that as cascading failures are attributed to the transmission
network of power grids, the focus of these studies are mainly on the transmission network. Moreover,
the majority of studies based on the interaction graphs are focused on cascading failure analyses
in power grids; however, interaction graphs can be used for other applications in power grids (e.g.,
analyzing reliability to targeted attacks) or even other networked systems such as transportation
networks [76,77].

The earliest research study in finding interactions between components can be traced back to the
1989 study in [78], in which interactions between the buses in the system represented a measure of
electrical distance between components based on changes in voltage magnitude sensitivities. While the
power grid analyzed in this study was not modeled as a graph, the concept in this study has been widely
adapted by numerous graph-based models to represent interactions between components. In this
survey, methods for constructing interaction graphs are broadly categorized into two main classes:
data-driven approaches and electric distance-based approaches. As the name implies, the data-driven
approaches for building interaction graphs rely on data collected from the system (historical and real
data or simulation data) for inferring and characterizing interactions among the components of the
system. Further, three categories are defined for data-driven interaction graphs based on the method
used for analyzing the data.These include: (1) methods based on outage sequence analysis [13–37],
(2) risk-graph methods [38–41], and (3) correlation-based methods [29,30,42,79]. The category of outage
sequence analysis is further divided into four sub-categories including (i) consecutive failure-based
methods [13–20], (ii) generation-based methods [21–26], (iii) influence-based methods [27–30],
and (iv) multiple and simultaneous failure-based methods [31–37]. This novel taxonomy is used
to classify thirty detailed research studies, including conference and journal publications, in the
data-driven category into various subcategories.
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On the other hand, electric distance-based approaches exploit properties based on the physics of
power and electricity governed by Kirchoff’s laws to define interactions among the components. Thus,
the interactions are represented by electrical distances, which illustrates the properties of the electrical
interactions based on power flows among the components. Two sub-categories are defined for electric
distance-based interaction graphs based on the power grid conditions that are considered for creating
the graphs. These include: (1) methods that define the interactions based on changes in the power
flow due to changes in physical attributes of components caused by outage conditions [43–47] and
(2) methods that define the interactions among components during normal or non-outage operating
conditions [48–63,78]. The category of defining interactions during non-outage operating conditions
is classified into two sub-categories: (i) impedance-based methods, which define interactions by
considering a single impedance measure among the components connected over multiple paths [48–59]
and (ii) sensitivities in components’ states due to changes in voltage magnitudes and voltage phase
angles [60–63,78]. This novel taxonomy is used to classify twenty-one detailed research studies,
including conference and journal publications, in the electric distance-based category into various
subcategories. Figure 1 shows the taxonomy of the reviewed methods for constructing various types
of interaction graphs. The figure also specifies section numbers for the categories and subcategories,
in which the methods have been discussed. Research studies included in this review have been
found using databases such as IEEE Explore, Elsevier, AIP (American Institute of Physics) Publishing,
Springer, APS (American Physical Society) Physics, and MDPI. Most studies in this review are fairly
recent and have been published in the past decade.
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Figure 1. Taxonomy of methods for constructing interaction graphs with section numbers shown for
the categories and sub-categories.

In addition to the review of various methods for constructing interaction graphs, various reliability
analysis and studies performed using these graphs are also briefly reviewed. Some studies of
interaction graphs are focused on identifying critical components in the cascade process of power
grids [14–24,27–31,38–40,48,56–59]. These studies can have different purposes such as (1) identifying
the vulnerable or most influential components of the system in the cascade process by utilizing
standard centrality metrics [14–20,50,54] or defining new centrality metrics [21–24] and (2) identifying
the set of components whose upgrade (for instance, by increasing the power flow capacity of
transmission lines) or protection can help in mitigating the risk of cascading failures and large
blackouts [27,28,31,58] or quantifying the performance of the grids after addition of new transmission
lines [58,59]. To characterize the latter, some works [16,38–40,59] focus on the response of power grids
to attacks and failure scenarios using metrics that quantify the efficiency of the grid before and after
the attacks. Furthermore, to characterize the role of components in the cascade process, some efforts
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are focused on characterizing the patterns and structures in interaction graphs using community
detection approaches [29,30] or tree structures [43,44]. Moreover, the work in [44] uses interaction
graphs to identify transmission lines that when switched off create partitions that limit the propagation
of failures in the power grid. Some studies [31,42] also use the structures and patterns in interaction
graphs to characterize and predict the distribution of cascade sizes. Similarly, structures in interaction
graphs have been used for reliability analysis of zonal patterns [51] and partitioning into voltage
control regions [78].

1.3. Key Contributions and Review Structure

The key contributions of this review work are as follows:

1. A novel classification of methods for constructing interaction graphs into two categories:
data-driven and electric distance-based approaches as well as multiple sub-categories as shown
in Figure 1.

2. A comprehensive study and detailed discussion on the techniques used in the construction of
interaction graphs. Moreover, key properties and limitations of each type of interaction graph is
discussed. Suggestions on addressing the limitations and possible future directions are presented.

3. A brief overview of cascading failure analysis in power grids using the constructed interaction
graphs are presented.

The organization of the rest of the review is as follows. In Section 2, a brief discussion on
the preliminary terms pertinent to this review is presented including: (1) definition and causes
of cascading failures, (2) well established cascading failure models in literature, and (3) physical
topology-based graphs of power grids. In Section 3, a comprehensive discussion on the various
methods for constructing interaction graphs is provided, and in Section 4, a brief discussion is
presented on the reliability analysis and cascading failure studies performed using the interaction
graphs constructed in Section 3. Finally, in Section 5, the review is summarized and concluded.

2. Definitions

2.1. Cascading Failures

Cascading failures are the leading cause of wide area blackouts [3]. While large blackouts are
infrequent, the power law behavior exhibited by the blackout size distribution (e.g., measured in
terms of unserved energy, numbers of customers with no service, number of transmission lines
tripped) warrants the need to study such events [7]. A cascading failure can be defined as a sequence of
interdependent outage events, initiated by few outages or disturbances [1,64]. The initiating events can
be attributed to various factors such as natural disasters, vegetation disturbances (e.g., tree contact),
human errors, software/hardware errors, and so on. In recent years, cyber/physical attacks on power
grids, such as the case of the Ukrainian cyber attack of 2015 [80], are also precursors to cascading
failures. After the occurrence of the initiating events, the dependent sequence of outages results
from various internal events such as voltage and angular instabilities, line overloads, hidden failures
caused due to the misbehavior of protection devices as well as errors related to maintenance, operation,
and human factors [64]. Further, various operating conditions of the power grid, such as the initial
loading conditions of the components, also affect the behavior of the overall power grid during
cascade processes.

2.2. Models of Cascading Failures

Modeling and studying cascading failures include a diverse field of techniques and approaches.
They include topological models, high level statistical models, deterministic and probabilistic models,
simulation-based models for analyzing quasi steady and dynamic behavior of the system, or hybrid
models, interdependent models with other systems (e.g., communication systems), and so on (see [66]).
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Many of these methods have been bench-marked and validated as well as cross validated [81,82].
Since this review is focused on graph-based methods, the upcoming sections begin by discussing the
physical topology-based graphs of power grids and their limitations in representing interactions among
components during cascading failures, which motivates the subsequent discussion of interaction
graphs for power grids.

2.3. Physical Topology-Based Graphs of Power Grids

As mentioned in Section 1, initial graph-based studies of power grids, such as [70–73], were based
on the physical topology of the power grid. In general, a power grid can simply be represented by a
graph, G = (V, E), where V represents the set of generator, transmission, substation, or load buses,
and E represents the set of power lines [83]. Such a graph shows the physical connectivity among
the components of the system. Various studies have been performed on the physical topology of
the power grids by analyzing their global structural properties [72,73], such as average path length,
clustering coefficient, and degree distribution, for analyzing power grids with respect to standard
complex networks such as small world, random, and scale-free graphs. Particularly, in the study
in [73], the average path length and clustering coefficient of real-world power grids were compared to
their equivalent random and scale-free network models. However, the study concluded that real-world
power grids differed significantly from standard network models as the clustering coefficient and the
average path length of real-world grids were significantly greater than that of their complex network
model counterparts. Some studies performed on the physical topology also focused on properties
of the electrical connections [84] identified using centrality measures such as degree, eigenvector,
closeness, and betweenness (for a review and definition of centrality measures refer to [85]). However,
it has also been discussed that physical graphs may be inadequate in representing and capturing the
interactions among the components of the power grid [62,74], specifically for analyzing cascading
failures. This limitation is due to the inability of the physical graphs to capture the dynamics of
interactions at-distance in cascading failures, for instance, due to Kirchoff’s and Ohm’s laws. In recent
literature, some studies consider the physical as well as electrical properties of power grids. The focus
of such studies is on the generation of synthetic power grid networks that consider the heterogeneity
of the components in terms of their operating voltages [83,86]. In such types of graphs, each vertex is
associated with a voltage rating such that transmission lines are represented as edges between vertices
of the same voltage level and voltage transformers are represented as edges between vertices with
different voltage levels. However, extensive analysis of such graphs for cascading failure scenarios is
still an open research problem.

3. Graph of Interactions

In this section, the methods of modeling power systems by graphs of interactions are reviewed in
two distinct categories: data-driven methods and electric distance-based methods. These methods
build a graph of interactions for the system, denoted by Gi = (Vi, Ei) in which the set of vertices
Vi are the components of the system whose interactions are of interest, such as the set of buses
or transmission lines. Further, the set Ei represents the set of interactions/influences among the
components, which may be directed, undirected, weighted (representing the strength of interactions
or influences), or unweighted depending on the analysis of interest.

3.1. Data-Driven Methods for Interaction Graphs

Various data-driven approaches have been proposed for inferring and modeling interactions
among the components of the power grid. These approaches rely on data from simulation or historical
outage datasets. As the historical datasets are limited, the majority of studies use simulation data.
However, the focus of this review is not on reviewing the mechanism for generating cascade data;
for example, from power system simulations. Rather, the focus is on modeling the cascade data
into interaction graphs and the subsequent reliability analysis performed on such interaction graphs.
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The cascade datasets used in the various methods will be mentioned as necessary when discussing
the methods. In this paper, five classes of data-driven methods have been identified and reviewed for
modeling interaction graphs for studying cascading failures in power grids as shown in Table 1. Next,
each class of method is discussed in detail.

Table 1. Classification of existing studies using the data-driven taxonomy.

Category Subcategory Further Subcategory Works

Data-driven

Interaction Graphs

Outage Sequence

Consecutive Failures [13–20]

Generation-based Failures [21–26]

Influence-based [27–30]

Multiple and Simultaneous Failures [31–37]

Risk-graph [38–41]

Correlation-based [29,30,42]

3.1.1. Interaction Graphs Based on Outage Sequences in Cascading Failures

This class of methods rely on cascading failure data in the form of a sequence of failures in
each cascade. For instance, the sequence l5 → l7 → l3 → l6 represents an example of sequence of
transmission line failures in a cascade scenario, where li represents outaged transmission lines and
the arrow represents the order in which the lines failed during cascades. These methods are based on
analysis of sequence of failures for extracting interactions and focus on the cause and effect interactions
among failure of components. Methods in this category use various techniques and statistics to analyze
such data as discussed next.

3.1.1.1. Interaction Graph Based on Consecutive Failures

In this category of outage sequence analysis, only direct consecutive failures in a sequence
are used for deriving the interaction links among the components of the system. In other words,
two components in the system have an interaction link, ei,j ∈ Ei, only if they appear as successive
outages in the order li → lj in a cascade scenario in the dataset. The order of the outages represents
the direction of the links in the interaction graph, e.g., outage sequence l5 → l7 suggests an outgoing
link from node l5 to node l7. Further, if the example sequence l5 → l7 → l3 → l6 represents a
longer sequence of transmission line failures in a cascade scenario, the following directed interaction
edges will belong to graph Gi, i.e., {e5,7, e7,3, and e3,6} ∈ Ei. The strength of interactions among the
components in this case can be characterized using the statistics of occurrences of pairs of successive
outages in cascade scenarios in the dataset. For instance, the work in [13] assigns weights to the
interaction edges by statistical analysis of the number of times that a pair of successive line outages
occurs in the cascade dataset. For instance, the weight of the interaction link from node la to node
lb can be characterized as |la → lb|/(total number of successive pairs in the overall cascade dataset),
where |la → lb| is the number of times failures la and lb occurred successively in the cascade dataset.
These weights can be interpreted as the probability of occurrence of each pair of successive line
outages. Examples of studies using this method to develop the power grid’s graph of interactions
include [13–20], where transmission lines in the system are the vertices Vi of the interaction graph Gi.

In the study presented in [87], the sequences of consecutive failures are called fault chains.
For creating the dataset of fault chains, in the first step, a single transmission line is tripped as
the initiator of cascading failure in the simulation, and in the subsequent steps, the most overloaded
component due to power flow re-distributions is considered as the next failure in the overall sequence
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of consecutive failures. In the studies in [14–16,18–20], for a power grid with n transmission lines,
n fault chains are created, and the edges among consecutive failures in each chain are weighted based
on power flow changes in a line after the failure. In the work in [17], fault chains are created by
considering multiple initial failures such that a system with n transmission lines may have more than n
fault chains. In addition to power flow re-distributions, the work in [19] also considers the temperature
evolution process of transmission lines during cascades while constructing fault chains. Thus, the fault
chains are capable of reflecting thermo-physical effects of transmission lines during cascades. Finally,
a fault chain graph is developed by combining all fault chains together into a single graph where
the vertices are all the components that have failed in the fault chains, and the edges between the
vertices exist if the outages have successively occurred in the fault chains. For pairs of outages (li → lj)
that have reoccurred in multiple fault chains, their combined edge weight in the fault chain graph
is averaged.

3.1.1.2. Interaction Graph Using Generation-Based Analysis of Failures

The method based on the consecutive failures discussed in Section 3.1.1.1 focuses on one to one
impact that the outage of a line has on the outage of another line. However, in cascading failures,
instead of pair-wise interactions among successive failures, a group of failures may contribute to
failures of other components. Therefore, it is important to consider the effects of groups of failures and
characterize interactions among the components based on the effects among groups of components.
The works presented in [21–25] define such groups as generation of failures within a cascade process,
which are failures that occur within short temporal distance of each other.In these works, the sequence
of failures in the cascade are divided into sequence of generations, and the failure induced cause and
effect relationships are considered between consecutive generations. Specifically, outages occurring in
generation m + 1 are assumed to be caused by outages in generation m.

The interactions based on successive generations are defined in different ways in the literature.
For instance, the authors in [27] assume that all components in generation m have interactions with all
components in generation m + 1, i.e., if generation m has n1 number of components and generation
m + 1 has n2 number of components, then the number of interactions between generation m and m + 1
will be n1 × n2. However, some studies argue that considering all possible pairs of interactions among
components of two consecutive generations overestimates the interactions among components [21–26].
Specifically, all line outages in one generation may not be the cause of a line outage in the next
generation. Therefore, in the works presented in [21,23], the cause of failure of a line k in generation
m + 1 is considered to be due to the failure of a line in generation m with the maximum influence
value on the line k. The influence value for component j in generation m is defined as the number
of times that the component j has failed in generation m before the failure of line k in the successive
generation m + 1 in the cascade dataset. For cases where two or more lines in generation m have the
same maximum influence values on line k in generation m + 1, all such components are assumed to
interact with line k. In the works discussed so far in this section, the interaction among component j in
generation m and component k in generation m + 1 will be represented by a directed link ej,k.

While the works in [21,23] limit the interactions by only considering the maximum influence
values in current generation as the probable cause of component failures in the next generation,
the work in [22] gives an estimate of the interactions between successive generations using the
expectation maximization (EM) algorithm. Initially, all failed components in generation m are assumed
to be the causes of failure of all components in generation m + 1. However, the actual components
in generation m (hidden variables) that cause failure of components in generation m + 1 are found
using the iterative process of updating the probabilities of failures. Thus, after the iterative update
process is completed, some probabilities of failures between components may be zero, which removes
the overestimated interactions of the initial assumption.

The weight of the interaction links can also be defined in various ways. For instance, the weight
of the link can be defined as the ratio of number of times that the pair of components appeared in two
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successive generations over the total number of times that component k has appeared in the dataset.
This weight can be interpreted as the likelihood of failure of component k in the next generation given
the failure of component j in the current generation. The work in [24] also generates the graph of
interactions based on the maximum influences among generations in cascades, similar to the method
used in [21,23]. However, the graph of interactions has two additional layers: one layer to capture
the weight of interactions based on the amount of load shed that has occurred after the failures in
generation m (therefore, the dataset requires additional information about the amount of load shed
during the cascade process) and the other layer to capture the weights of interactions based on the
electric distance between transmission lines during the cascade process. We will present the detailed
discussion of the electric distance-based interactions in Section 3.2.2. The study in [26] considers
both statistical properties as well as the amount of load shed that has occurred between successive
generations to assign interaction link weights. However, the study in [26] identified islands formed in
the power grids during outages and then selectively assigned links between components of successive
generations only if the generations were located in islands that were direct consequences of one another.

3.1.1.3. Influence-Based Interaction Graph

In this method, the interactions among the components are derived based on successive
generations in cascades; however, the weights of the interactions are characterized based on the
influence model and the branching process probabilistic framework. The influence model is a
networked Markov chain framework, originally introduced in [88] and was first applied to cascade
dataset in the work presented in [89]. This survey reviews the studies that use the influence model in the
context of power grids to develop the graph of interactions. In these studies, the transmission lines in
the system are considered as the vertices Vi of the interaction graph Gi and the influences/interactions
between the lines as the edges Ei.

In [27], authors consider interaction links among all pairs of lines in two successive generations
in a cascade using the influence model. The weights of the directed links are derived in two steps.
In the first step, a branching process approach is used in which each component can produce a random
number of outages in the next generation. The number of induced outages by each component is
assumed to have a Poisson distribution based on the branching process model. Parameter λi specifies
the propagation rate (mean number of outages) in generation m + 1 for the outage of component i in
generation m. In other words, this step defines the impact of components on the process of cascade
by describing how many failures their failure can generate [12]. In the second step, it is assumed that
given that component i causes k outages in the next generation, some components are more likely to
outage than others. Therefore, they calculate the conditional probability g(j|i), which is the probability
of component j failing in generation m + 1, given the failure of component i in generation m. If only
g(j|i) values based on the statistical analysis of data are considered, then the probability of failure of
component j given component i failure will be known; however, the expected number of failures from
failure of component i is not known. Hence, both steps are important in characterizing the influences
among components.

The final step consists of combining the information from the first and second steps into a single
influence matrix H (representing the links of graph of interactions and their weights). The elements
of the matrix are defined based on the conditional probability that a particular component j fails in
the next generation m + 1, given that component i has failed in generation m and that generation
m + 1 includes exactly k failures. This probability can be defined as P(j|i, k) = 1− (1− g[j|i])k. Then,
the conditional probability hi,j,m that component j fails in generation m + 1, given that component i
failed in generation m, over all possible values of k represents the actual elements of H and is found by
multiplying P(j|i, k) with the probability of k failures occurring as follows:

hi,j,m =
∞

∑
k=0

(1− (1− g[j|i]k))
λk

i,m

k!
e−λi,m . (1)
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Based on the influence graph, cascading failures can start with a line outage at a node of the
graph and propagate probabilistically along the directed links in the graph. Examples of other works,
that have used the influence-based approach to derive the graph of interactions for power grids
include [28–30].

3.1.1.4. Interaction Graph of Multiple and Simultaneous Failures

This class of methods also use the sequence of failures to model interactions among components
of the system; however, they consider the interactions among multiple simultaneous failures.

Specifically, in the study presented in [31], a Markovian graph was developed with the goal of
addressing the problem of capturing the effect of multiple simultaneous outages within generations
on the characterization of the interactions among the components of the successive generations in
a cascade. In this case, the nodes of the graph represent the states of the Markov chain defined as
the set of line outages in a generation of the cascade, and the links represent the transition among
the states (i.e., interactions between successive generations of outages). Hence, each node in the
graph may represent the outage of a single line or multiple lines. Markovian interaction graphs
differ from generation-based and influence-based interaction graphs as edges are the interactions
between successive generations of sets of line outages instead of the individual interactions between
line outages in successive generations. Markovian interaction graphs also consider a node with a null
state, which represents the state where the cascade stops. This state occurs at the end of all cascade
scenarios. The transition probabilities among the states (i.e., the weight of the links) from state i to
state j can be estimated by counting the number of consecutive states in which state i and state j occur
in all the cascades and dividing by the number of occurrences of state i.

Other studies that consider the interaction among multiple failures at the same time are presented
in [32,33]. In these works, the state of each component in the power grid, including buses and
transmission lines/transformers, is represented by 0 for a failed condition and 1 for a working
condition. Then, states of all components in the power grid are aggregated and represented by a vector
with size n + l, where n is the number of buses and l is the number of transmission lines/transformers.
A single state vector can be regarded as a node in the interaction graph, and there are exactly 2n+l

number of nodes in the graph, representing all possible states. Initially, all components in the power
grid are in working condition such that the initial state consists of a state vector i represented by all
ones. After a component failure occurs, the state of the component changes to 0, and the corresponding
entry of the component in the initial state vector i is also updated, and thus, a new state vector j is
formed. This transition is represented in the interaction graph by a directed link from the initial state
vector i to the updated state vector j. This process is continued for all sequences of failures in the
cascade dataset. Finally, some nodes in the state transition graph may be highly connected whereas
some nodes may be isolated. Note the obtained interaction graph is directed but unweighted.

Other examples of methods that consider interactions of multiple failures at the same time
include [34–37]. In these works, fault chains are used to construct a state failure network. Each fault
chain is also associated with its final load loss value. Note that the definition of a fault chain has already
been discussed in Section 3.1.1.1. Similar to the studies in [32,33], each component is represented by
binary values 0 or 1 for working and failed conditions, respectively. The working/failed conditions
for all components in the system are aggregated to form a state. Each state is an n-dimension vector,
where n is the number of transmission lines in the power grid. However, in contrast to the studies
in [32,33], where all possible states, i.e., 2n, are considered as nodes in the interaction graph, states are
enumerated from the fault chain data. For example, for a fault chain {l5 → l7 → l3 → l6} → loadloss,
four states are used for representing the four line faults in the chain, and a single state is used to
represent the total load loss associated with the fault chain. All such fault chains in the cascade
dataset are combined together into the state failure network. Nodes in the network represent the
states enumerated from the complete dataset, and links in the network represent the failed component
occurring immediately after a particular state. Thus, the links can be regarded as records of component
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failures that occur after a state. Next, nodes and links in the network are assigned weights by
back-propagation of the final load losses based on the probability of occurrence of the links. Thus,
each node (state) and each link (failed component) is associated with an expected load loss after
their occurrence.

3.1.2. Risk Graphs for Interaction Graph

The work presented in [38] introduces the risk-based interaction graphs, which describe the
interactions or relationships among the nodes (i.e., buses/substations) of the power grid based on
the effects of their simultaneous failures in causing damage in the system. This graph is not solely
focused on analysis of interactions among components during cascading failures. Instead, it is focused
on the vulnerability analysis of the power grid, and the effect of failures is assessed using metrics such
as net-ability, which measures the effectiveness of a power grid subjected to failures, based on power
system attributes including power injection limitation and impedance among the components.

Construction of risk graphs is done in two steps. The first step includes generating and tracking
the sets of strongest node combinations whose simultaneous failures have significant effects on the
power grid. Identification of such sets of strong node combinations can be done by reducing the search
space or exhaustive search methods [38,39]. Reduced search space strategy is the preferred method for
computational purposes. For instance, in [39], the search works as follows: given m-node combination
of components, which causes damage in the network, m + k-node combination (where k represents
additional components) should cause an even greater damage.

In the second step, these sets of strong node combinations are used to form the risk graphs. If a
node appears at least once in the sets of strong node combinations, then the node becomes a vertex of
the risk graph. Links among nodes in the risk graph exist if they appear in the same set of strong node
combinations. Both nodes and links in the risk graph are weighted based on the frequency of their
appearance in the sets of strong node combinations. This approach results in a weighted but undirected
node risk graph, where higher weight values on the links suggest stronger node combinations. Node
risk graphs are dependent on the system parameters such as ratio of capacity to the initial load of
the nodes in the system. To remove dependencies on system parameters, node risk graphs can be
constructed for multiple parameter values and combined together to form the node integrated risk
graph using the risk graph additivity property [38,39]. The aforementioned risk graph can also be
extended to a directed risk graph, where the removal of components in a specific order in strong
node combinations are considered. The study in [40] constructs the directed node risk graphs and the
directed node integrated risk graph with the same concept as its undirected counterpart in the studies
in [38] and [39].

Another similar concept to risk graph is the double contingency graph introduced in [41]. While m
contingency combinations of attack scenarios for the power grid was studied in the risk graphs,
many methods focus on N − 2 contingency analysis as the power grid is considered to be N − 1
protected [90]. In the double contingency graph, the vertices of the graph are the transmission lines,
and the links between vertices show pairs of transmission lines whose simultaneous failure as initial
triggers can affect the reliability of the system by, for instance, violating the thermal constraint rules in
the power grid. Similar to the risk graph, double contingency graph only considers combinations of
initial triggers and lacks information about the components, which will be affected due to the outage
of the initial triggers. Therefore, the work in [41] uses a combination of the double contingency graph
with influence graph for reliability analysis of the power grid.

3.1.3. Correlation-Based Interaction Graph

The work in [42] presents a graph of interactions for power grids based on the correlation among
the failures of the components. In the correlation-based interaction graph in [42], vertices represent
the transmission lines, and the edges represent the pairwise correlation between line failures in
the cascade dataset. The correlation dependence between failures are captured in the correlation
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matrix, whose ijth elements are positive Pearson correlation coefficient between the failure statuses
of components i and j in the cascade dataset. The resulting correlation matrix is symmetric and can
be interpreted as an undirected and weighted interaction graph, where the nodes are the failed lines,
the edges are the interactions between the lines, and the weights are the correlation values among the
components. Similarly, the studies in [29] and [30] also construct correlation-based interactions graphs
from simulated cascade dataset consisting of sequences of transmission line failures.

3.1.4. Comparison of Data-Driven Methods for Constructing Interaction Graphs

In the past decade, cascading failures have been actively modeled and analyzed using data-driven
interaction graphs. These graphs can be considered as abstract models of power grids for studying
cascading failures; as the physical details of the system such as generation, load consumption,
line power flows, capacity constraints, etc., are not explicitly considered; instead, they are implicitly
captured through the cascade data. This section provides a brief comparison among the data-driven
interaction graphs and discusses their key properties and limitations (summarized in Table 2).

One key difference among the data-driven methods for constructing interaction graphs is the type
of data that they need to build the graph. For instance, influence-based methods can be applied to both
simulation data as well as historical data. However, for the consecutive failure-based methods, such as
fault-chains, as well as risk graphs, the sequence of failures needs to be generated by targeted failure of
components to create a comprehensive list of failures to build the interaction graph. Moreover, as the
combinations of the initial targeted failures increase, the computational complexity of generating the
list of failures and building the risk graphs also increases.

Another difference among the data-driven methods is their ability in considering group
interactions; e.g., the consecutive failures-based methods can only consider one-to-one interactions
based on direct consecutive orders of failures. However, generation-based and influence-based
methods can consider the influence of a group of components on another group of components (using
the concept of generations) and use it to define one-to-one interactions among pairs of components.
Multiple and simultaneous failures interaction methods not only consider the influence of a group of
components on another group but also allow for interaction links among groups of components instead
of individual pairs of components. The data-driven methods for constructing interaction graphs result
in directed graphs except for the correlation-based method. The correlation-based method cannot
capture the order and direction of interactions due to symmetric properties of the correlation measure.
Another challenge with the correlation-based method is that the method generally results in dense
graphs, with many links showing small correlations among the components, which may need to be
thresholded or applied with other techniques to be able to focus on more significant correlations.
In general, one of the key limitations of the data-driven methods is the heavy dependency of the
derived graphs and inferred interactions on the dataset and the applied method, which may lead to
overestimation/underestimation of the interactions. As shown in [29,30], interaction graphs derived
from different outage data are different and can lead to different conclusions; e.g., the operating setting
of the power grid (such as its loading level) will affect the cascade process and the cascade dataset [91]
and, consequently, lead to different interaction graphs. Using a single interaction graph to model
power grids and capture all possible operating setting conditions that can affect the system is still a
challenge to address. There is also a need to test the interaction graphs to historical cascade data [64].
Historical data shows the heavy-tailed distribution of blackout sizes and can be used to benchmark the
data-driven interaction graphs [64]. Similarly, cross validating the various techniques with each other
may also provide insights into the most useful techniques in extracting interactions from cascade data.
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Table 2. Key properties and limitations of the methods for building data-driven interaction graphs.

Category Key Properties Limitations

Outage Sequence:
Consecutive
Failures

• Simple derivation of interactions based on consecutive order of failures, resulting in
directed graphs.

• Weights of interactions are assigned using various methods, e.g., statistical analysis or
physical/electrical properties of the system.

• Only considers direct one-to-one consecutive interactions
in cascades.

• Does not consider interactions between groups of components.

Outage Sequence:
Generation-based
Failures

• Interactions are considered between groups of components (based on the concept of
generations) and are used to define one-to-one interaction links between components
of consecutive generations.

• Considers order of failures/interactions, resulting in directed graphs.

• Interactions between groups of components of two consecutive
generations characterized using various methods (may
overestimate/underestimate the interactions).

Outage Sequence:
Influence-based • Generation-based interactions are considered to define one-to-one interaction links

between components based on the influence framework.
• Considers order of failures/interactions, resulting in directed graphs.
• Considers propagation rate of line outages as well as their probability of causing

further outages through influence framework.
• Influence-based framework provides mathematical tractability for certain analysis of

the dynamics of failures.

• Interaction links among all pairs of components of two
consecutive generations may overestimate the interactions.

Outage Sequence:
Multiple and
Simultaneous
Failures

• Characterizes simultaneous interactions between groups of components instead of
only one-to-one interactions between pairs of individual components.

• Considers order of failures/interactions, resulting in directed graphs.
• Considers group interactions, eliminating the challenge of overestimation or

underestimation of pair-wise interactions between individual components.

• The number of nodes in the resulted graphs (to capture
possible states of group interactions) will be large.

Risk-graph
• Characterizes the interactions based on targeted failures of the components, resulting

in directed graphs.
• Requires small dataset for small number of targeted failures.

• Interactions between groups of components are not considered.
• Reduced performance when number of targeted

failures increase.

Correlation-based
• Uses simple statistical correlation measure to construct the graph. • Does not consider the order of failures in interactions.

• Does not consider group interactions.
• Resulted graphs are usually dense.
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3.2. Electric Distance-Based Interaction Graphs

While there is abundant literature focused on data-driven interaction graphs, various methods
have been proposed for modeling interactions among the components using the dynamics of power
flow as well as the physical/electrical properties of the system and components. In this review,
such methods are called electric distance-based methods.

In a power grid, electricity does not flow through the shortest path between two nodes i and j.
Instead, it can flow through parallel paths between nodes i and j based on the physical properties of
the system and its components as well as the physics of electricity (i.e., Ohm’s law). Thus, the electrical
interactions between the components may extend beyond the physical topology and the direct
connections in the power grid. The concept of electric distance was first introduced by Lagonotte
et al. [78] in 1989 as a measure of coupling between buses in the power system and was based on
sensitivities in the power system due to changes in voltage magnitudes. There are various methods in
the literature for characterizing the electrical distances between components. These methods can use
distribution factors in power grids including power transfer distribution factor (PTDF) [92], which indicates
the change in real power on transmission lines due to changes in real power injection at different
nodes of the system, and line outage distribution factor (LODF) [93], which measures the changes in the
power flow of transmission lines due to the outage of another line. Next, the electric distance-based
methods for constructing interaction graphs are discussed in two categories: outage condition-based
and non-outage condition-based as shown in Table 3.

3.2.1. Outage Condition-Based Interaction Graph

This class of methods for characterizing electric distance-based interaction graphs are focused
on interactions among the components of the power grid during outage conditions. For instance,
in the study presented in [44], interactions among the components as well as their weights are derived
using the changes in the power flows in transmission lines during outage conditions. Thus, the outage
induced interaction graph Gi consists of the set of vertices Vi that represent the transmission lines
and the set of edges Ei that represent the impact of outage of one line on another. This impact is
characterized using LODF [93], where LODF for line ei,j ∈ Ei is calculated based on the ratio of the
impact of outage of line i on line j based on the reactance of all possible spanning tree paths between
the lines, over the impact of outage of line i on line j using the reactance of all alternative spanning
tree paths where the power can flow (i.e., excluding the spanning tree path of line i) [43].

However, during cascading failures, the impact of a failed line on the remaining lines is not
limited to changes in power flows. In a power grid, if two or more lines share a bus, outage of one
line may expose the remaining lines (connected through the same bus) to incorrect tripping due to
malfunctioning of the protection relays. The exposed lines are prone to failure and an increase in power
flow in the exposed lines exacerbates their tripping probability causing further outages. Such failures
are known as hidden failures. In the studies in [45–47], vertices Vi represent transmission lines as
well as a hidden failure state, and edges Ei represent inter-line interactions as well as interactions
between lines and the hidden failure state. Thus, the interaction graph Gi will have n + 1 nodes
where n is the number of transmission lines, and the extra one node represents the hidden failure
state. The hidden failure node has bidirectional links from itself to every other node in the power grid.
However, the hidden failure node does not have any influence on itself. The inter-line interaction
ei,j ∈ Ei shows the increase of power flow in line j due to outage of line i. The interaction from the
hidden failure node to a line i reflects the likelihood of failure of line i due to the failure of other
nodes when the power flow in line i exceeds a flow limit margin. Interaction from line i to the hidden
failure node reflects the average tripping probability of all the other lines due to the outage of line
i. This interaction can be regarded as the aggregated influence that the outage of line i has on the
tripping probability of all the other remaining lines.
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Table 3. Classification of existing studies using the electric distance-based taxonomy.

Category Subcategory Further Subcategory Works

Electric Distance-based

Interaction Graphs

Outage Condition-based [43–47]

Non-outage Condition-based
Impedance-based [24,48–59]

Jacobian [52,60–63]

3.2.2. Non-Outage Condition-Based Interaction Graphs

This class of methods for constructing the electric distance-based interaction graphs is focused
on interactions among the components of the power grid during normal operating conditions.
For instance, measures to capture the characteristics of the power flow paths between components,
such as impedance of the transmission lines, can be used to form electric distance-based interaction
graphs. Moreover, power system sensitivities based on PTDF and the ones showing changes in voltage
magnitudes and voltage phase angles, derived from Jacobian matrices during normal conditions,
can also be used to form electric distance-based interaction graphs. In this paper, non-outage
condition-based interaction graphs are broadly categorized into two categories: impedance-based and
Jacobian. Next, both categories are discussed in detail.

3.2.2.1. Impedance-Based Interaction Graph

Impedance-based electric distance interaction graphs Gi consist of vertices Vi that represent
buses and edges Ei that represent electrical interactions between pairs of buses weighted by their
corresponding impedance-based electrical distances. Inverse admittance matrix, more commonly
known as the impedance matrix Z, is one of the simplest forms of representing electrical interactions
between pairs of buses in the system and is found by inverting the system admittance matrix Y,
i.e., Z = Y−1. Matrix Z shows the relationship between the nodal bus voltage vector and the nodal
current injection vector. However, unlike matrix Y, which is sparse, impedance matrix Z is non-sparse
as it represents the changes in nodal voltage throughout the system due to a single nodal current
injection between a pair of nodes in the system. Therefore, edges in the impedance-based interaction
graph are the connections between the elements in the Z matrix with weights between buses i and
j corresponding to their absolute value of the impedance, i.e., |Zij| [48–52]. Smaller magnitudes of
impedance represent shorter electric distance between buses. Note that the individual elements Zij in
matrix Z are complex valued. The studies in [53–55] also adopt the concept of representing electrical
distances between buses using the Thevenin equivalent impedance between buses but apply the
condition that power only flows from generator buses to load buses such that impedance values
between generator buses and load buses suggest edges in the interaction graph. Similarly, in the
study in [56], in addition to the impedance between pairs of generator and load buses in the system,
the power flows through the lines along the path between the pairs of buses is considered. Therefore,
electrical connections between generator and load buses i and j along path k, are weighted by the
impedance between buses i and j as well as the PTDF of the lines along the path k of power flows
between the buses. In the studies in [53–56], matrix Z has dimension ZG× ZL, where ZG and ZL are the
number of generator and load buses, respectively. Thus, matrix Z may be asymmetric, depending on
the number of generators and load as well as the entry of the elements suggesting that the interaction
graph is directed.

Note that studies in [48–56] are not focused on cascading failures, but their concept of formulating
impedance-based electrical distances can be extended for studying cascade processes. For example, in
the study in [24], transmission lines are considered as the nodes of the interaction graph, and thus,
impedance-based electric distances between pairs of transmission lines are assigned as weights of the
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interaction links. To find the electric distance between transmission lines i and j, where line i connects
bus is to id and line j connects bus js to jd, the minimum of the four possible Thevenin equivalent
impedances between the pairs of buses, i.e., Zis js , Zis jd , Zid js , and Zid jd is taken. This interaction graph is
also the third layer of the multi-layered interaction graph discussed in Section 3.1.1.2 used for modeling
cascading failures.

Cascading failures can also be studied by representing interactions between pairs of nodes by
effective resistances between the nodes. Effective resistance, Rij, between nodes i and j, also known as
Klein resistance distance [94], is the equivalent resistance of all parallel paths between the nodes. It was
initially introduced in the study in [94] as a measure of distance in graph theory, and in the context of
power systems, it shows the potential difference between nodes i and j due to unit current injection at
node i and withdrawal at node j. While impedance-based electrical distances between nodes account
for non-linear approximations of power flow, effective resistances only consider linear approximations
of power flows in the grid. For cascading failure analysis, as the impedance of a transmission line in a
high voltage transmission network is dominated by the imaginary part of impedance, i.e., reactance,
the effective resistance between nodes can be formulated in terms of their reactance. Thus, in the
studies in [57–59], effective resistance between nodes i and j is found as Rij = Qii − 2Qij + Qjj where,
Qij is the row i and column j element of Q+, which is the Penrose pseudo-inverse of the Laplacian
matrix Q. Matrix Q is defined as the difference between the weighted diagonal degree matrix and the
weighted adjacency matrix derived from the physical topology and shows the relationship between
the buses and transmission lines in the grid. In the studies in [57–59], the weights of the edges in the
physical topology required for finding the weighted diagonal degree matrix and adjacency matrix are
the susceptance (i.e., the imaginary part of impedance) values between the nodes. Note that matrix
Q constructed using susceptance values is equivalent to matrix Y. Thus, edges Ei in the effective
resistance interaction graph reflect the electrical connections between the buses with weights between
nodes i and j being the corresponding Rij values.

3.2.2.2. Jacobian Interaction Graph

Electric distance-based interaction graphs can also be constructed using the sensitivity matrix
of the power grid during normal operating conditions. In such interaction graph Gi, vertices Vi
represent the buses, and the edges Ei represent the electrical interactions in terms of sensitivities
between the buses. These sensitivities can be found using the Jacobian matrix, which is obtained
during Newton–Raphson-based load flow computation. Jacobian sensitivity matrix J shows the effect
of complex power injection at a bus on the voltage magnitude and voltage phase angles of other buses.
It consists of four sub-matrices: matrix JPθ, which shows the relationship between nodal active power
injections and voltage phase angle changes; matrix JPV, which shows the relationship between nodal
active power injections and voltage magnitude changes; matrix JQθ, which shows the relationship
between nodal reactive power injections and voltage phase angle changes; and matrix JQV, which
shows the relationship between nodal reactive power injections and voltage magnitude changes. The
inverse of any of these Jacobian sub-matrices, denoted as J−1, can be used to find the sensitivity matrix
by using the Klein resistance distance [94], whose individual element is calculated as xii + xjj− xij− xji,
where xij represents the element in row i and column j of the inverted Jacobian sub-matrix J−1 in
consideration. In the study in [52], all of the four Jacobian sub-matrices are applied to Klein resistance
distance to form sensitivity matrices for the purpose of visualizing power grids, which in turn can
be used to form interaction graphs whose edges Ei represent the electrical interactions between the
components of the sensitivity matrices weighted by their corresponding elements.

However, the literature has revealed that most studies are focused on two of the four Jacobian
sub-matrices, i.e., matrix JPθ and matrix JQV. The remaining sub-matrices JQθ and matrix JPV are not
used in the literature due to un-intuitive interpretations. The seminal work of electrical distances by
Lagonotte et al. in [78] focuses on using the Jacobian sub-matrix (JQV), also known as the voltage
sensitivity matrix ∂V/∂Q, to find the electric distance between buses. Similarly, the study in [60]



Energies 2020, 13, 2219 16 of 25

also uses the voltage sensitivity matrix. In both studies, the matrix of maximum attenuations is
found, which consists of columns of voltage sensitivity matrix divided by the diagonal values. Finally,
electrical interactions ei,j ∈ Ei between buses i and j weighted by their electric distance is derived as
the logarithm of the individual elements of the attenuation matrix. The study in [61] also uses the
voltage sensitivity matrix to find electric distance between buses, but instead of finding matrix of
attenuations, the study applies the sensitivity matrix to Klein resistance distance formulation. Note
that studies in [60,61] analyze risk of cascading failures by studying the voltage collapse phenomenon,
which is a sequential process during which large parts of the power grid may suffer due to low
voltages [95]. Similarly, the studies in [62] and [63] apply the Jacobian sub-matrix JPθ or the sensitivity
matrix ∂P/∂θ to Klein resistance distance and find electrical distances between buses. However, the
studies [62,63] are not focused on cascading failure analysis but are included in this review as their
electric distance-based interaction graphs can have potential implications for analyzing cascading
failures.

3.2.3. Key Properties and Limitations of Electric Distance-Based Interaction Graphs

In this section, key properties and limitations of the electric distance-based interaction graphs are
briefly discussed. However, various methods are not directly compared as different methods have
different applications as well as concepts in their models.

Electric distance-based methods consider the fundamental characteristics of a power grid and
the power flow while defining interactions among components. These graphs differ from data-driven
interaction graphs as they directly use the inherent electrical properties of power grids based on
Kirchoff’s and Ohm’s laws. They are also not specific to cascading failure studies and can be used for a
variety of applications such as contingency analysis [49], reliability studies for defining zones for load
deliverability analysis [51], response to targeted attacks [55], and so on. Specifically, grid attributes
such as admittance/impedance matrices, Jacobian matrices, and PTDF’s reflect the operational features
of power grids and can be used for the mentioned applications. Since these graphs do not rely on
extensive simulation data, computational complexity of finding such graphs is relatively small.

For cascading failure analysis, LODF-based interaction graphs [43,44] as well as interaction graphs
showing the impact of hidden failures [45–47] on lines during cascades have been used. These methods
usually work well for cascade scenarios involving a small number of contingencies and smaller sized
system. However, constructing such interaction graphs for cascade studies involving a large number
of contingencies is computationally expensive. To this end, effective resistance-based interaction
graphs can be used for cascade studies, as they can be easily produced by finding the effective
resistance [57–59] between components without extensive power flow simulations. In addition to
the above mentioned applications, electric distance-based interaction graphs can also be used for
visualizing distinct electrical structure of power grids in two dimensions [52].

4. Reliability Analysis Using Interaction Graphs of Power Grids

Interaction graphs constructed in Section 3 can be used for various analysis; specifically related to
the reliability of the power grid, including analyzing the role of components and finding critical ones
that contribute heavily in a cascade process, predicting distribution of cascades sizes, and studying
patterns and structures that reveal connections and properties of the components in the power grid
that extend beyond physical topology-based graphs. Thus, reliability studies performed using these
interaction graphs are divided into various categories as discussed below.

4.1. Critical Component Analysis

The studies that identify and analyze the role of critical components in power grid’s reliability are
classified into three broad categories that include (1) using pre-existing as well as novel measures to
find critical buses/transmission lines, (2) evaluating attack strategies that cause significant damage
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in the power grid, and (3) employing mitigation measures such as upgrading transmission lines or
adding new components to protect the identified critical components.

4.1.1. Critical Component Identification

This class of reliability analyses focus on finding critical buses/transmission lines by analyzing
structural properties of interaction graphs using standard centrality measures such as degree,
betweenness, etc. (for a review of standard centrality measures, refer to [85]) or by defining novel
interaction graph based metrics.

4.1.1.1. Critical Component Identification Using Standard Centrality Measures

In the studies presented in [14–16,18–20], fault chain-based interaction graphs are found to be
scale free graphs, indicating that most nodes possess low degrees but a limited number of nodes
possess high in and out degrees. Thus, in the fault chain-based interaction graphs, vertices with higher
degrees are assumed to be the critical components of the system. Similar conclusions are obtained
by authors in the studies in [50,54], where the impedance-based interaction graph is observed to be
scale-free and consisting of a limited number of nodes with high degrees, which are considered as the
critical components of the system. These are examples of works that consider the degree centrality
measure to identify critical components of the system. Other centrality measures such as betweenness,
eigenvector, and PageRank have also been considered on interaction graph-based representations of
power grids including [45,47,61] to find critical components of the system.

4.1.1.2. Critical Component Identification Using New Centrality Measures

In addition to the studies that rely on standard centrality measures; some works develop new
centrality measures in the context of power grids and the developed interaction graphs to analyze
criticality of the components. For instance, in the generation-based interaction graphs [21–24,26],
out-strength measure, which is the sum of the weights of the interaction links originating from a node,
is used to find critical transmission lines. Such lines are the ones whose failure at any stage of the
cascade including the initial stage or the propagation stage induces failure in a significant number
of other transmission lines. Outages in the initial stages are caused by external factors such as bad
weather conditions, improper vegetation management, and exogenous events, whereas outages in the
propagation stage is due to power flow re-distributions, hidden failures, and other interactions between
components as discussed in Section 2.1. Influence-based [27,28] and multiple and simultaneous
failure [31] interaction graphs are also used to find critical transmission lines, but they explicitly
focus on lines whose failure during the propagation stage of cascading failures causes large cascades.
Particularly, the studies in [27,28] use a cascade probability vector derived using the influence-based
interaction graph to quantify the probability of failure of lines during the propagation stage of cascades
and define critical lines as the ones whose corresponding entries in the probability vector have higher
values. Similarly, the study in [31] finds the probability distribution of states of the multiple and
simultaneous failure-based interaction graph and defines critical lines as the ones that belong to
states with higher probability of occurrence. Influence-based and correlation-based interaction graphs
constructed in the studies in [29,30] are also used to find the critical transmission lines during cascade
processes by using a community-centrality measure. As the name suggests, the measure quantifies the
criticality of transmission lines based on their community membership, where critical lines are the ones
that belong to multiple communities or act as bridges between communities. Note that communities
are defined as groups of vertices with strong connections among themselves and few connections
outside (for definition of communities and a review of community detection methods on graphs,
refer to [96]).

Identification of critical lines is not limited to data-driven interaction graphs. Multiple studies
use electric distance-based interaction graphs for such analysis as well. Effective resistance between
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components in the effective resistance-based interaction graph can be summed for all node pairs in
the graph to find the effective graph resistance metric of the power grid. Effective graph resistance
metric was initially defined in the study in [94] as Kirchhoff index and used in the study in [97] as a
robustness metric. Lower values of this metric suggest that the power grid is robust to cascading
failures. Effective graph resistance can also be found using the eigenvalues and eigenvectors of the
Laplacian matrix of the grid [98]. In the study in [57], critical transmission lines are found by measuring
the changes in effective graph resistance before and after the removal of the line. In a similar manner,
impedance-based interaction graphs constructed in the study in [56] and [53] are also used to find
critical transmission lines by measuring the changes in net-ability metric before and after the removal
of a line. Net-ability reflects the performance of a network by quantifying the ability of a generator to
transfer power to a load within the power flow limits.

4.1.2. Studying the Effect of Line Upgrades and Line Additions on Reliability of Power Grids

While identification of critical components in the power grid is necessary, assessing the impact
of modifications and protection of such critical components in the overall power grid is the next step
in the study. In the studies presented in [27] and [28], an influence interaction graph-based metric
is used to quantify the impact of upgrading the critical lines (for example, by improving vegetation
management around the lines or by improving protection systems) on cascade propagation. The work
in [31] uses the multiple and simultaneous failure-based interaction graph to do a similar study. In both
interaction graphs, the authors conclude that upgrading lines that take part in the propagation of
failures during cascades reduces the risk of large cascades compared to the upgrade of lines that initiate
cascades. While the studies in [27,28] investigate the performance of the power grid networks after
line upgrades, the studies in [58] and [59] use effective graph resistance metric to study the impact
of adding transmission lines in optimal locations of the power grid. However, in [59] the authors
warn that placing an additional line between a pair of nodes does not necessarily imply increased
robustness of the grid. In fact, grid robustness may decrease after adding additional lines (due to
Braess’s paradox [99]), if the additions are done haphazardly.

4.1.3. Analyzing Response to Attack/Failure Scenarios

In addition to identifying critical components and characterizing the impact of their modifications
in the reliability of power grids, the study of the response of power grids to attacks and failures is also
necessary. Such studies can be used to find critical components and attack strategies that threaten the
reliability of the overall power grid. In the studies in [38–40], node integrated risk graphs are used to
find groups of transmission lines whose removal from the graph causes the largest drop in net-ability
of the power grid, as discussed in Section 3.1.2. These groups can be found in real-time independent of
system parameters. The study in [59] also analyzes the robustness of power grids to deliberate attacks
using the effective graph resistance metric, as discussed in Section 4.1.1.2.

4.2. Prediction of Cascade Sizes

Forecasting cascade sizes is another challenge in the reliability analysis of power grids. In the
study in [42], a correlation graph-based statistical model, known as the co-susceptibility model, is used
to predict cascade size distributions in transmission network of power grids using individual failure
probabilities of transmission lines as well as failure correlations between transmission lines found
from the correlation matrix. The study exploits the idea that groups of components that have higher
correlations are likely to fail together and uses the correlation matrix to find such co-susceptible groups,
which is an approximate estimate of the cascade size given an initial trigger failure. A similar idea
is used in the studies in [29,30], where components within the same community are assumed to be
likely to fail together, and the size of communities gives an approximation of cascade sizes. The study
in [31] also characterizes size of cascades by using the states of the Markov chain to find the probability
distribution of the number of generations in a cascade.



Energies 2020, 13, 2219 19 of 25

4.3. Studying Patterns and Structures in Interactions

Structures and patterns in networks are important in describing the spread of various processes
such as infectious diseases, behaviors, rumors, etc. [100–102]. For instance, in the studies in [29,30,43,44],
structures present in the interaction graphs of power grids are used to study the impact of cascading
failures in the transmission network and utilize the graph structure to mitigate large cascades.
The graph structure considered in the studies in [29,30] are communities whereas the graph structure
considered in the studies in [43,44] are tree partitions.

In the study in [43], tree structures present in the outage condition-based interaction graph showed
that transmission line failures could not propagate across common areas of tree partitions. Further, the
extended work of [43] in [44] found the critical components of the tree partitions, known as bridges.
The failure of bridge lines plays a crucial role in the propagation of cascading failures. However, failure
of non-bridge components does not propagate failures and the impact is more likely to be contained
inside smaller regions/cells. This important property of bridge lines is used in mitigation of cascading
failures by switching off transmission lines that cause negligible network congestion as well as improve
the robustness of the system. Similarly, in the studies in [29,30], influence-based and correlation-based
interaction graphs were used to limit propagation of cascading failures inside community structures.
Particularly, the authors used the idea that failures can be trapped within communities by protecting
the bridge/overlap nodes, which connect multiple communities together.

Purposes of analyzing structures present in the interaction graphs are not limited to mitigation of
cascading failures. For instance, in the study in [49], network structures were used for contingency
analysis. The impedance-based interaction graph in [49] was pruned by removing edges above an
operator defined threshold. Then, the common structure between the pruned impedance-based
interaction graph and the topological graph of the power grid was analyzed and verified to be the
contingencies that violate transmission line limits and cause overloads. Similarly, the study in [51]
identified zonal patterns in the impedance-based interaction graph for reliability assessment of zones
for load deliverability analysis.

5. Summary

Analyzing interactions among the components of power grids during cascading failures can
reveal important information about the failure propagation process in these systems and the role of
the components in the process. It was discussed that the physical topology of the power grids have
limitations in modeling cascading failure process in power grids. As such, new methods are emerging
to capture non-local influences/interactions among the components of the power grid. In this survey,
various techniques for constructing the graph of interactions (beyond the physical topology of the
power grid) were reviewed. A novel taxonomy was presented for classifying the existing research
studies into various categories and subcategories based on the type of data and techniques used in
inferring the interactions and creating the graph model of the system. Finally, a brief overview of
various reliability analysis studies based on the interaction graphs was presented.

Specifically, the presented taxonomy introduced two main categories for the methods of
constructing interaction graphs: data-driven and electric distance-based approaches. The key
properties and limitations of various techniques in each category as well as an overview of the
methods in each category have been discussed. While for data-driven methods, availability of cascade
data is a necessity, the electric distance-based methods rely on accurate physical models of the system
(which are not required for data-driven methods). Therefore, depending on the availability of the data
or the physical model of the system, one can choose between these categories of methods. Moreover,
as the existing methods use various information for inferring and modeling interactions, they can shed
light on various aspects of the cascade process and reliability and vulnerability of the components.
As such, depending on the analysis of interest, different techniques can be selected. Studies in both
areas of data-driven and electric distance-based approaches are ongoing, and it can be expected that
these methods will greatly contribute in providing new understandings about the cascade process in
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power grids. Furthermore, in the area of cascading failure reliability analysis based on interaction
graphs, recent literature is more inclined towards identifying structures and patterns in the interaction
graphs to study the vulnerabilities in power grids. However, other analyses, such as predicting the
path and size of the cascades, can also utilize the interaction graphs of the system.

Next, future directions of research related to the interaction graphs for cascading failure analysis
are briefly reviewed. One of the key areas of research in this domain would be to relax the dependence
of the constructed interaction graph on the applied method, data, and operating characteristics of
the system. As discussed in this survey, the method used for inferring the interactions; the available
data; and the operating setting of the system, such as the loading level of its components, all affect the
interaction graphs. It is important to be able to derive unified graphs of interactions that implicitly
capture the effect of such factors in the model. Moreover, the computational complexity of constructing
interaction graphs (which increases with the size and scale of power grids) has limited their application
to off-line analysis of reliability. This limitation suggests the need for further research in developing
more effective data-driven and electric distance-based methods for developing real-time analysis based
on interaction graphs for time sensitive analysis during cascading failures.

In addition, most of the existing studies using the interaction graphs are observed to be focused
on the identification of the critical components of the power grid. Such analyses can be a step towards
developing mitigation strategies that can be applied to create more reliable power grids. As such, it is
important that practical and economically feasible mitigation strategies be studied and developed,
based on the insights provided by the interaction graphs.

Finally, in order to create resilient and reliable power grids, it is important to understand the role
of interactions among the components of the system in reliability challenges, such as cascading failures,
as discussed in this paper. However, in addition to the reliability analysis of the physical components
of the system, it is also important to consider soft factors, such as human factors and their influences on
the system as well as operating policies in reliability analysis and planning. Such interaction analyses
will be an essential research direction for future studies of cascading failures and one example of such
study is presented in the work in [103].
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