Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage
Abstract
:1. Introduction
2. Experimental
2.1. Material and Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Surface and Structure Analysis
3.2. Textural Properties Analysis
3.3. Hydrogen Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zervos, A.; Boer, C.L.; Tesniere, L. Mapping Renewable Energy Pathways towards 2020—EU Roadmap; European Renewable Energy Council: Brussels, Belgium, 2011. [Google Scholar]
- Götz, M.; Kolb, T.; Reimert, R. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Niaz, S.; Manzoor, T.; Pandith, H.A. Hydrogen storage: Materials, methods and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 457–469. [Google Scholar] [CrossRef]
- Ren, J.; Nicholas, M.; Shijun, L. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. Int. J. Hydrogen Energy 2017, 42, 289–311. [Google Scholar] [CrossRef]
- Burchell, T.D. Carbon Materials for Advanced Technologies; Elsevier Science Ltd.: Oxford, UK, 1999. [Google Scholar]
- Peng, S.; Li, L.; Tian, L.L.; Adams, S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 2016, 22, 361–395. [Google Scholar] [CrossRef]
- Policicchio, A.; Maccallini, E.; Ciuchi, F.; Giordano, G. Higher methane storage at low pressure and room temperature in new easily scalable large-scale production activated carbon for static and vehicular applications. Fuel 2013, 104, 813–821. [Google Scholar] [CrossRef]
- Pantò, F. Electrospun C/GeO2 paper-like electrodes for flexible Li-ion batteries. Int. J. Hydrogen Energy 2017, 42, 28102–28112. [Google Scholar] [CrossRef]
- Faye, O.; Szpunar, J.A. An Efficient Way To Suppress the Competition between Adsorption of H2 and Desorption of nH2–Nb Complex from Graphene Sheet: A Promising Approach to H2 Storage. J. Phys. Chem. C 2018, 122, 28506–28517. [Google Scholar] [CrossRef]
- Faye, O.; Tanveer, H.; Amir, K.; Jerzy, S. Tailoring the capability of carbon nitride (C3N) nanosheets toward hydrogen storage upon light transition metal decoration. Nanotechnology 2018, 30, 075404. [Google Scholar] [CrossRef]
- Gajdics, M.S.T.; Kovács Kis, V.; Béke, F.; Novák, Z.; Schafler, E.; Révész, Á. Microstructural Investigation of Nanocrystalline Hydrogen-Storing Mg-Titanate Nanotube Composites Processed by High-Pressure Torsion. Energy 2020, 13, 563. [Google Scholar] [CrossRef] [Green Version]
- Gadipelli, S. Superior Multifunctional Activity of Nanoporous Carbons with Widely Tunable Porosity: Enhanced Storage Capacities for Carbon-Dioxide, Hydrogen, Water, and Electric Charge. Adv. Energy Mater. 2020, 10, 1903649. [Google Scholar] [CrossRef]
- Belaustegui, Y.; Zorita, S.; AntonuccI, P.; Panto, F. Electro-spun graphene-enriched carbon fibres with high nitrogen-contents for electrochemical water desalination. Desalination 2018, 428, 40–49. [Google Scholar] [CrossRef]
- Yang, J.; Yue, L.; Hu, X.; Zhao, Y.; Lin, Y. Efficient CO2 Capture by Porous Carbons Derived from Coconut Shell. Energy Fuels 2017, 31, 4287–4293. [Google Scholar] [CrossRef]
- Titirici, M.-M.; White, R.J.; Brun, N. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, B.; Dong, S.Y.; Hao, X.D. Biomass derived carbon for energy storage devices. J. Mater. Chem. A 2017, 5, 2411–2428. [Google Scholar] [CrossRef]
- Schröder, E.; Oechsler, K.T.B.; Herberger, S. Activated Carbon from Waste Biomass. In Progress in Biomass and Bioenergy Production; Shaukat, S.S., Ed.; IntechOpen, University of Karachi: Karachi, Sindh, Pakistan, 2011. [Google Scholar]
- Khalil, H.P.S.A.; Jawaid, M. Activated Carbon from Various Agricultural Wastes by Chemical Activation with KOH: Preparation and Characterization. J. Biobased Mater. Bioenergy 2013, 7, 708–714. [Google Scholar] [CrossRef]
- Zhang, F.; Li, G.-D.; Chen, J.-S. Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources. J. Colloid Interface Sci. 2008, 327, 108–114. [Google Scholar] [CrossRef]
- Deng, J.; Li, M.; Wang, Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion. Green Chem. 2016, 18, 4824–4854. [Google Scholar] [CrossRef]
- Gao, Z. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 2017, 5, 69–88. [Google Scholar] [CrossRef]
- Wang, H.; Yu, W.; Shi, J.; Mao, N. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim. Acta 2016, 188, 103–110. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, Z.; Cai, M.; Zhang, J. Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int. J. Hydrogen Energy 2013, 38, 9243–9250. [Google Scholar] [CrossRef]
- Xiao, Y.; Dong, H.; Long, C.; Zheng, M.T. Melaleuca bark based porous carbons for hydrogen storage. Int. J. Hydrogen Energy 2014, 39, 11661–11667. [Google Scholar] [CrossRef]
- Heo, Y.-J.; Park, S.-J. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. J. Ind. Eng. Chem. 2015, 31, 330–334. [Google Scholar] [CrossRef]
- Bader, N.; Ouederni, A. Optimization of biomass-based carbon materials for hydrogen storage. J. Energy Storage 2016, 5, 77–84. [Google Scholar] [CrossRef]
- Choi, Y.-K.; Park, S.-J. Preparation and characterization of sucrose-based microporous carbons for increasing hydrogen storage. J. Ind. Eng. Chem. 2015, 28, 32–36. [Google Scholar] [CrossRef]
- Ramesh, T.; Rajalakshmi, N.; Dhathathreyan, K.S. Synthesis and characterization of activated carbon from jute fibers for hydrogen storage. Renew. Energy Environ. Sustain. 2017, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Manocha, S. Activated carbon from biomass. AIP Conf. Proc. 2013, 1538, 120–123. [Google Scholar]
- Jiménez, V.; Paula, S. Hydrogen storage in different carbon materials: Influence of the porosity development by chemical activation. Appl. Surf. Sci. 2012, 258, 2498–2509. [Google Scholar] [CrossRef]
- Min, S.; Bao, S.; Jin, R.; Xiao, L.; Wu, Y.; Zhong, Z.; Huang, Y.J. The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass Bioenergy 2013, 48, 250–256. [Google Scholar]
- Härmas, M. Microporous–mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them. J. Power Sources 2016, 326, 624–634. [Google Scholar] [CrossRef]
- Sethia, G.; Sayari, A. Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 2016, 99, 289–294. [Google Scholar] [CrossRef]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Minoda, A. Synthesis of KOH-activated porous carbon materials and study of hydrogen adsorption. J. Alloy. Compd. 2013, 580, S301–S304. [Google Scholar] [CrossRef]
- Masika, E.; Mokaya, R. Hydrogen Storage in High Surface Area Carbons with Identical Surface Areas but Different Pore Sizes: Direct Demonstration of the Effects of Pore Size. J. Phys. Chem. C 2012, 116, 25734–25740. [Google Scholar] [CrossRef]
- Gogotsi, Y. Importance of pore size in high-pressure hydrogen storage by porous carbons. Int. J. Hydrogen Energy 2009, 34, 6314–6319. [Google Scholar] [CrossRef]
- Cabria, I.; López, M.J.; Alonso, J.A. The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 2007, 45, 2649–2658. [Google Scholar] [CrossRef]
- Sangchoom, W.; Mokaya, R. Valorization of Lignin Waste: Carbons from Hydrothermal Carbonization of Renewable Lignin as Superior Sorbents for CO2 and Hydrogen Storage. ACS Sustain. Chem. Eng. 2015, 3, 1658–1667. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Bello, A. Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv. 2016, 6, 1800–1809. [Google Scholar] [CrossRef] [Green Version]
- Duman, G. Production of Activated Carbon from Pine Cone and Evaluation of Its Physical, Chemical, and Adsorption Properties. Energy Fuels 2009, 23, 2197–2204. [Google Scholar] [CrossRef]
- Blankenship Ii, T.S.; Balahmar, N.; Mokaya, R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat. Commun. 2017, 8, 1545. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Seaton, N.A.; Walton, J.P.R.B.; Quirke, N. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 1989, 27, 853–861. [Google Scholar] [CrossRef]
- Policicchio, A. Volumetric apparatus for hydrogen adsorption and diffusion measurements: Sources of systematic error and impact of their experimental resolutions. Rev. Sci. Instrum. 2013, 84, 103907. [Google Scholar] [CrossRef] [PubMed]
- Qu, D. Investigation of Hydrogen Physisorption Active Sites on the Surface of Porous Carbonaceous Materials. Chem. Eur. J. 2008, 14, 1040–1046. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Haul, D.H.E.L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems. In Handbook of Heterogeneous Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germania, 2008; pp. 1217–1230. [Google Scholar]
- Xin, W.; Song, Y. Mesoporous carbons: Recent advances in synthesis and typical applications. RSC Adv. 2015, 5, 83239–83285. [Google Scholar] [CrossRef]
- Toth, J. Adsorption Theory, Modeling and Analysis; Marcel Dekker: New York, NY, USA, 2020. [Google Scholar]
- Minuto, F.D.; Aloise, A.; Policicchio, A. Liquid-like hydrogen in the micropores of commercial activated carbons. Int. J. Hydrogen Energy 2015, 40, 14562–14572. [Google Scholar] [CrossRef]
Sample | KOH/DPC | a SBET (m2/g) | b VT (cm3/g) | c Vmicro (cm3/g) | DFT Cumulative Pore Volume (cm3/g) | f Vmeso (cm3/g) | g Vmacro (cm3/g) | h F micro (%) | i H2 (wt%) | l H2 (wt%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
d Ultra-Micropores | e Super-Micropores | ||||||||||
DPC | 0 | 0.42 | 0.003 | 0.0001 | 0 | 0.0001 | 0.0001 | 0.0028 | 3 | 0.00 | 0.00 |
ADPC0.5 | 0.5 | 441 | 0.1633 | 0.1506 | 0.0993 | 0.0513 | 0.0087 | 0.0041 | 92 | 0.73 | 1.79 |
ADPC1 | 1 | 1173 | 0.4513 | 0.3836 | 0.1854 | 0.1982 | 0.0630 | 0.0048 | 85 | 1.57 | 5.25 |
ADPC3 | 3 | 1050 | 0.4487 | 0.3254 | 0.1479 | 0.1775 | 0.1204 | 0.0030 | 73 | 1.28 | 3.40 |
Sample | wt%max ± Δwt% | t ± Δt | K ± ΔK |
---|---|---|---|
ADPC0.5 | 1.634 ± 0.2 | 0.254 ± 0.005 | 4.401 ± 0.03 |
ADPC1 | 5.435 ± 0.2 | 0.244 ± 0.005 | 2.858 ± 0.03 |
ADPC3 | 4.980 ± 0.2 | 0.242 ± 0.005 | 2.587 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stelitano, S.; Conte, G.; Policicchio, A.; Aloise, A.; Desiderio, G.; Agostino, R.G. Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage. Energies 2020, 13, 2237. https://doi.org/10.3390/en13092237
Stelitano S, Conte G, Policicchio A, Aloise A, Desiderio G, Agostino RG. Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage. Energies. 2020; 13(9):2237. https://doi.org/10.3390/en13092237
Chicago/Turabian StyleStelitano, Sara, Giuseppe Conte, Alfonso Policicchio, Alfredo Aloise, Giovanni Desiderio, and Raffaele G. Agostino. 2020. "Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage" Energies 13, no. 9: 2237. https://doi.org/10.3390/en13092237
APA StyleStelitano, S., Conte, G., Policicchio, A., Aloise, A., Desiderio, G., & Agostino, R. G. (2020). Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage. Energies, 13(9), 2237. https://doi.org/10.3390/en13092237