A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility
Abstract
:1. Introduction
2. Topology and Operation of Proposed Hybrid DC–DC Converter
Operation of Hybrid DC–DC Converter
- Mode-I [ta–tb], presented in Figure 2a. During mode-1, when t = ta, the power switch T is turned ON and inductors (L1 and L2) are charging until tb. In the same interval, the capacitor C2 is discharging through T, and inductor L2 as the diodes (D1 and D2) are blocking concerning VC1 and VC2.
- Mode-II [tb–tc], illustrated in Figure 2b. During mode-1, when t = tb, the power switch T is in the OFF state. Now the capacitor C1 voltage (VC1) is higher than VC2. Hence, after tb interval, the C2 is charging and inductors L1 and L2 are discharging. It is happening throughout tb to tc. In the course of this period, diode D2 is continuously conducting since diode D1 is still in reverse bias.
- Mode-III [tc–td], presented in Figure 2c. During this mode, the power switch T remains OFF as well as the VC1 is equal or lesser than VC2. Here, both the inductors L1 and L2 are discharging, and C1 and C2 are charging via L1. Hence the diode D1 and D2 are conducting and delivering the current to load.
3. Scaling Converter Components Design
3.1. Design of Inductors
3.2. Design of Capacitors
3.3. Small Signal Analysis of Hybrid DC–DC Converter
3.4. Analysis of Losses
3.5. Conduction Losses in the Diodes
4. Design Procedure
- The input power Pin = 150 W, for Vin = 24 V, Iin = 6.2 A;
- Power of the converter, Pi = 150 W;
- Input voltage converter Vin = 24 V;
- Duty cycle is fixed as δ = 0.8;
- The converter output voltage, Vo = 104 V;
- The output current and inductor current were expected to be I0 = 1.11 A and IL1 = 4.25 A, respectively;
- The capacitor C1 and C3 voltages were calculated as VC1 = 110 V and VC3 = 104 V;
- The general typical value sizing of capacitor C1, C3 and L1, L2 was calculated as ∆iL1 = 10% IL1, hence for L1 = 1 mH, the change in this was ∆iL1 = 0.425 A. The same changes can be seen for ∆iL2 = 10% IL2, L2 = 1 mH and ∆iL2 = 0.14 A;
- When the change in the capacitor ∆VC1 was 1% VC1, the capacitor C1 value was 100 μF and ∆VC1 = 1.10 V. Similarly, for ∆VC2 = 1% VC2, C2 = 100 μF, ∆VC2 = 1.04V and ∆VC3 = 1% VC3, C3 = 2 μF,∆VC3 = 0.08 V;
- For the power semiconductor switch, the maximum open-circuit voltage was Vsmax = 100 V, Vsmax = 95 V;
- Diodes D1 and D2, Vsmax = 100 V, Vsmax = 95 V.
5. Simulation Results
6. Experimental Results
Key Performance Comparison
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Mansouri, N.; Lashab, A.; Sera, D.; Guerrero, J.M.; Cherif, A. Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions. Energies 2019, 12, 3798. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Chen, Z. Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid. IEEE Trans. Power Electron. 2013, 28, 314–324. [Google Scholar] [CrossRef]
- Mangu, B.; Akshatha, S.; Suryanarayana, D.; Fernandes, B.G. Grid-Connected PV-Wind-Battery-Based Multi-Input Transformer-Coupled Bidirectional DC-DC Converter for Household Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1086–1095. [Google Scholar] [CrossRef]
- Chiu, H.J.; Yao, C.J.; Lo, Y.K. A DC-DC converter topology for renewable energy systems. Int. J. Circuit Theory Appl. 2009, 37, 485–495. [Google Scholar] [CrossRef]
- Eccher, M.; Salemi, A.; Turrini, S.; Brusa, R.S. Measurements of power transfer efficiency in CPV cell-array models using individual DC-DC converters. Appl. Energy 2015, 142, 396–406. [Google Scholar] [CrossRef]
- Hu, X.; Gong, C. A High Gain Input-Parallel Output-Series DC/DC Converter With Dual Coupled Inductors. IEEE Trans. Power Electron. 2015, 30, 1306–1317. [Google Scholar] [CrossRef]
- Kouro, S.; Leon, J.I.; Vinnikov, D.; Franquelo, L.G. Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology. IEEE Ind. Electron. Mag. 2015, 9, 47–61. [Google Scholar] [CrossRef]
- Khooban, M.H.; Gheisarnejad, M.; Farsizadeh, H.; Masoudian, A.; Boudjadar, J. A New Intelligent Hybrid Control Approach for DC–DC Converters in Zero-Emission Ferry Ships. IEEE Trans. Power Electron. 2020, 35, 5832–5841. [Google Scholar] [CrossRef]
- Farsizadeh, H.; Gheisarnejad, M.; Mosayebi, M.; Rafiei, M.; Khooban, M.H. An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid. IEEE Trans. Circuits Syst. II Express Br. 2020. [Google Scholar] [CrossRef]
- Sarrafan, N.; Zarei, J.; Razavi-Far, R.; Saif, M.; Khooban, M.H. A Novel On-Board DC/DC Converter Controller Feeding Uncertain Constant Power Loads. IEEE J. Emerg. Sel. Top. Power Electron. 2020. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Li, Z.; Wei, X.; Kang, Y. Modelling and Control of the Isolated DC–DC Modular Multilevel Converter for Electric Ship Medium Voltage Direct Current Power System. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 124–139. [Google Scholar] [CrossRef]
- Amjadi, Z.; Williamson, S.S. Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems. IEEE Trans. Ind. Electron. 2010, 57, 608–616. [Google Scholar] [CrossRef]
- Boico, F.; Lehman, B.; Shujaee, K. Solar battery chargers for NiMH batteries. IEEE Trans. Power Electron. 2007, 22, 1600–1609. [Google Scholar] [CrossRef]
- Chen, S.J.; Yang, S.P.; Huang, C.M.; Chou, H.M.; Shen, M.J. Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications. Energies 2018, 11, 1632. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.P.; Chen, J.F.; Liang, T.J.; Yang, L.S. Novel high step-up DC-DC converter for distributed generation system. IEEE Trans. Ind. Electron. 2013, 60, 1473–1482. [Google Scholar] [CrossRef]
- Todorovic, M.H.; Palma, L.; Enjeti, P.N. Design of a wide input range dc–dc converter with a robust power control scheme suitable for fuel cell power conversion. IEEE Trans. Ind. Electron. 2008, 55, 1247–1255. [Google Scholar] [CrossRef]
- Wai, R.J.; Lin, C.Y.; . Lin, C.Y.; Duan, R.Y.; Chang, Y.R. High efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage. IEEE Trans. Ind. Electron. 2008, 55, 3702–3714. [Google Scholar]
- Changchien, S.K.; Liang, T.J.; Chen, J.F.; Yang, L.S. Novel high stepup dc-dc converter for fuel cell energy conversion system. IEEE Trans. Ind. Electron. 2010, 57, 2007–2017. [Google Scholar] [CrossRef]
- Chen, S.; Liang, T.; Yang, L.; Chen, J. A cascaded high step-up dc–dc converter with single switch for micro source applications. IEEE Trans. Power Electron. 2011, 26, 1146–1153. [Google Scholar] [CrossRef]
- Vighetti, S.; Ferrieux, J.-P.; Lembeye, Y. Optimization and design of a cascaded DC/DC converter devoted to grid-connected photovoltaic systems. IEEE Trans. Power Electron. 2012, 27, 2018–2027. [Google Scholar] [CrossRef]
- Pan, C.T.; Lai, C.M. A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications. IEEE Trans. Ind. Electron. 2010, 57, 1998–2006. [Google Scholar]
- Grant, D.A.; Darroman, Y.; Suter, J. Synthesis of tapped-inductor switched-mode converters. IEEE Trans. Power Electron. 2007, 22, 1964–1969. [Google Scholar] [CrossRef]
- Wai, R.J.; Lin, C.Y.; Duan, R.Y.; Chang, Y.R. High-efficiency DC–DC converter with high voltage gain and reduced switch stress. IEEE Trans. Ind. Electron. 2007, 54, 354–364. [Google Scholar] [CrossRef]
- Wu, T.F.; Lai, Y.S.; Hung, J.C.; Chen, Y.M. Boost converter with coupled inductors and buck-boost type of active clamp. IEEE Trans. Ind. Electron. 2008, 55, 154–162. [Google Scholar] [CrossRef]
- Wijeratne, D.S.; Moschopoulos, G. Quadratic power conversion for power electronics: Principles and circuits. IEEE Trans. Circ. Syst. 2012, 59, 426–438. [Google Scholar] [CrossRef]
- Kadri, R.; Gaubert, J.P.; Champenois, G.; Mostefaï, M. Performance analysis of transformer less single switch quadratic Boost converter for grid connected photovoltaic systems. In Proceedings of the International Conference on Electrical Machines, Rome, Italy, 6–8 September 2010; pp. 1–7. [Google Scholar]
- Liang, T.J.; Tseng, K.C. Analysis of integrated boost-flyback step up converter. IEEE Proc. Electr. Power Appl. 2005, 152, 217–225. [Google Scholar] [CrossRef]
- Fretias, A.; Tofoli, F.L.; Jbbunior, E.M.S.; Daher, S.; Antunes, F.L.M. High-voltage gain DC-DC boost converter with coupled inductors for photovoltaic systems. IET Power Electron. 2015, 8, 1885–1892. [Google Scholar] [CrossRef] [Green Version]
- Khalilzadeh, M.; Abbaszadeh, K. Non-isolated high step-up DC-DC converter based on coupled inductor with reduced voltage stress. IET Power Electron. 2015, 8, 2184–2194. [Google Scholar] [CrossRef]
- Saravanan, S.; Ramesh Babu, N. Analysis and implementation of high step-up DC-DC converter for PV based grid application. Appl. Energy 2017, 190, 64–72. [Google Scholar] [CrossRef]
- Wu, G.; Ruan, X.; Ye, Z. Non isolated high step-up DC-DC converters adopting switched-capacitor cell. IEEE Trans. Ind. Electron. 2015, 62, 383–393. [Google Scholar] [CrossRef]
- Poorali, B.; Torkan, A.; Adib, E. High step-up Z-source DC-DC converter with coupled inductors and switched capacitor cell. IET Power Electron. 2015, 8, 1394–1402. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; He, X. Single-phase improved active clamp coupled-inductor based converter with extended voltage doubler cell. IEEE Power Electron. 2012, 27, 2869–2878. [Google Scholar] [CrossRef]
- Yang, L.S.; Liang, T.J.; Lee, H.C.; Chen, J.F. Novel high step-up DC-DC converter with coupled-inductor and voltage-doubler circuits. IEEE Trans. Ind. Electron. 2011, 58, 4196–4206. [Google Scholar] [CrossRef]
- Bharatiraja, C.; Sanjeevikumar, P.; Mahesh Swathimala, A.S.; Raghu, S. Analysis, design and investigation on a new single-phase switched quasi Z-source inverter for photovoltaic application. Int. J. Power Electron. Drive Syst. 2017, 8, 853–860. [Google Scholar] [CrossRef]
- Banaei, M.R.; Ardi, H.; Farakhor, A. Analysis and implementation of a new single-switch buck–boost DC/DC converter. IET Power Electron. 2014, 7, 1906–1914. [Google Scholar] [CrossRef] [Green Version]
- Banaei, M.R.; Bonab, H.A.F. A Novel Structure for Single-Switch Non isolated Transformerless Buck–Boost DC–DC Converter. IEEE Trans. Ind. Electron. 2017, 64, 198–205. [Google Scholar] [CrossRef]
- Banaei, M.R.; Sani, S.G. Analysis and Implementation of a New SEPIC-Based Single-Switch Buck–Boost DC–DC Converter With Continuous Input Current. IEEE Trans. Power Electron. 2018, 33, 10317–10325. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, G.; See, K.W.; Zhang, B. A Single-Switch Quadratic Buck–Boost Converter With Continuous Input Port Current and Continuous Output Port Current. IEEE Trans. Power Electron. 2018, 33, 4157–4166. [Google Scholar] [CrossRef]
- Maroti, P.K.; Padmanaban, S.; Wheeler, P.; Blaabjerg, F.; Rivera, M. Modified high voltage conversion inverting cuk DC-DC converter for renewable energy application. In Proceedings of the IEEE Southern Power Electronics Conference (SPEC) 2017, Puerto Varas, Chile, 4–7 December 2017; pp. 1–5. [Google Scholar]
- Oluwafemi, A.W.; Ozsoy, E.; Padmanaban, S.; Bhaskar, M.S.; Ramachandaramurthy, V.K.; Fedák, V. A modified high output-gain cuk converter circuit configuration for renewable applications—A comprehensive investigation. In Proceedings of the IEEE Conference on Energy Conversion (CENCON) 2017, Kuala Lumpur, Malaysia, 30–31 October 2017; pp. 117–122. [Google Scholar]
Components | Parameter |
---|---|
Input power Pinput | 150 W |
Input voltage Vin | 24 V |
Output power P0 | 112 W |
Switching frequency fs | 10 KHz |
Power MOSFET | SiHB30N60E |
Diode D1 and D2 | VS-15EWX06FN-M3 |
Inductance L1 and L2 | 1 mH |
Capacitor C1,C2 and C3 | 100 μF, 100 μF and 2 μF |
The output of Diode VD1 and VD2 | 100 V and 95 V |
Output Capacitor VC1,VC2 and VC3 | 104 V, 110 V and 8 V |
Similar Converter Topology | Converter [39] | Converter [9] | Converter [30] | Converter [40] | Converter [36] | Proposed Converter |
---|---|---|---|---|---|---|
Switches used | 1 | 2 | 1 | 1 | 1 | 1 |
Diodes used | 5 | 2 | 2 | 3 | 1 | 2 |
No. of Inductors used | 3 | 2 | 2 | 3 | 2 | 2 |
No. of capacitors used | 3 | 2 | 3 | 3 | 3 | 3 |
Continuous input current | Yes | No | Yes | Yes | No | Yes |
Voltage gain, VO | ||||||
Efficiency | 91% | 90% | 91% | 90% | 92% | 92.2% |
The voltage stress on the active switch | Moderate | Less | High | Less | High | Moderate |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthikeyan, M.; Elavarasu, R.; Ramesh, P.; Bharatiraja, C.; Sanjeevikumar, P.; Mihet-Popa, L.; Mitolo, M. A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility. Energies 2020, 13, 2312. https://doi.org/10.3390/en13092312
Karthikeyan M, Elavarasu R, Ramesh P, Bharatiraja C, Sanjeevikumar P, Mihet-Popa L, Mitolo M. A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility. Energies. 2020; 13(9):2312. https://doi.org/10.3390/en13092312
Chicago/Turabian StyleKarthikeyan, M., R. Elavarasu, P. Ramesh, C. Bharatiraja, P. Sanjeevikumar, Lucian Mihet-Popa, and Massimo Mitolo. 2020. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility" Energies 13, no. 9: 2312. https://doi.org/10.3390/en13092312
APA StyleKarthikeyan, M., Elavarasu, R., Ramesh, P., Bharatiraja, C., Sanjeevikumar, P., Mihet-Popa, L., & Mitolo, M. (2020). A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility. Energies, 13(9), 2312. https://doi.org/10.3390/en13092312