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Abstract: The traditional security-constrained optimal power flow (SCOPF) model under the classical
N-1 criterion is implemented in the power industry to ensure the secure operation of a power system.
However, with increasing uncertainties from renewable energy sources (RES) and loads, the existing
SCOPF model has difficulty meeting the practical requirements of the industry. This paper proposed a
novel chance-constrained preventive SCOPF model that considers the uncertainty of power injections,
including RES and load, and contingency probability. The chance constraint is used to constrain the
overall line flow within the limits with high probabilistic guarantees and to significantly reduce the
constraint scales. The cumulant and Johnson systems were combined to accurately approximate the
cumulative distribution functions, which is important in solving chance-constrained optimization
problems. The simulation results show that the model proposed in this paper can achieve better
performance than traditional SCOPF.

Keywords: security-constrained optimal power flow; chance-constrained optimization; probability
of contingency; renewable energy source

1. Introduction

The growth in renewable energy sources (RES) and charging loads in recent years, such as
wind power, photovoltaics and electric vehicle, has brought considerable economic benefits; however,
the uncertainty of power injections has increased, which leads to increased operational risks [1–3],
especially for highly-loaded power systems. The increasing uncertainty of operation increases the need
for new criteria, dispatch tools and control methods to better balance operational security and costs [4].

Optimal power flow (OPF) is the fundamental dispatch and planning tool that is used to minimize
operational costs while ensuring the security of the normal state, and security-constrained optimal
power flow (SCOPF) [4–7] is an extended form of OPF that considers the classical N-1 criterion. Unlike
OPF, which only considers a single system topology (normal state), SCOPF typically ensures that the
system state remains within the operational limits when unexpected component outages (contingency
set) occur. However, with the emergence of uncertainties in the power system, several drawbacks of
traditional SCOPF have become apparent and these need to be addressed. These include:

1. Traditional SCOPF does not consider the influence of the uncertainty of RES and loads, and
it cannot provide a robust solution because increasing uncertainty makes the operational state more
stochastic and may lead to frequent violations of the N-1 criterion.

2. Traditional SCOPF disregards the probability of a contingency occurring; in other words,
it considers the occurrence probability to be 1 for every contingency in a contingency set [4]. Obviously,
this does not match the actual situation because the probability of a contingency is usually very low.
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3. The scale of the SCOPF problem is highly related to the scale of the power system and
the number of contingencies. This means that for a large power system where a large number of
contingencies are considered, the calculation burden is high, and directly solving a SCOPF problem in
a short time is quite challenging.

1.1. Literature Review

Numerous studies have attempted to address the drawbacks of the traditional SCOPF model.
To the best of the authors’ knowledge, there are currently two strategies to reduce the calculation

burden of traditional SCOPF and make it easier to solve. One strategy uses a contingency filtering
(CF) [8,9] technique to reduce the number of contingencies. Usually, an index that ranks the severity
of a contingency is used to filter contingencies; thus, only the contingency that exceeds the severity
threshold is included in the contingency set. However, choosing the severity threshold itself is a
challenge, for example, a very severe contingency may have a very low probability of occurring, and
controlling it through SCOPF may result in excessive costs. The second strategy is to use Benders
decomposition (BD) [10–12] to decompose the original SCOPF problem into a master problem and
several subproblems. In this way, parallel computing technology can be used to improve the computing
efficiency; however, BD requires convexity of the feasible region, which is not guaranteed in an SCOPF
problem [12].

The concept of risk-based SCOPF [13–15] has been proposed as a method that comprehensively
considers the probability and severity of contingencies. The risk of a contingency is defined as the
product of the probability and severity of a contingency. Risk-based SCOPF uses risk as constraints
to achieve a tradeoff between economic and security. This method relaxes the constraints of a single
contingency [14] but controls the total risk of a contingency set to a certain level. Although the security
and economy of power system operations are enhanced by risk-based SCOPF, the uncertainty of
RES and load are not taken into consideration because measuring system risk under uncertainty is a
challenging task. Moreover, the optimization formulation of risk-based SCOPF is complicated, and
the calculation time is 4–7 times that of traditional SCOPF [14], which makes it difficult to apply in a
real-time dispatch.

Chance-constrained optimization (CCO) [16–26] is a promising method to handle the uncertainty
in power systems and it has been successfully applied to many problems. Instead of rigid constraint,
CCO ensures a certain level of probability that the constraint is satisfied. The work of Bienstock [19]
provides a solid foundation for incorporating CCO with OPF. This model was further extended in [22]
to incorporate corrective SCOPF. Li et al. [23] provided a novel transmission expansion planning
approach based on CCO and BD. Liu et al. [24], proposed solutions based on CCO for peak power
shaving and frequency regulation in microgrids. Based on CCO, a day-ahead scheduling approach
is proposed in [25] and a volt/var control approach is provided in [26]. Although CCO has been
successfully applied to a variety of problems, the probability distribution of the uncertainty source is
usually assumed to follow a Gaussian distribution. Studies [27–29] have indicated that the distribution
of wind power forecast error and photovoltaic power is very different from a Gaussian distribution;
therefore, the existing models should be improved so that they are able to handle arbitrary distributions.
Moreover, there are few CCO models that consider contingency probability.

1.2. Contributions

This paper proposes a novel chance-constrained preventive SCOPF model (CC-PSCOPF) that is
an improvement on the traditional preventive SCOPF (PSCOPF) model. The main contributions are
as follows:

1. A novel CC-PSCOPF model is proposed to improve the overall operational reliability. The model
considers contingency probability and the uncertainty of power injections (including RES and load).
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2. Instead of using the large-scale line flow limits of traditional PSCOPF, the probability
distribution of the overall line flow is obtained and constrained in the proposed optimization model,
which significantly reduces the constraint scale.

3. The cumulant and Johnson systems are combined in this paper to accurately approximate
the cumulative distribution function (CDF) of an arbitrary distribution random variable, which only
requires the first four orders of moment information.

The remainder of this paper is organized as follows: Section 2 reviews the traditional PSCOPF
model. Section 3 describes the formulation of the proposed CC-PSCOPF, and a cumulative distribution
function (CDF) approximation method based on cumulants and the Johnson system is also introduced.
A case study is presented in Section 4 to test the performance of the proposed model. Section 5 presents
our discussion and conclusions.

2. Review of Traditional PSCOPF

There are two types of SCOPF: PSCOPF and corrective SCOPF (CSCOPF). Using PSCOPF,
pre-contingency controls are the only measures allowed to ensure that the system always
operates in a state where any single component outage does not lead to constraint violations.
This indicates that the operational state determined by PSCOPF simultaneously satisfies the pre- and
post-contingency constraints. Different from PSCOPF, CSCOPF determines an operational state that
allows post-contingency constraint violations, and it ensures that there are adequate post-contingency
control measures, e.g., generator re-dispatch, topology reconfiguration and load shedding to eliminate
post-contingency constraint violations. PSCOPF is safer, while CSCOPF is more economical [4].

This paper focuses on improving the traditional PSCOPF, and the proposed optimization
model attempts to improve the overall security performance of the system operation through
pre-contingency controls.

The DC-based PSCOPF model is reviewed in this section, as it provides the foundation for the
optimization model proposed in this paper. DC approximation is used in this paper because it provides
a convex guarantee that the optimization problem is tractable [20].

The objective function of DC-based PSCOPF minimizes the system’s operational cost in the normal
state, and it is expressed as follows:

min
NG∑

Gi=1

PT
Gic2iPGi + cT

1iPGi + c0i (1)

where NG is the number of generators; PGi is the ith generator output in the normal state, which is the
control variable of the optimization model; and c2i, c1i, and c0i are the quadratic, linear and constant
cost coefficients, respectively.

The equality and inequality constraints of the PSCOPF model are as follows:

NG∑
Gi=1

PGi +

NR∑
Ri=1

PRi =

ND∑
Di=1

PDi (2)

PGi ≤ PGi ≤ PGi ∀i (3)

NG∑
Gi=1

Ak
GiPGi +

NR∑
Ri=1

Ak
RiPRi −

ND∑
Di=1

Ak
DiPDi ≤ Pl ∀i,∀k,∀l (4)

Pl ≤

NG∑
Gi=1

Ak
GiPGi +

NR∑
Ri=1

Ak
RiPRi −

ND∑
Di=1

Ak
DiPDi ∀i,∀k,∀l (5)
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These include the power balance of the system (2), the generator output limits (3) and the line
flow limits (4) and (5). NR and ND are the number of RES and loads, respectively, in the system; PRi
and PDi are the forecast power injections of the ith RES and load; PGi and PGi are the ith generator’s
minimal output and maximum output, respectively; Pl and Pl are the lower and upper limits of the
ith line flows; superscript k is the index of system topology; k = 0 indicates the normal state system
topology, while k ≥ 1 indicates the contingency system topology; and Ak

Gi, Ak
Ri and Ak

Di are the power
transmission distribution factors (PTDFs) of the ith generator, RES and load under system topology k,
respectively. The PTDF can be obtained from the line susceptance matrix and bus susceptance matrix,
and details can be found in [6].

The traditional DC-based PSCOPF optimization model is a typical quadratic programming problem
that can be solved by common commercial solvers. As discussed in the introduction, the uncertainties of
power injections and contingency probability are not considered in this model; therefore, the operational
state obtained by this model is not robust to uncertainty and may be very costly. The constraint
number of this model is 1 + NG + 2×Nl ×Nk, where Nl is the number of lines and Nk is the scale of the
contingency set. Obviously, when the system scale is large with a large contingency set, the constraint
number of this model is quite high, which significantly increases the calculation burden.

3. Formulation of the Proposed Optimization Model

3.1. Modeling of Uncertainties

The forecast error of the RES and load is the main source of uncertainty, which is the deviation
of the forecast value from the actual value. The forecast error can be seen as a continuous random
variable and described by a continuous probability distribution model. Therefore, the actual power
injection of RES and loads can be modeled as a forecast value plus a continuous random variable that
represents forecast error:  P̃Ri = PRi + δRi

P̃Di = PDi + δDi
∀i (6)

where P̃Ri and P̃Di are the actual power injection of the ith RES and load, respectively, and δRi and
δDi are random variables that represent the forecast error of the power injection of the ith RES and
load, respectively.

The proper distribution model to describe forecast error depends on the type of power injection,
forecasting scale [27], etc. For instance, the forecast error of a load is usually assumed to follow
a Gaussian distribution, while the beta distribution [28] is an appropriate choice to describe the
short-term forecast error of wind power. Although there are many distribution models that can be
used to describe a forecast error, the optimization model proposed in this paper is not sensitive to the
distribution used. The first four order moments of a distribution model is the only information that is
required and this can be obtained from historical data This moment information is used to approximate
the CDF of a random variable, which is discussed in the following section.

The line flow under a single system topology is linearly dependent on power injections; when
considering uncertainty, its expression is:

Pk
l =

NG∑
Gi=1

Ak
GiPGi +

NR∑
Ri=1

Ak
RiP̃Ri −

ND∑
Di=1

Ak
DiP̃Di

= (
NG∑

Gi=1
Ak

GiPGi +
NR∑

Ri=1
Ak

RiPRi −
ND∑

Di=1
Ak

DiPDi) + (
NR∑

Ri=1
Ak

RiδRi −
ND∑

Di=1
Ak

DiδDi)

∀l,∀k (7)

where Pk
l is the lth line flow under the kth system topology. The term in the first bracket of Equation (7)

is the line flow part formed by forecast power injections, which is consistent with the traditional
PSCOPF. The term in the second bracket of Equation (7) is the uncertainty part of a line flow, which is
the linear combination of the forecast error of power injections of RES and load.



Energies 2020, 13, 2344 5 of 13

The overall line flow probability distribution, which comprehensively considers the influence
of the uncertainty of power injection and system topology is our concern. Therefore, the occurrence
probability of a system topology, or the so-called contingency probability, should be obtained.

The Poisson distribution [30] is used in this paper to describe the occurrence probability of a
system topology:

Pr(sk) = 1− e−λt (8)

where sk is the kth contingency’s system topology, Pr(sk) is the corresponding occurrence probability,
e is the base of the natural logarithm and λt is the failure rate of the component. Note that the failure
rate can be modified according to the external weather conditions. An approach to calculate the failure
rate under different weather conditions (normal, adverse and major adverse) is provided in [31].

For each contingency, an occurrence probability can be obtained from Equation (8). We assume
that contingencies outside the contingency set will have little impact on system operation, so the
probability of the normal state is approximated and expressed as:

Pr(s0) = 1−
Nk∑

k=1

Pr(sk) (9)

Considering the uncertainty of power injections and the probability of contingency, the overall
line flow Pl can be obtained through the law of total probability theory, and it is expressed as:

Pl = Pr(s0)P0
l + Pr(s1)P1

l + · · ·Pr(sNk)P
Nk
l ∀l

=
Nk∑

k=0

NG∑
Gi=1

Ak
GiPGiPr(sk) +

Nk∑
k=0

NR∑
Ri=1

Ak
RiPRiPr(sk)−

Nk∑
k=0

NR∑
Ri=1

Ak
DiPDiPr(sk) +

Nk∑
k=0

NR∑
Ri=1

Ak
RiδRiPr(sk) −

Nk∑
k=0

NR∑
Ri=1

Ak
DiδDiPr(sk)

∀l (10)

Obviously, the probability distribution of the overall line flow Pl can be regarded as the weighted
average of the line flow probability distribution under each system topology.

3.2. Chance-Constrained Optimization

In this section, we briefly introduce the CCO, which also underpins the model proposed in
this paper.

CCO is an important tool proposed by Charnes and Cooper [16,17] for solving optimization
problems under uncertainties. The general form of a CCO problem is expressed as follows:

min f (x, ξ)
s.t. g(x, ξ) = 0

Pr{h(x, ξ) ≥ 0
}
≥ 1− α

(11)

where f (·) is the objective function, g(·) is the equality constraint, h(·) is the inequality constraint, x is
the decision variable, ξ is the uncertainty variable and α is the reliability parameter representing the
allowed constraint violation level.

Under the CCO, the inequality constraint is formed as the chance constraint and ensures that the
constraint h(·) is satisfied with probability 1−α at least. The original CCO problem is often transformed
into an equivalent deterministic form to facilitate the solution [20,24].

3.3. Chance-Constrained PSCOPF Model

In this section, we present a novel CC-PSCOPF model that considers the uncertainties of power
injections and the probability of contingency.
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The goal function, power balance constraint and generator output limit of the proposed
CC-PSCOPF are the same as those of the traditional PSCOPF model, as Equations (1)–(3) show.
The key improvement is the modeling of the line flow inequality constraints.

Instead of line flow constraints under each system topology used in traditional PSCOPF, the
overall line flow Pl is constrained in CC-PSCOPF. As analyzed in the previous section, Pl is a random
variable; therefore, the chance constraint is used to place it in a certain range with a high probability,
and it is expressed as follows:

Pr
{
Pl ≥ Pl} ≤ α

+
l ∀l (12)

Pr
{
Pl ≤ Pl} ≤ α

−

l ∀l (13)

where α+l and α−l are predefined violation levels. Considering the low occurrence probability of
contingencies, α+l and α−l should be carefully defined.

A comparison of Equations (12) and (13) to Equations (4) and (5) shows that the optimization
model proposed in this paper has the following significant advantages:

1. The uncertainty of power injections and contingency occurrence probability are considered
through Pl. Even with the influence of various uncertainties, the operational state obtained by
CC-PSCOPF has a high probability of ensuring that constraints are not violated. Obviously,
the operational state is more robust to uncertainties compared to traditional PSCOPF.

2. The violation level for different lines is adjustable; for critical lines, the violation level could be
adjusted lower to ensure operational safety, while for noncritical lines, the violation level could be
increased to save control costs.

3. The scale of the line flow constraint is significantly reduced, which is only related to the number
of lines in the system, allowing the optimization problems to be solved more efficiently.

4. As the occurrence probabilities of the contingency and chance constraints are used in this
model, some contingencies that have quite low probability but high control costs are ignored in the
optimization model, which helps to reduce the control costs. The control measures of these low
probability contingencies can be solved using a separate accident plan.

However, solving an optimization problem with chance constraints directly is a challenging task.
In this paper, chance constraints are transformed into deterministic linear constraints based on the
cumulant and Johnson systems in the following section, which ensures that the CC-PSCOPF is tractable
and solved efficiently.

3.4. Deterministic Reformulation of CC-PSCOPF

The main challenge of solving the proposed model is how to handle the two chance constraints
related to overall line flows. In this section, these two constraints are converted into deterministic
linear constraints. Through conversion, the optimization model becomes a linear constrained convex
optimization problem that is easy to solve.

For convenience, the factors that determine the overall line flow Pl are divided into two terms:

Pl,control =
Nk∑

k=0

NG∑
Gi=1

Ak
GiPGiPr(sk)

Pl,uncertainty =
Nk∑

k=0

NR∑
Ri=1

Ak
RiPRiPr(sk)−

Nk∑
k=0

NR∑
Ri=1

Ak
DiPDiPr(sk)

+
Nk∑

k=0

NR∑
Ri=1

Ak
RiδRiPr(sk) −

Nk∑
k=0

NR∑
Ri=1

Ak
DiδDiPr(sk)

∀l (14)

where Pk
l,control is the line flow part determined by the control variable, which varies with the output of

the generators, and Pl,uncertainty is the line flow part determined by power injections of the RES and
load, which is a random variable.
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Substituting Equation (14) into Equation (12) yields:

Pr
{
Pl,uncertainty ≤ Pl − Pl,control} ≥ 1− α+l ∀l (15)

Note that Pl,uncertainty is the uncertainty part of the overall line flows, and we can obtain:

CDFl,uncertainty(Pl − Pl,control) ≥ 1− α+l
⇓

Pl − Pl,control ≥ CDF−1
l,uncertainty(1− α

+
l )

∀l (16)

where CDFl,uncertainty and CDF−1
l,uncertainty are the CDF and inverse CDF of Pl,uncertainty, respectively.

Similar to Equation (16), by substituting Equation (14) into (13), we can obtain:

Pl − Pl,control ≤ CDF−1
l,stochastic(α

−

l ) ∀l (17)

To replace Equations (12) and (13) with deterministic linear constraints Equations (16) and
(17), CDF−1

l,uncertainty should be obtained. Traditionally, CDFl,uncertainty is obtained from Monte Carlo

simulation (MCS), which performs a numerical search for the CDF−1
l,uncertainty [20]; however, this is time

consuming. Moreover, MCS is difficult to implement in the absence of samples. Here, this procedure is
improved by using the cumulant and Johnson system to obtain CDF−1

l,uncertainty.

3.4.1. The Cumulant

The cumulant [32,33] is an alternative moment of a continuous probability distribution, and the
relationship between the cumulant κ and moment m is as follows:

κ1 = m1

κ2 = m2 −m2
1

κ3 = m3 − 3m1m2 + 2m3
1

κ4 = m4 − 2m2
2 − 4m1m3 + 12m2

1m2 − 6m4
1

...

(18)

Cumulants have two important characteristics. One is homogeneity. For a random variable x,
the nth cumulant is homogeneous of order r:

κr(ax) = arκr(x) (19)

The other is additivity; for two independent random variables x and y, and z = x + y, then:

κr(z) = κr(x) + κr(y) (20)

The uncertainty part of line flow under a single system topology is the linear combination of δRi
and δDi. As we know the first four order moments of δRi and δDi in advance, using Equation (18) and
the characteristics of the cumulant, the first four order moments of the uncertainty part of the line flow
under a single system topology can be obtained.

3.4.2. The Johnson System

Previous works [34,35] have shown that the Johnson system is a reliable and accurate method for
obtaining CDF compared to the commonly used Gram-Charlier series [32] or Cornish-Fisher series [33];
therefore, it is used here to obtain the CDF of the uncertainty part of the line flow under a single
system topology.
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The Johnson system is a 4-parameter transformation system that uses the following function
to transform the standard Gaussian variable u into a variable x that follows an unknown arbitrary
probability distribution:

x = c + d× f−1(
u− a

b
) (21)

where a and b are the shape parameters, c is the position parameter, and d is the scale parameter. The
function f−1(·) takes 4 forms to distinguish different distribution families:

SL : f−1( u−a
b ) = e(u−a)/b

SU : f−1( u−a
b ) = (e(u−a)/b

− e−(u−a)/b)/2
SB : f−1( u−a

b ) = 1/(1 + e−(u−a)/b)

SN : f−1( u−a
b ) = u−a

b

(22)

where SL is the family of lognormal distributions, SU is the family of unbounded distributions, which
means the range of variables is unlimited, SB is the family of bounded distributions, and SN is the
family of Gaussian distributions.

If the first four order moments of random variable x (the uncertainty part of the line flow in this
paper) are available, the moment-based algorithm [36] can be used to obtain the parameters of the
Johnson system, and the CDF of x is a function of the CDF of the standard Gaussian variable, which
can be obtained easily.

The CDF of the uncertainty part of the line flow under each system topology is obtained. Based on
the law of total probability, CDFl,uncertainty is calculated through the weighted average of each CDF of
the uncertainty part of the line flow, and its inverse function CDF−1

l,uncertainty can be efficiently calculated.

4. Case Study

In this section, we discuss the performances of traditional PSCOPF and CC-PSCOPF, which were
tested on two test systems. The optimization problem was solved by Ipopt [37] on a PC with a 2.8-GHz
CPU and 16 GB RAM.

4.1. Description of the Test System

A modified IEEE-30 test system [38] was used here to analyze the characteristics of these two
optimization formulations and a modified IEEE-108 test system [38] was used to evaluate the efficiency
of these two methods. The IEEE-30 test system was modified to add two wind power generators at bus
7 and 12, which are representative of a RES power injection. Similarly, the IEEE-108 test system was
modified to add four power generators at bus 44, 50, 88 and 98. The rated power of the wind power
generators is 80 MW, the forecast outputs of wind power generators are assumed to be 0.8 p.u., and
forecast error is assumed to follow a beta distribution: Beta (0.83, 1.82). The forecast error of the load at
each bus is assumed to follow a Gaussian distribution, with the means of the power injections equal to
those of the base case data and standard deviations equal to 5% of the means.

All N-1 contingencies are included in the contingency set, the occurrence probability of each
contingency is assumed to be 0.01, and the violation level α+l is set at 1% for all lines.

4.2. CDF Approximation Performance of the Proposed Method

Obtaining an accurate CDF curve, especially in the tail area, is the basis for accurately solving the
chance-constrained optimization. This section presents the results to show that the proposed cumulant
+ Johnson system can accurately and efficiently approximate a CDF curve.

The proposed method is compared with 10,000 MCS, the commonly used cumulant +

Gram-Charlier series proposed in [25], and a CDF curve based on the assumption that wind power
forecast error follows a Gaussian distribution.
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The CDF curve of line 4-6 flow and line 16-17 flow under the normal state is chosen here as
representative and to visually show the approximation ability of the evaluated method. The CDF
curves are shown in Figure 1a,b.Energies 2020, 13, x FOR PEER REVIEW 9 of 13 
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Figure 1. Cumulative distribution function (CDF) curve for line 4-6 flow (a) and line 16-17 flow (b).

The average root mean square (ARMS) [18] is also introduced here to quantitatively indicate the
accuracy of the CDF approximation. The smaller the ARMS value is, the more accurately the method
approximates the CDF curve. Table 1 shows the ARMS values of the evaluated methods.

Table 1. The average root mean square (ARMS) value of evaluated methods.

Lines ARMS of Cumulant
+ Johnson System

ARMS of Cumulant
+ Gram-Charlier

ARMS of Gaussian
Assumption

Line 4–6 0.0031 0.1294 0.1312
Line 16–17 0.0038 0.1288 0.1306

The results in Figure 1 and Table 1 show that the cumulant + Johnson system approximates the
CDF curve best and only a small amount of error exists, while the curve approximated by cumulant +

Johnson and Gaussian assumptions shows significant deviation, especially in the tail area.
Moreover, the method proposed in this paper has an advantage over MCS; that is, MCS cannot be

implemented when only the moment information of power injections is available, while the method
proposed in this paper can provide a reliable CDF curve.

4.3. Solutions of Different Optimization Formulations

The generation costs for the two optimization approaches are listed in Table 2. The cost of
CC-PSCOPF is higher because it considers the uncertainty of power injections and gives a high
probabilistic guarantee that line flows limit violations will not happen.

Table 2. Generation Cost.

PSCOPF CC-PSCOPF

Cost ($/hr) 7488.1 8196.5

Because the chance constraint is a soft constraint and the Gaussian distribution is an unbounded
distribution, there are always extreme values that cause line flow violations. Based on the generator
output schemes given by these two problem formulations, we implemented MCS with 10,000 samples
to observe the actually probability of line flow violations.
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The average violation probability and the maximum violation probability were introduced to
illustrate the effectiveness of the proposed method. These two indices are listed in Table 3. It is obvious
that the chance constraint works; the maximum violation probability under CC-PSCOPF equals 0.01,
which is equal to the preset violation level, while under PSCOPF, the same index significantly exceeds
the violation level. Both the average and maximum violation probability are smaller under CC-PSCOPF,
which indicates that the proposed method provides a more robust operational state than PSCOPF.

Moreover, although the goal of the proposed method is to improve the operational reliability
by controlling the violation probability of line flows in the overall situation rather than the violation
probability under a specific contingency system topology, it is interesting to note that CC-PSCOPF
effectively reduces violations under a single contingency system topology. We counted the number of
contingencies NV where the line flow violation probability exceeds the violation level. For contingencies
with violations, the average number of line flows Nalv and maximum number of line flows Nmlv that
exceeds the violation level were also counted. The statistical data are listed in Table 3. Obviously,
CC-PSCOPF effectively reduces NV, Nalv and Nmlv, and this indicates that more contingencies are
effectively controlled.

Table 3. Constraint violation statistics.

PSCOPF CC-PSCOPF

Average violation probability 0.0045 0.0010
Maximum violation probability 0.0779 0.0100

NV 22 6
Nalv 1.95 1.5
Nmlv 5 2

The line flow of 15–18 was chosen as representative to visually show the flow probability
distributions under these two formulations. The histograms of line flow are shown in Figure 2a,b,
respectively. It is clear that more PSCOPF samples fall outside of the line limits.
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Figure 2. Histograms of line flow 15–18 under preventive security-constrained optimal power flow
(PSCOPF) (a) and chance-constrained PSCOPF (CC-PSCOPF) (b).

4.4. Influence of the Value of Violation Level

Changing the violation level influences the solution of CC-PSCOPF. Figure 3 shows the change in
the generation cost and violation probability of CC-PSCOPF with different violation levels.
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As Figure 3 shows, with increasing violation level, the generation cost of CC-PSCOPF decreases,
and inevitably, this causes a larger probability of constraint violations.

Obviously, the contradiction between power generation costs and operational security can be
balanced by adjusting the violation level. As different transmission system operators have different
requirements for line constraint violation probability, how to determine the optimal violation will be
explored in subsequent studies. Note that, theoretically, the violation level can be set at 0 to completely
eliminate the constraint violations, but this is not worth the gains. On the one hand, this will cause
a surge in control costs, and on the other hand, it is easy to make the problem infeasible, especially
when the uncertainty of power injection is large. Moreover, the violation level of different lines can be
set to different values. For the critical lines, appropriately reducing the violation level can improve
safety, and for non-critical lines, increasing the violation level appropriately can reduce generation
costs. Obviously, CC-PSCOPF is more flexible compared with traditional PSCOPF, which can only
balance the control costs and security by adjusting the contingency set.

4.5. Efficiency of the Proposed Method

The time consumption of PSCOPF and CC-PSCOPF was tested on the IEEE-30 test system and
a larger-scale system, the IEEE-118 test system. The constraint numbers and time consumption of
these two optimization formulations are listed in Table 4. It is evident that the constraint numbers
significantly influence the efficiency of the optimization model. CC-PSCOPF is much faster than
PSCOPF because the line limit constraints of all the system topologies are reduced to the same number
of lines by the law of total probability.

Table 4. Time consumption.

Test System PSCOPF CC-PSCOPF

IEEE-30
Constraint Numbers 1600 42

Time (s) 1.23 0.13

IEEE-118
Constraint Numbers 33109 187

Time (s) 319.57 0.67

5. Conclusions

Currently, and in the future, increasing uncertainty brings challenges for power systems.
The traditional SCOPF under strict N-1 criterion can barely meet the requirements of a secure
operation. To obtain an operational state that is robust to uncertainties and to improve the overall
operational reliability, a novel CC-PSCOPF was proposed in this paper. The probability distribution of
the overall line flow is obtained and constrained within the limits with a high probability guarantee in
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the proposed optimization model. This type of constraint greatly reduces the number of constraints for
the entire optimization problem, and additionally, the violation probability of each line can be flexibly
adjusted as needed. In addition, the cumulant and Johnson systems are proposed to approximate the
CDF curves, so the chance-constraint optimization model proposed in this paper is not limited to the
Gaussian distribution assumption.

The proposed CC-PSCOPF can be used to improve the safety level of a system’s operation,
especially for a system with a high level of RES penetration. How to determine the optimal violation
level and correlations between uncertainty sources will be investigated in subsequent studies.
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