Experimental Studies of Immiscible High-Nitrogen Natural Gas WAG Injection Efficiency in Mixed-Wet Carbonate Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reservoir Fluids and Injected Media
2.2. Rock Material
2.3. Experimental Process
3. Results
- the effectivity of high-nitrogen sour gas WAG injection in mixed-wet carbonates compared to CGI and CWI;
- the impact of artificial fracture on recovery efficiency;
- the possibility of foam flow utilization for gas mobility control in the presence of fractures.
3.1. Non-Fractured Cores
3.2. Fractured Cores
3.3. Foam Assisted WAG (FAWAG) Flooding
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Christensen, J.R.; Stenby, E.H.; Skauge, A. Review of WAG Field Experience. SPE Reserv. Eval. Eng. 2001, 4, 97–106. [Google Scholar] [CrossRef]
- Blaker, T.; Aarra, M.G.; Skauge, A.; Rasmussen, L.; Celius, H.K.; Martinsen, H.A.; Rasmussen, L.; Vassenden, F. Foam for Gas Mobility Control in the Snorre Field: The FAWAG Project. SPE Reserv. Eval. Eng. 2002, 5, 317–323. [Google Scholar] [CrossRef]
- Skauge, A.; Stensen, J. Review of WAG field experience. In International Conference and Exhibition Modern Challenges in Oil Recovery; Gubkin University: Moscow, Russia, 2003. [Google Scholar]
- Henriquez, A.; Jourdan, C.A. Management of Sweep-Efficiency by Gas-Based IOR Methods. In European Petroleum Conference; Society of Petroleum Engineers: Milan, Italy, 1996. [Google Scholar] [CrossRef]
- Afzali, S.; Rezaei, N.; Zendehboudi, S. A comprehensive review on Enhanced Oil Recovery by Water Alternating Gas (WAG) injection. Fuel 2018, 227, 218–246. [Google Scholar] [CrossRef]
- Surguchev, L.M.; Korbel, R.; Haugen, S.; Krakstad, O.S. Screening of WAG Injection Strategies for Heterogeneous Reservoirs. In Proceedings of the European Petroleum Conference, Cannes, France, 16–18 November 1992. Paper SPE 25075. [Google Scholar] [CrossRef]
- Caudle, B.H.; Dyes, A.B. Improving Miscible Displacement by Gas-Water Injection. Trans. Aime 1958, 213, 281–283. [Google Scholar] [CrossRef]
- Lin, E.C.; Poole, E.S. Numerical evaluation of single-slug, WAG, and hybrid CO2 injection processes, Dollarhide Devonian Unit, Andrews County, Texas. SPE Reserv. Eng. 1991, 6, 415–420. [Google Scholar] [CrossRef]
- Khan, M.Y.; Kohata, A.; Patel, H.; Syed, F.I.; Al Sowaidi, A.K. Water Alternating Gas WAG Optimization Using Tapered WAG Technique for a Giant Offshore Middle East Oil Field. In Abu Dhabi International Petroleum Exhibition & Conference; Society of Petroleum Engineers: Abu Dhabi, UAE, 2016. [Google Scholar] [CrossRef]
- Sanchez, N.L. Management of Water Alternating Gas (WAG) Injection Projects. In Latin American and Caribbean Petroleum Engineering Conference; Society of Petroleum Engineers: Caracas, Venezuela, 1999. [Google Scholar] [CrossRef]
- Awan, A.R.; Teigland, R.; Kleppe, J. A survey of North Sea enhanced-oil-recovery projects initiated during the years 1975 to 2005. SPE Reserv. Eval. Eng. 2008, 11, 497–512. [Google Scholar] [CrossRef]
- Skauge, A.; Aarra, M.G. Effect of Wettability on the Oil Recovery by WAG. In Proceedings of the 7th European Symposium on Improved Oil Recovery, Moscow, Russia, 26–28 October 1993. [Google Scholar]
- Huang, E.T.S.; Holm, L.W. Effect of WAG injection and rock wettability on oil recovery during CO2 flooding. SPE Reserv. Eng. 1988, 3, 119–129. [Google Scholar] [CrossRef]
- Hoare, G.; Coll, C. Effect of small/medium scale reservoir heterogeneity on the effectiveness of water, gas and water alternating gas WAG injection. In Society of Petroleum Engineers-SPE Europec featured at 80th EAGE Conference and Exhibition 2018; Society of Petroleum Engineers: Copenhagen, Denmark, 2018. [Google Scholar] [CrossRef]
- van Lingen, P.P.; Barzanji, O.H.M.; van Kruijsdijk, C.P.J.W. WAG Injection to Reduce Capillary Entrapment in Small-Scale Heterogeneities. In SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: Denver, CO, USA, 1996. [Google Scholar] [CrossRef]
- Zolfaghari, H.; Zebarjadi, A.; Shahrokhi, O.; Ghazanfari, M.H. An Experimental Study of CO2-low Salinity Water Alternating Gas Injection in Sandstone Heavy Oil Reservoirs. Iran. J. Oil Gas Sci. Technol. 2013, 2, 37–47. [Google Scholar] [CrossRef]
- Al-Shalabi, E.W.; Sepehrnoori, K.; Pope, G.A. Modeling the Combined Effect of Injecting Low Salinity Water and Carbon Dioxide on Oil Recovery from Carbonate Cores. In International Petroleum Technology Conference; International Petroleum Technology Conference: Kuala Lumpur, Malaysia, 2014. [Google Scholar] [CrossRef]
- Kulkarni, M.M.; Rao, D.N. Experimental investigation of miscible and immiscible Water-Alternating-Gas (WAG) process performance. J. Pet. Sci. Eng. 2005, 48, 1–20. [Google Scholar] [CrossRef]
- Ghafoori, A.; Shahbazi, K.; Darabi, A.; Soleymanzadeh, A.; Abedini, A. The experimental investigation of nitrogen and carbon dioxide water-alternating-gas injection in a carbonate reservoir. Pet. Sci. Technol. 2012, 30, 1071–1081. [Google Scholar] [CrossRef]
- Al-Shuraiqi, H.S.; Muggeridge, A.H.; Grattoni, C.A. Laboratory Investigations Of First Contact Miscible Wag Displacement: The Effects Of Wag Ratio And Flow Rate. In SPE International Improved Oil Recovery Conference in Asia Pacific; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 2003. [Google Scholar] [CrossRef]
- Juanes, R.; Blunt, M.J. Impact of viscous fingering on the prediction of optimum WAG ratio. SPE J. 2007, 12, 486–495. [Google Scholar] [CrossRef]
- Rahimi, V.; Bidarigh, M.; Bahrami, P. Experimental Study and Performance Investigation of Miscible Water-Alternating-CO2 Flooding for Enhancing Oil Recovery in the Sarvak Formation. Oil Gas Sci. Technol. –Rev. D’ifp Energ. Nouv. 2017, 72, 35. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Nuryaningsih, L.; Adidharma, H. The study of timing of cyclic injections in miscible CO 2 WAG. In Society of Petroleum Engineers Western Regional Meeting; Society of Petroleum Engineers: Bakersfield, CA, USA, 2012. [Google Scholar] [CrossRef]
- Jafari, M. Laboratory study for water, gas and wag injection in lab scale and core condition. Pet. Coal 2014, 56, 175–181. [Google Scholar]
- Shahverdi, H.; Sohrabi, M.; Fatemi, M.; Jamiolahmady, M. Three-phase relative permeability and hysteresis effect during WAG process in mixed wet and low IFT systems. J. Pet. Sci. Eng. 2011, 78, 732–739. [Google Scholar] [CrossRef]
- Fatemi, S.M.; Sohrabi, M. Cyclic hysteresis of three-phase relative permeability curves applicable to WAG injection under low gas/oil IFT: Effect of immobile water saturation, injection scenario and rock permeability. In 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013 Incorporating SPE EUROPEC 2013: Changing Frontiers; European Association of Geoscientists and Engineers, EAGE: London, UK, 2013. [Google Scholar] [CrossRef]
- Fatemi, S.M.; Sohrabi, M. Cyclic Hysteresis of Three-Phase Relative Permeability Applicable to WAG Injection: Water-Wet and Mixed-Wet Systems under Low Gas/Oil IFT. In SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: San Antonio, TX, USA, 2012. [Google Scholar] [CrossRef]
- Ma, T.D.; Youngren, G.K. Performance of Immiscible Water-Alternating-Gas (IWAG) Injection at Kuparuk River Unit, North Slope, Alaska. In SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: New Orleans, LA, USA, 1994. [Google Scholar] [CrossRef]
- Crogh, N.A.; Eide, K.; Morterud, S.E. WAG Injection at the Statfjord Field, A Success Story. In European Petroleum Conference; Society of Petroleum Engineers: Aberdeen, UK, 2002. [Google Scholar] [CrossRef]
- Holtz, M.H. Immiscible water alternating gas (IWAG) EOR: Current state of the art. In SPE-DOE Improved Oil Recovery Symposium Proceedings; Society of Petroleum Engineers (SPE): Tulsa, OK, USA, 2016. [Google Scholar] [CrossRef]
- Fatemi, S.M.; Sohrabi, M. Experimental Investigation of Near-Miscible Water-Alternating-Gas Injection Performance in Water-Wet and Mixed-Wet Systems. SPE J. 2013, 18, 114–123. [Google Scholar] [CrossRef]
- Rao, D. Gas injection EOR-a new meaning in the new millennium. J. Can. Pet. Technol. 2001, 40, 11–19. [Google Scholar] [CrossRef]
- Rao, D.N.; Girard, M.G. Induced multiphase flow behaviour effects in gas injection EOR projects. J. Can. Pet. Technol. 2002, 41, 53–60. [Google Scholar] [CrossRef]
- Wojnicki, M. Experimental investigations of oil displacement using the WAG method with carbon dioxide. Nafta-Gaz 2017, 73, 864–870. [Google Scholar] [CrossRef]
- Sohrabi, M.; Tehrani, D.H.; Danesh, A.; Henderson, G.D. Visualization of oil recovery by water-alternating-gas injection using high-pressure micromodels. SPE J. 2004, 9, 290–301. [Google Scholar] [CrossRef]
- Dong, M.; Foraie, J.; Huang, S.; Chatzis, I. Analysis of immiscible Water-Alternating-Gas (WAG) injection using micromodel tests. J. Can. Pet. Technol. 2005, 44, 17–24. [Google Scholar] [CrossRef]
- Sohrabi, M.; Danesh, A.; Jamiolahmady, M. Visualisation of residual oil recovery by near-miscible gas and SWAG injection using high-pressure micromodels. Transp. Porous Media 2008, 74, 239–257. [Google Scholar] [CrossRef]
- Janssen, M.T.G.; Azimi, F.; Zitha, P.L.J. Immiscible nitrogen flooding in bentheimer sandstones: Comparing gas injection schemes for enhanced oil recovery. In SPE Symposium on Improved Oil Recovery; Society of Petroleum Engineers (SPE): Tulsa, OK, USA, 2018. [Google Scholar] [CrossRef]
- Khanifar, A.; Raub, M.R.A.; Tewari, R.D.; Zain, Z.M.; Sedaralit, M.F. Designing of Successful Immiscible Water Alternating Gas (IWAG) Coreflood Experiment. In International Petroleum Technology Conference; Society of Petroleum Engineers (SPE): Doha, Qatar, 2015. [Google Scholar] [CrossRef]
- Alkhazmi, B.; Sohrabi, M.; Farzaneh, S.A. An experimental investigation of the effect of gas and water slug size and injection order on the performance of immiscible WAG injection in a mixed-wet system. In Society of Petroleum Engineers-SPE Kuwait Oil and Gas Show and Conference 2017; Society of Petroleum Engineers: Kuwait City, Kuwait, 2017. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Sayegh, S.; Huang, S. Enhanced heavy oil recovery by immiscible WAG injection. In Canadian International Petroleum Conference 2006, CIPC 2006; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2006. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Sayegh, S.G.; Luo, P.; Huang, S. Experimental investigation of immiscible gas process performance for medium oil. J. Can. Pet. Technol. 2010, 49, 32–39. [Google Scholar] [CrossRef]
- Skauge, A.; Solbakken, J.; Ormehaug, P.A.; Aarra, M.G. Foam Generation, Propagation and Stability in Porous Medium. Transp. Porous Media 2020, 131, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Fernø, M.A. Enhanced Oil Recovery in Fractured Reservoirs. In Introduction to Enhanced Oil Recovery (EOR) Processes and Bioremediation of Oil-Contaminated Sites; IntechOpen: London, UK, 2012; Volume 89, pp. 89–110. [Google Scholar] [CrossRef]
- Yan, W.; Miller, C.A.; Hirasaki, G.J. Foam sweep in fractures for enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2006, 282, 348–359. [Google Scholar] [CrossRef]
- Haugen, Å.; Mani, N.; Svenningsen, S.; Brattekås, B.; Graue, A.; Ersland, G.; Fernø, M.A. Miscible and Immiscible Foam Injection for Mobility Control and EOR in Fractured Oil-Wet Carbonate Rocks. Transp. Porous Media 2014, 104, 109–131. [Google Scholar] [CrossRef]
- Haugen, Å.; Fernø, M.A.; Graue, A.; Bertin, H.J. Experimental Study of Foam Flow in Fractured Oil-Wet Limestone for Enhanced Oil Recovery. SPE Reserv. Eval. Eng. 2012, 15, 218–228. [Google Scholar] [CrossRef]
- Jackson, D.D.; Andrews, G.L.; Claridge, E.L. Optimum WAG Ratio vs. Rock Wettability in CO2 Flooding. In SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: Las Vegas, NV, USA, 1985. [Google Scholar] [CrossRef]
- Suicmez, V.S.; Piri, M.; Blunt, M.J. Pore-Scale Modeling of Three-Phase WAG Injection: Prediction of Relative Permeabilities and Trapping for Different Displacement Cycles. In SPE/DOE Symposium on Improved Oil Recovery; Society of Petroleum Engineers: Tulsa, OK, USA, 2006. [Google Scholar] [CrossRef]
- Skauge, A.; Serbie, K. Status of fluid flow mechanisms for miscible and immiscible WAG. In Society of Petroleum Engineers-SPE EOR Conference at Oil and Gas West Asia 2014: Driving Integrated and Innovative EOR; Society of Petroleum Engineers: Muscat, Oman, 2014. [Google Scholar] [CrossRef]
- Greenwalt, W.A.; Vela, S.; Christian, L.; Shirer, J.A. Field test of nitrogen WAG injectivity. J. Pet. Technol. 1982, 34, 266–272. [Google Scholar] [CrossRef]
- Duchenne, S.; Puyou, G.; Cordelier, P.; Bourgeois, M.; Hamon, G. Laboratory investigation of miscible CO2 WAG injection efficiency in carbonate. In Society of Petroleum Engineers-SPE EOR Conference at Oil and Gas West Asia 2014: Driving Integrated and Innovative EOR; Society of Petroleum Engineers: Muscat, Oman, 2014. [Google Scholar] [CrossRef]
- Global Carbon Capture and Storage Institute. The Global Status of CCS; Global Carbon Capture and Storage Institute: Melbourne, Australia, 2019. [Google Scholar]
- Slowakiewicz, M.; Mikolajewski, Z. Sequence stratigraphy of the Upper Permian Zechstein main dolomite carbonates in Western Poland: A new approach. J. Pet. Geol. 2009, 32, 215–233. [Google Scholar] [CrossRef]
- Matyasik, I.; Leśniak, G.; Such, P.; Mikołajewski, Z. Mixed wetted carbonate reservoir: Origins of mixed wettability and affecting reservoir properties. Ann. Soc. Geol. Pol. 2010, 80, 115–122. [Google Scholar]
- Langaas, K.; Ekrann, S.; Ebeltoft, E. A criterion for ordering individuals in a composite core. J. Pet. Sci. Eng. 1998, 19, 21–32. [Google Scholar] [CrossRef]
- American Petroleum Institute (API). Recommended Practices for Core Analysis; American Petroleum Institute (API): Washington, DC, USA, 1998. [Google Scholar]
Total Salinity (g/l) | Cation (g/L) | Anion (g/l) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Ca2+ | NH4+ | Cl− | Br− | SiO32- | HCO3− | SO42- | S2− | |
8.932 | 2.03 | 0.462 | 0.062 | 0.389 | 0.259 | 5.265 | 0.037 | 0.013 | 0.177 | 0.147 | 0.505 |
Density (kg/m3) | Component Concentration (%mol) | |||||||
---|---|---|---|---|---|---|---|---|
N2 | H2S | CO2 | H2 | C1 | C2 | C3 | C4+ | |
1.2507 | 86.9 | 2.7 | 1.2 | 1.1 | 5.6 | 0.8 | 0.7 | 1 |
Sample | Mineral Composition [%] | |||
---|---|---|---|---|
Quartz | Dolomite | Ankerite | Anhydrite | |
1 | 0.5 | 83 | 15.6 | 0.9 |
2 | 0.4 | 80.3 | 16.5 | 2.8 |
3 | 0.3 | 82.4 | 16.5 | 0.8 |
4 | 0.5 | 83 | 15.6 | 0.9 |
Composite Core No. | Length [cm] | Average Porosity [%] | Average Permeability [mD] | Pore Volume [cm3] |
---|---|---|---|---|
1 | 21.21 | 27.1 | 70.5 | 28.8 |
2 | 21.73 | 30.4 | 77.3 | 33.0 |
3 | 21.95 | 24.6 | 72.1 | 26.4 |
4 | 22.30 | 22.7 | 80.7 | 25.7 |
5 | 21.40 | 24.6 | 80.4 | 26.7 |
6 | 22.15 | 28.7 | 77.0 | 31.8 |
Properties of Fractured Core | Composite Core No | |||
---|---|---|---|---|
2 | 3 | |||
Value | Change [%] | Value | Change [%] | |
Permeability [mD] | 752 | 1006 | 584 | 1142 |
Average effective porosity [%] | 31.23 | 2.7 | 23.06 | 4.1 |
Volume of non-fractured cores set [cm3] | 106.48 | 2.2 | 108.11 | 2.1 |
Pore volume [cm3] | 33.09 | 0.3 | 24.77 | 1.8 |
Fracture volume [cm3] | 1.54 | 1.52 | ||
Contribution of fracture volume in pore volume [%] | 4.7 | 6.1 | ||
Contribution of fracture volume in total volume [%] | 1.4 | 4.2 |
Test No | Composite Core No | Method of Injection | Artificial Fracture | Injected Fluid | WAG Ratio | Swi [%] | Soi [%] | TWI 1 [HCPV] | TGI 2 [HCPV] |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | CWI | no | Water | 1:0 | 46.9 | 53.1 | 1.2 | 0 |
2 | 4 | CGI | no | Gas | 0:1 | 39.6 | 60.4 | 0 | 1.2 |
3 | 6 | WAG | no | Water/Gas | 1:1 | 30.8 | 69.2 | 0.6 | 0.6 |
4 | 5 | WAG | no | Water/Gas | 1:2 | 30.5 | 69.5 | 0.4 | 0.8 |
5 | 3 | WAG | yes | Water/Gas | 1:1 | 38.1 | 61.9 | 0.6 | 0.6 |
6 | 2 | WAG | yes | Water/Gas | 1:2 | 30.8 | 69.2 | 0.4 | 0.8 |
7 | 3 | CGI | yes | Gas | 1:0 | 42.5 | 57.5 | 1.2 | 0 |
8 | 2 | CWI | yes | Water | 0:1 | 32.1 | 67.9 | 0 | 1.2 |
9 | 3 | FAWAG | yes | FAS3/Gas | 1:1 | 41.6 | 58.4 | 0.6 | 0.6 |
10 | 3 | FAWAG | yes | FAS3/Gas | 1:2 | 37.8 | 62.2 | 0.4 | 0.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojnicki, M.; Lubaś, J.; Warnecki, M.; Kuśnierczyk, J.; Szuflita, S. Experimental Studies of Immiscible High-Nitrogen Natural Gas WAG Injection Efficiency in Mixed-Wet Carbonate Reservoir. Energies 2020, 13, 2346. https://doi.org/10.3390/en13092346
Wojnicki M, Lubaś J, Warnecki M, Kuśnierczyk J, Szuflita S. Experimental Studies of Immiscible High-Nitrogen Natural Gas WAG Injection Efficiency in Mixed-Wet Carbonate Reservoir. Energies. 2020; 13(9):2346. https://doi.org/10.3390/en13092346
Chicago/Turabian StyleWojnicki, Mirosław, Jan Lubaś, Marcin Warnecki, Jerzy Kuśnierczyk, and Sławomir Szuflita. 2020. "Experimental Studies of Immiscible High-Nitrogen Natural Gas WAG Injection Efficiency in Mixed-Wet Carbonate Reservoir" Energies 13, no. 9: 2346. https://doi.org/10.3390/en13092346
APA StyleWojnicki, M., Lubaś, J., Warnecki, M., Kuśnierczyk, J., & Szuflita, S. (2020). Experimental Studies of Immiscible High-Nitrogen Natural Gas WAG Injection Efficiency in Mixed-Wet Carbonate Reservoir. Energies, 13(9), 2346. https://doi.org/10.3390/en13092346