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Abstract: This paper examines the solution to the problem of turbine arrangement in offshore
wind farms. The two main objectives of offshore wind farm planning are to minimize wake loss
and maximize annual energy production (AEP). There is more wind with less turbulence offshore
compared with an onshore case, which drives the development of the offshore wind farm worldwide.
South Korea’s offshore wind farms, which are deep in water and cannot be installed far off the
coast, are affected by land complex terrain. Thus, domestic offshore wind farms should consider the
separation distance from the coastline as a major variable depending on the topography and marine
environmental characteristics. As a case study, a 60 MW offshore wind farm was optimized for the
coast of the Busan Metropolitan City. For the analysis of wind conditions in the candidate site, wind
conditions data from the meteorological tower and Ganjeolgot AWS at Gori offshore were used from
2001 to 2018. The optimization procedure is performed by evolutionary algorithm (EA) and particle
swarm optimization (PSO) algorithm with the purpose of maximizing the AEP while minimizing
the total wake loss. The optimization procedure can be applied to the optimized placement of WTs
within a wind farm and can be extended for a variety of wind conditions and wind farm capacity.
The results of the optimization were predicted to be 172,437 MWh/year under the Gori offshore wind
potential, turbine layout optimization, and an annual utilization rate of 26.5%. This could convert
4.6% of electricity consumption in the Busan Metropolitan City region in 2019 in offshore wind farms.

Keywords: offshore wind farm layout optimization; park wake model; metamodel; evolutionary
algorithm; particle swarm optimization; Korea offshore

1. Introduction

Diversifying energy sources and securing energy supplies are key energy strategy
targets for many countries [1]. Due to climate change, wind energy has become more
and more important for power generation without carbon dioxide emissions [1]. Offshore
wind power is a good opportunity for South Korea, providing opportunities to accelerate
power generation without the use of fossil fuels or nuclear power generation [2]. In order
to achieve the “renewable energy 3020” goal of 20% renewable energy in the power mix
by 2030, South Korea has aimed to build 12 GW of new offshore wind power generation
capacity by the end of the decade [2].

The world’s first offshore wind farm was built in 1991 in Vindeby, southeast of
Denmark. After 25 years of operation, the concept of offshore wind power has been
proven to be effective. Korea began commercial operations of offshore wind farms on
Jeju Island when the first generation of offshore wind farms disappeared. Difficulties still
exist related to marine meteorological and geographical characteristics (e.g., around Jeju
Island and the sudden change of water depth in the East Sea coast), acceptance by local
residents, investment costs related to specific military regulations, and long-term economic
assessments. In order to overcome these difficulties and secure their economic viability,
it is imperative to optimize the layout of offshore wind farms.

Energies 2021, 14, 146. https://doi.org/10.3390/en14010146 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en14010146
https://doi.org/10.3390/en14010146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14010146
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/1/146?type=check_update&version=4


Energies 2021, 14, 146 2 of 15

Approaches to the optimal placement of early wind turbines often did not reflect prac-
tical conditions in the calculation of optimal placement, such as simple assumptions about
wind scenarios and regular grid-based arrangements. In a notable study, Martina Fischetti
et al. [3] proposed a combination of mathematical optimization and machine learning to
estimate the value of the optimized solution. A machine trained with many optimized
solutions will investigate whether it can accurately estimate the value of the optimized
solution for the new instance. In order to solve the problem of optimizing the layout of an
offshore wind farm, which is a specific application, a Mixed Integer Programming model
and other cutting-edge optimization techniques are proposed. It can take too much time
if you have to evaluate many sites. It was proposed to use machine learning to quickly
estimate the potential of the new site. Jagdish Chand Bansal et al. [4] proposed a solution
to the wind farm layout optimization problem (WFLOP) using BBO (Biogeography Based
Optimization), a new optimization algorithm. This paper recommends the maximum
number of turbines as well as ensuring the optimum position of the wind turbines for
a given wind farm. In experiments on wind farms of various sizes, BBO has demonstrated
superior performance to previous WFLOP solution methodologies. Jonas Schmidt et al. [5]
presented results for nine slope-based layout optimization runs of a wind farm with 25 tur-
bines on a flat terrain using three basic wake models and three different inflow scenarios.
In all cases, the AEP is maximized, and the constraints are purely geometric. Single flow
vectors, uniform wind increases, and realistic synthetic wind increases were studied, and
the final layout was compared with a Jensen, Ainslie, and CFD-based numerical wake
model. From this, an estimate of the average variation in the turbine position due to
different wake models was obtained. Mosetti et al. [6] optimized the placement of turbines
to minimize wake losses and maximize energy production by using genetic algorithms
(GAs) to simplify square grid-based turbine deployment problems. Yang et al. [7] defined
index numbers for each grid and proposed an automatic placement algorithm for turbines
using a genetic algorithm such that turbines could be optimally placed in irregular-type
wind farms. Elkinton et al. [8,9] established an offshore wind farm layout optimization
(OWFLO) framework which minimizes the cost of energy (COE) of wind farms using
Park’s wake model and an evolutionary algorithm. The OWFLO framework focuses on the
development of a wake model, the selection of an appropriate purpose function, and the
use of various optimization strategies. The TOPFARM project [10–12] in Denmark included
various wake models and operating and maintenance costs to replace CFD interpreta-
tion. A multi-fidelity approach was proposed to reduce the design requirements and
calculation time, performing optimization by combining sequential linear programming
(SLP) and a GA. This paper proposes the development of turbine layout scenarios and
a meta-model-based optimization strategy for offshore wind farm layout optimization.

This paper proposes the development of turbine layout scenarios and a metamodel-
based optimization strategy for offshore wind farm layout optimization. An EA and PSO
algorithm is utilized to solve the optimal wind farm layout problem. The Gori offshore
wind farm located in South Korea at the East Sea is selected as the case study to the
proposed strategy.

2. Wind Farm Layout Optimization Framework
2.1. Wake Modeling

Wind power efficiency is a function of many variables, such as atmospheric condi-
tions, terrain, wind power turbine design, turbine intervals, and electricity transmission.
The wind power turbines used and the wake motion produced by wind power wake
dynamics have an immense influence on the productivity and arrangement of wind farm
installments. Evaluation of the wake effect of a wind turbine can be divided into numerical
and analytic models. The former include the Ainslie (Eddy Viscosity), Reynolds averaged
Navier–Stokes (RANS), and farm flow (ECN) models, while the latter include the Jensen,
Larsen, and Frandsen Models [13–15]. The wake model employed in this paper is the
Jensen (RIS∅/EMD)/Park2 Model for wind farms, in order to calculate wind speed and
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power generation losses due to the wake effect of wind turbines. Calculation of the wake
effects in wind farms over a long period of time is implemented by the Jensen Model-
based Park Model (Park1) of WAsP (Wind Atlas Analysis and Application Program), using
the secondary overlay method and combining several wakes using a single wake model.
The Park2 Model, proposed by Rathmann, retains a simple representation of the wake,
compared to the Park1 Model, but it uses different formulas for the wake reduction by
distance and the wake interaction.

The Park1 Model, which can normally be obtained as the wake loss rate with respect
to the turbine separation distance, is as follows:

∆umn

u0,m
= (1 − um

u0,m

√
1 − CT(Um))[

Dm

Dm + 2kxmn
]
2
,xmn = xn + dx − xm, (1)

where x is the downstream distance, D is the rotor diameter, CT is the thrust coefficient
associated with the incoming wind velocity u, xmn is the downwind horizontal distance be-
tween the wind turbines, k is the wake decay constant, and

√
1 − CT(Um) is the normalized

rate of inflow of wind turbine m and n, which is modified by the wind speed [15,16].
The calculation of the wake impact area is determined by calculating the cross-area of

the wake area caused by the preceding wind turbine and the area of the rotor of the rear
wind turbine. The calculated wake impact area is applied to the wake model in proportion
to the total area of the rotor, as shown in Equation (2) (and illustrated in Figure 1) in order
to calculate the wind speed reduction due to the wake.

∆umn

u0,m
= (1 −

√
1 − CT(Um) )[

Dm

Dm + 2kxmn
]
2
,
Aoverlap,mn

Arotor,n
,xmn = xn + dx − xm (2)

where U0,m is the inflow wind speed from turbine m and Aoverlap,mn is the wake area of
wind turbine m overlapping with the rotor of wind turbine n. When estimating the com-
bined effect of overlapping wakes, Park2 uses classical perturbation theory, thus assuming
that, at some point, the speed-deficit effects from the individual turbines are sufficiently
small that they may be simply added. In other words, we apply a linear wake superposi-
tion. Park2 Models have been adapted and validated for use in several coast and offshore
wind farms. The typical wake reduction coefficient for offshore wind farms (obtained by
verification) ranges from 0.045 to 0.075 [15,16].
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2.2. Optimization Framework

The wind farm layout optimization in this paper focuses on determining the position
of N wind turbines when the objective function of wind farm performance is optimally
approached. The two main traditional strategies of the turbine array method are to divide
the wind farm into a discrete grid in order to explore the optimum grid positions of the
turbines or to define the turbine position coordinates as continuous variables, such that all
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possible positions within the wind farm can be trialed. Commercial wind farms generally
include a large number of turbines (50 and above). If array layouts or grid-based patterns
are not assumed for N turbines, the optimization problems can become difficult, involving
2N design variables. In this paper, the turbine arrangement method is composed of the
following two scenarios:

(1) Scenario 1: An approach using just patterns in the arrangement of rows and columns
of turbines.

(2) Scenario 2: A method of converting a wind farm domain (x, y) into a single parameter
or an approach that directly uses the orthogonal coordinates (x, y) of turbines as
design variables. In this case, the grid is mapped within the domain and placed by
the index number.

The design framework was formalized to model the relationship between the geometry
and turbine layout and the energy output in the wind farm. This framework consists of the
following main steps:

(STEP 1) Design of experiment (DOE) for turbine layout under scenarios 1 and 2.
The DOE data interface process for the two scenarios is as follows.

(STEP 2) Calculation of performance data of wind farm using windPRO for scenarios
1 and 2.

(STEP 3) Store performance data in an ASCII or Excel file (.csv) and convert data
into a Binary file to associate with the optiSLang metamodel of optimal prognosis (MOP)
function and analyze design sensitivity [17].

(STEP 4) Generate and verify the polynomial and extrapolation-based metamodel.
(STEP 5) Apply evolutionary algorithm (EA) and particle swarm optimization (PSO) to

obtain the optimal solution of a multi-objective function using the verified metamodel [18–20].
As the metamodels approximate the computationally intensive functions using simple

analytical models (a form of the cheap-to-compute model), it is efficient and simple to
perform EA and PSO while reliability is achieved by the metamodels. Figure 2 represents
the optimization framework and details the stages of optimizing the placement of wind
farms in the case of the Gori offshore area.
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3. Offshore Wind Farm Case Study Results

A feasibility study and efficient design methodology for the offshore wind farm
development project on the southeastern coast of Busan were carried out. The Gori sites
are located at Easting 526,200 and Northing 3,906,000 (Figure 3). Centralized power
supplies of nuclear power and thermal power plants are installed in the vicinity of this
area. As such, the use of idle substation equipment and power transmission facilities from
the permanently stopped power plants serve to decrease the installation costs of offshore
wind power production and to increase their business potential.
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Figure 4 shows the density of wind energy in the area of the intended site of the
offshore wind farm using long-term wind speed correction (Measure–Correlative–Predict,
MCP) based on the long-term Gori met mast wind data. For a hub height of 110 m,
the Weibull parameters (A, K) and the frequency and average wind speed for each direc-
tion are summarized, where the main wind direction is NNE. The Weibull distribution
parameters are A = 7.14, K = 1.838, and V (mean) = 6.3 m/s.

Energies 2020, 13, x FOR PEER REVIEW 6 of 15 
 

 

Figure 4 shows the density of wind energy in the area of the intended site of the 
offshore wind farm using long-term wind speed correction (Measure–Correlative–Pre-
dict, MCP) based on the long-term Gori met mast wind data. For a hub height of 110 m, 
the Weibull parameters (A, K) and the frequency and average wind speed for each direc-
tion are summarized, where the main wind direction is NNE. The Weibull distribution 
parameters are A = 7.14, K = 1.838, and V (mean) = 6.3 m/s. 

 
Figure 4. Wind rose diagram at Gori. 

3.1. Defining the Design Variable and Objective Function 
The purpose of the wind farm layout optimization problem considered in this paper 

is to maximize the annual energy production (AEP) considering the size and number of 
turbines at the pre-defined Gori offshore wind farm and to minimize the wake loss. The 
optimization problem for the layout of the wind farms, considering the design variables 
xi and according to the two scenarios, was formulated as follows: 
Find WTG1, WTG2, WTG3,⋯, WTG12 
Maximize AEP(xi) or AEP(WTGj) 
Minimize Wake Loss(xi) or Wake Loss(WTGj) 

Subject to 

xLower ≤ xi ≤ xUpper   i=1,2,⋯, 9.  j=1,2,⋯,12. (3)

For scenario 1, Figure 5 represents the nine design variables (x1–x9) used for optimiz-
ing the wind farm layout. The coastline separation distance, rotation angle in the direction 
of the main wind direction, lateral angle, and separation distance of the front and rear 
columns of the turbine were selected. Table 1 presents the design variables and the re-
spective levels. Table 2 shows the experimental arrangement and its interpretation results 
using the Taguchi mixed orthogonal array with respect to the nine design variables [21]. 

 
(a) 

Figure 4. Wind rose diagram at Gori.



Energies 2021, 14, 146 6 of 15

3.1. Defining the Design Variable and Objective Function

The purpose of the wind farm layout optimization problem considered in this paper
is to maximize the annual energy production (AEP) considering the size and number
of turbines at the pre-defined Gori offshore wind farm and to minimize the wake loss.
The optimization problem for the layout of the wind farms, considering the design variables
xi and according to the two scenarios, was formulated as follows:

Find WTG1, WTG2, WTG3,· · · , WTG12
Maximize AEP(xi) or AEP(WTGj)
Minimize Wake Loss(xi) or Wake Loss(WTGj)
Subject to

xLower ≤ xi ≤ xUpper i = 1, 2, · · · , 9. j = 1, 2, · · · , 12. (3)

For scenario 1, Figure 5 represents the nine design variables (x1–x9) used for optimizing
the wind farm layout. The coastline separation distance, rotation angle in the direction of
the main wind direction, lateral angle, and separation distance of the front and rear columns
of the turbine were selected. Table 1 presents the design variables and the respective levels.
Table 2 shows the experimental arrangement and its interpretation results using the Taguchi
mixed orthogonal array with respect to the nine design variables [21].
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Table 1. The nine design variables and their levels.

Design Variable Description Unit Initial Level 1 Level 2 Level 3

x1 Coastline Distance m 1000 1000 1250 1500
x2 Farm Base Angle Degree 0 −10 0 10
x3 Farm Side Angle Degree 90 70 90 110
x4 1 × 1 Row Distance m 1000 556 778 1000
x5 1 × 2 Row Distance m 1000 556 778 1000
x6 1 × 3 Row Distance m 1000 556 778 1000
x7 1 × 4 Row Distance m 1000 556 778 1000
x8 1 × 5 Row Distance m 1000 556 778 1000
x9 1 × 6 Row Distance m 1000 556 778 1000

Table 2. Taguchi orthogonal array L54 matrix and results with respect to the nine design variables.

No x1 x2 x3 x4 x5 x6 x7 x8 x9
AEP

(MWh/y)
Wake Loss

(%)
CF
(%)

1 1000 −10 70 556 556 556 556 556 556 167,518.2 9.3 25.8
2 1000 −10 70 556 556 556 778 778 778 168,502.4 8.8 25.9
...

...
...

54 1500 0 70 778 1000 556 1000 778 556 169,410.6 8.5 26.1

For scenario 2, Figure 6 defines 24 coordinates of each turbine x and y as design
variables for the 12 turbines. In the case of scenario 2, the distance between the accumulated
turbines was used as a variable. The turbine batch DOE sampling implementation program
was configured using Visual Studio 2013 C# on Windows 10.

Energies 2020, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
(b) 

Figure 5. Design variables for offshore wind farm layout based on regular pattern (scenario 1). (a) Farm pattern, (b) Wind 
turbine generator column distance. 

For scenario 2, Figure 6 defines 24 coordinates of each turbine x and y as design var-
iables for the 12 turbines. In the case of scenario 2, the distance between the accumulated 
turbines was used as a variable. The turbine batch DOE sampling implementation pro-
gram was configured using Visual Studio 2013 C# on Windows 10. 

 
Figure 6. Design variables for offshore wind farm layout based on unrestricted coordinates (scenario 2). 

The program was run by entering the turbine interval, site size, number of turbines, 
output file name, and sampling method in the command window. The results of the pro-
gram execution were checked in the .csv file, as displayed in Excel. 

The intervals for the x and y coordinates of the two accumulated turbines were set to 
at least 4D of the turbine diameter and defined using the following expression [12,22,23]: ∑ ∑ ඥ(ݔ − )ଶݔ + ݕ) − )ଶேୀାଵேିଵୀଵݕ ≤ (4) .ܦ4

where xij and yij are the arrays storing the wind turbine row and column numbers for the 
wind turbine x and y coordinates for the unrestricted coordinate method. The sum of the 
distances of all pairs i & j is a design constraint to minimize the total distance of the accu-
mulated 12 turbine positions. 

Table 1. The nine design variables and their levels. 

Design variable Description Unit Initial Level 1 Level 2 Level 3 
x1 Coastline Distance m 1000 1000 1250 1500 
x2 Farm Base Angle Degree 0 –10 0 10 
x3 Farm Side Angle Degree 90 70 90 110 
x4 1 × 1 Row Distance m 1000 556 778 1000 
x5 1 × 2 Row Distance m 1000 556 778 1000 
x6 1 × 3 Row Distance m 1000 556 778 1000 
x7 1 × 4 Row Distance m 1000 556 778 1000 
x8 1 × 5 Row Distance m 1000 556 778 1000 
x9 1 × 6 Row Distance m 1000 556 778 1000 

  

Figure 6. Design variables for offshore wind farm layout based on unrestricted coordinates (sce-
nario 2).

The program was run by entering the turbine interval, site size, number of turbines,
output file name, and sampling method in the command window. The results of the
program execution were checked in the .csv file, as displayed in Excel.

The intervals for the x and y coordinates of the two accumulated turbines were set to
at least 4D of the turbine diameter and defined using the following expression [12,22,23]:

N−1

∑
i=1

N

∑
j=i+1

√(
xi − xj

)2
+
(
yi − yj

)2 ≤ 4D. (4)

where xij and yij are the arrays storing the wind turbine row and column numbers for
the wind turbine x and y coordinates for the unrestricted coordinate method. The sum of
the distances of all pairs i & j is a design constraint to minimize the total distance of the
accumulated 12 turbine positions.
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3.2. Optimal Turbine Layout Results

Optimization of turbine deployment was obtained using total AEP and total wake
loss metamodels, as well as EA and PSO. EA and PSO, being a stochastic search algorithm,
deals with multiobjective problems significantly better than do gradient based algorithms.
It is better exploration abilities, diminished susceptibility to being trapped in local minima,
and because it does not suffer from premature convergence. PSO is an algorithm built on
the basis of swarm intelligence to solve optimization problems, e.g., search spaces [24], and
it has been successfully applied in many areas where optimization problems need to be
resolved [25].

Figure 7 shows the convergent process of Pareto optimization by the interaction of
turbine layout design variables with EA and PSO, two objective functions AEPs, and
the posterior loss. EA and PSO were implemented using the commercial optimal design
software optiSLang. EA and PSO sorted the dominance among objects based on non-
controlling alignment-based genetic algorithms, which have been widely used in multi-
objective optimal design fields, and explore them by emphasizing the best solution direction.
EA and PSO populations were both set to 1000 and optimal solutions were obtained after
9884 and 16,051 repetitions, respectively.
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Figure 7. Optimal solutions achieved through (a) evolutionary algorithm (EA) and (b) particle swarm optimization (PSO)
algorithm.

This plot shows all parameter (design variable, AEP, wake loss for objectives, and con-
straints) for all designs. The failed designs are colored pink, the deactivated are colored gray,
incomplete designs are colored violet, and the selected designs are colored red. The optimal
solution of EA and PSO shows similar patterns, but EA is better for maximum AEP.

The optimization problem is summarized in Equation (3) and solved using the EA
and PSO algorithm. EA and PSO was set to start with a population size of 1000 with an
alternative value of 10. The user defined constants involved in EA and PSO are summarized
in Table 3.

Table 3. User-defined constants in EA and PSO.

EA PSO

Population size: 1000 Population size: 1000

Archive size: 20 Archive size: 20

Crossover probability: 50% Stop criteria: Diversity < 10%

Mutation rate: 20% -

Figures 8 and 9 show the results of the optimum turbine arrangement at the Gori
offshore wind farm. The wind farm was oriented more in the main wind direction (NNE),
compared to the initial turbine arrangement. The spacing between the front and back
rows of the turbine was about 7D (Turbine diameter 140 m). Tables 4 and 5 summarize the
optimal layout of the wind farm and the optimal locations of each of the 12 turbines, re-
spectively. The optimal solution of EA and PSO shows similar patterns, but EA is better for
maximum AEP. With this layout pattern, the annual energy production is 172,437 MWh/y
and the capacity factor is 26.5%.
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The wind farm layout results obtained using the proposed optimization framework
are shown in Figure 8. Figure 8a shows a designed wind farm that is assumed to have a
rectangular shape. Figure 8b shows the turbine arrangement with the maximum AEP at
the DOE sample points. The optimum wind farm layout is shown in Figure 8c, and the
power generated by each turbine (of this wind farm) is shown in Figure 9. For a given wind
increase (Figure 3), the dominant wind direction allows for greater distances between the
turbines and the staggered layout pattern in general minimizes the wake losses, thereby
increasing the AEP.

The optimal wind farm was oriented more in the main wind direction (NNE) com-
pared to the initial turbine arrangement. The spacing between the front and back rows
of the turbine was about 7D (Turbine diameter 140 m). Table 5 summarize the optimal
layout of the wind farm and the optimal locations of each of the 12 turbines, respectively.
With this optimal layout pattern, the annual energy production is 172,437 MWh/y and
the capacity factor is 26.5%. Then, the potential offshore wind power can be estimated as
converting 4.6% of electricity consumption in the Busan Metropolitan City region in 2019
in offshore wind farms.
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Figure 9. Optimal turbine layout for 12 WTGs at the Gori wind farm. (a) initial, (b) DOE best solution (c) optimal solution.

Table 4. Key results summarized from the optimization framework.

Solution x1 x2 x3 x4 x5 x6 x7 x8 x9
AEP

(MWh/y)
Wake Loss

(%)
CF
(%)

Initial 1000 0 0 1000 1000 1000 1000 1000 1000 168,000 9.1 25.8
DOE Best 1250 −10 90 778 1000 1000 778 778 1000 170,874 7.5 26.3

PSO 1216.1 −9.2 86.5 1000 988.1 1000 997.9 999.1 997.5 171,762 7.069 26.5
EA 1453.9 −10 70 969.5 999.9 852.1 1000 1000 1000 172,662 7.397 26.5

Reanalysis 1453.9 −10 70 969.5 999.9 852.1 1000 1000 1000 172,437 7.4 26.5
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Table 5. Results of calculated annual energy for each of 12 WTGs.

Results WTG1 WTG2 WTG3 WTG4 WTG5 WTG6 WTG7 WTG8 WTG9 WTG10 WTG11 WTG12

Initial

Easting (m) 526,339 526,397 526,999 526,997 527,599 527,597 528,199 528,197 528,799 528,797 529,399 529,397

Northing (m) 3,906,422 3,907,200 3,906,422 3,907,200 3,906,422 3,907,200 3,906,422 3,907,200 3,906,422 3,907,200 3,906,422 3,907,200

AEP (MWh/y) 13,867.6 14,296.0 13,458.7 13,927.9 13,512.1 13,969.2 13,657.1 14,072.1 13,842.1 14,220.8 14,279.3 14,430.3

Wake Loss (%) 7.3 2.6 11.0 6.3 11.6 7.4 11.6 7.8 11.2 7.9 9.1 7.4

DOE
Best

Easting (m) 526,438 526,571 526,991 527,162 527,582 527,753 528,211 528,344 528,802 528,935 529,354 529,526

Northing (m) 3,906,169 3,906,935 3,905,846 3,906,831 3,905,742 3,906,727 3,905,856 3,906,623 3,905,752 3,906,518 3,905,429 3,906,414

AEP (MWh/y) 14,125.5 14,442 14,012.9 14,239.2 13,855.6 14,288.8 13,787.1 14,297.9 14,039.3 14,432.2 14,639.2 14,713.8

Wake Loss (%) 6 2.7 8.2 5.4 10.3 6.3 11.4 7.2 10.6 7.4 7.6 6.5

Optimal

Easting (m) 526,400 526,899 526,991 527,490 527,582 528,081 528,173 528,671 528,764 529,262 529,354 529,853

Northing (m) 3,905,700 3,906,567 3,905,596 3,906,462 3,905,492 3,906,358 3,905,387 3,906,254 3,905,283 3,906,150 3,905,179 3,906,046

AEP (MWh/y) 14,586.6 14,510.9 14,093.0 14,301.6 13,997.1 14,352.6 14,074.0 14,410.6 14,219.8 14,566.1 14,460.3 14,864.6

Wake Loss (%) 3.7 3.7 8.0 6.2 9.7 7.0 10.1 7.4 9.9 7.4 9.0 6.2
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4. Conclusions

This paper has presented a framework to obtain text data by configuring the DOE for
optimal turbine placement in the Gori offshore wind farm or to exchange the data needed
for optimal design through a low-level programming language. This framework contains
a more detailed approach to estimating the AEP of offshore wind farm than existing tools
and can be applied to future offshore wind farm development.

(1) For the optimal turbine arrangement at the Gori offshore wind farm, the design
variables that most affected the AEP and wake losses were dominant in the x2 complex
rotation angle.

(2) In terms of the effect of shoreline clearance, the AEP increased as the shoreline
clearance increased, but the wake loss did not linearly reduce as the shoreline clearance
increased becoming minimal at 1250 m.

(3) The optimal solution for turbine arrangement was obtained using the AEP, the wake loss
metamodel, EA, and PSO and was found to be xi = [1453.9, −10, 70, 969.5, 999.9, 852.1, 1000, 1000].
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