Impact of Oxygenated Additives on Soot Properties during Diesel Combustion
Abstract
:1. Introduction
2. Theory: Influence of Additives on Soot Formation and Techniques for Soot Characterization
2.1. Effect of Oxygenated Species on Soot Formation and Oxidation
2.2. The Role of TPGME and OMEs
2.3. Techniques Used for Soot Characterization
2.3.1. Two-Color Pyrometry
2.3.2. Laser-Induced Incandescence
2.3.3. Wide-Angle Light Scattering
3. Experimental Apparatus
3.1. Combustion System
3.2. Two-Color Pyrometry Set-Up
3.3. Laser-Induced Incandescence Set-Up
3.4. Wide-Angle Light Scattering Set-up
4. Results and Discussion
4.1. Impact of Additives on Soot Temperature
4.2. Impact of Additives on Soot Volume Fraction
- TPGME only affects soot production in a minor way, with the exception of the 9% TPGME–blend at 70 mm HAB and 3% TPGME–blend at 90 mm HAB.
- Both other additives, OME2 and OME3–5, cause a reduction in fV: a slight one for OME2 and significant one for OME3–5, especially higher in the flame.
- The additive concentration, especially for OMEs, plays an important role. Although the 1% blend already slightly diminishes soot emissions, the 3% and 9% OME–diesel blends are more effective compared to the 1% blend.
- On average the additive’s effect is always more pronounced in the upper part of the flame. Consequently, the additives most probably enhance the oxidation of soot (that is higher in the upper part of the flame). Nevertheless, more investigations that should also involve soot precursor measurements are required to verify the soot formation and oxidation mechanism.
- The soot reduction effect of TPGME increases by increasing the additive’s concentration. Yet, this is not valid for the OMEs. The best result for OME2 and OME3–5 is achieved at the concentration of 3%, not at 9% as expected. The non-linear correlation between the OME soot reducing effect and its concentration has already been observed in other studies [80,81,82,83]. Song et al. and Kocis et al. reported that 2% and 4% OME1–diesel blends decreased soot by 46% and 57%, respectively [82,83]. Under the same conditions, tests performed with a 30% blend of OME1 in diesel showed less PM reduction (only about 35%) [80,81]. In essence, the addition of OMEs with a concentration of few percent seems promising for practical application, while the requirement of a significant admixture of TPGME to obtain relevant soot reduction is rather a hindrance for technical use.
4.3. Impact of Additives on Soot Aggregate Size
5. Conclusions
- We observe a small effect of the oxygenated additives on soot temperatures, temperature is reduced between 20 K and 70 K compared to the one found for the baseline diesel combustion.
- There is a significant reduction in soot emissions from pure diesel blended with OME2, OME3–5 (at every concentration) and 9% of TPGME. When TPGME is inserted in a lower concentration the effects become insignificant. This TPGME–diesel blend shows a maximum decrease in soot volume fraction of 24% (9% vol, 70 mm HAB) with respect to the baseline diesel. OME2 and OME3–5 exhibit a maximum soot reduction of 28% and 37%, respectively, for 3% vol at 90 mm HAB.
- Similarly, OME2 and OME3–5 show a significant effect in the reduction in aggregate size, for the highest positions measured it amounts up to 15% and 18%, respectively; a pronounced effect for TPGME can only be seen for the highest concentration used of 9%. The according reduction in aggregate volume/mass, when taking the fractal structure into account, roughly corresponds to the reduction in volume fraction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, J. Air pollution and daily mortality: A review and meta analysis. Environ. Res. 1994, 64, 36–52. [Google Scholar] [CrossRef]
- Stöber, W.; Abel, U.R. Lung cancer due to diesel soot particles in ambient air? Int. Arch. Occup. Environ. Health 1996, 68, S3–S61. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.C.; Doherty, S.J.; Fahey, D.; Forster, P.; Berntsen, T.; DeAngelo, B.; Flanner, M.; Ghan, S.; Kärcher, B.; Koch, D. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Khalife, E.; Tabatabaei, M.; Demirbas, A.; Aghbashlo, M. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog. Energy Combust. Sci. 2017, 59, 32–78. [Google Scholar] [CrossRef]
- Gairing, M.; Marriott, J.; Reders, K.; Reglitzky, A.; Wolveridge, P. The Effect of Modern Additive Technology on Diesel Fuel Performance; SAE Technical Paper 950252; SAE International: Warrendale, PA, USA, 1995. [Google Scholar]
- Batt, R.J.; McMillan, J.A.; Bradbury, I. Lubricity Additives-Performance and No-Harm Effects in Low Sulfur Fuels; SAE Technical Paper 961943; SAE International: Warrendale, PA, USA, 1996. [Google Scholar]
- Barbour, R.; Arters, D.; Dietz, J.; Macduff, M.; Panesar, A.; Quigley, R. Diesel Detergent Additive Responses in Modern, High-Speed, Direct-Injection, Light-Duty Engines; SAE Technical Paper 2007-01-2001; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Reid, J.; Burgess, V. Fuel Composition Comprising Detergent and Quanternary Ammonium Salt Additive. Patent WO2011110860A1, 15 September 2011. [Google Scholar]
- Lemaire, R.; Bejaoui, S.; Therssen, E. Study of soot formation during the combustion of Diesel, rapeseed methyl ester and their surrogates in turbulent spray flames. Fuel 2013, 107, 147–161. [Google Scholar] [CrossRef]
- Cheung, C.; Zhu, L.; Huang, Z. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmos. Environ. 2009, 43, 4865–4872. [Google Scholar] [CrossRef]
- Wang, H.; Reitz, R.D.; Yao, M.; Yang, B.; Jiao, Q.; Qiu, L. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combust. Flame 2013, 160, 504–519. [Google Scholar] [CrossRef]
- Omidvarborna, H.; Kumar, A.; Kim, D.-S. Recent studies on soot modeling for diesel combustion. Renew. Sustain. Energy Rev. 2015, 48, 635–647. [Google Scholar] [CrossRef]
- Wu, F.; Wang, J.; Chen, W.; Shuai, S. Effects of Different Biodiesels and Their Blends with Oxygenated Additives on Emissions from a Diesel Engine; SAE Technical Paper 2008-01-1812; SAE International: Warrendale, PA, USA, 2008. [Google Scholar]
- Buyukkaya, E.; Benli, S.; Karaaslan, S.; Guru, M. Effects of trout-oil methyl ester on a diesel engine performance and emission characteristics. Energy Convers. Manag. 2013, 69, 41–48. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, C.; Liu, Q.; Wang, Q.; Wang, X. An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends. Appl. Energy 2016, 170, 219–231. [Google Scholar] [CrossRef]
- Schönborn, A.; Ladommatos, N.; Williams, J.; Allan, R.; Rogerson, J. The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion. Combust. Flame 2009, 156, 1396–1412. [Google Scholar] [CrossRef]
- Iannuzzi, S.E.; Barro, C.; Boulouchos, K.; Burger, J. POMDME-diesel blends: Evaluation of performance and exhaust emissions in a single cylinder heavy-duty diesel engine. Fuel 2017, 203, 57–67. [Google Scholar] [CrossRef]
- Härtl, M.; Seidenspinner, P.; Jacob, E.; Wachtmeister, G. Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 2015, 153, 328–335. [Google Scholar] [CrossRef]
- Hackbarth, K.; Haltenort, P.; Arnold, U.; Sauer, J. Recent progress in the production, application and evaluation of oxymethylene ethers. Chem. Ing. Tech. 2018, 90, 1520–1528. [Google Scholar] [CrossRef]
- Mansurov, Z. Soot formation in combustion processes. Combust. Explos. Shock Waves 2005, 41, 727. [Google Scholar] [CrossRef]
- Johansson, K.; Head-Gordon, M.; Schrader, P.; Wilson, K.; Michelsen, H. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 2018, 361, 997–1000. [Google Scholar] [CrossRef] [Green Version]
- Farrell, J.; Cernansky, N.; Dryer, F.; Law, C.K.; Friend, D.; Hergart, C.; McDavid, R.; Patel, A.; Mueller, C.J.; Pitsch, H. Development of An Experimental Database and Kinetic Models for Surrogate Diesel Fuels; SAE Technical Paper 2007-01-0201; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Michelsen, H.; Schulz, C.; Smallwood, G.; Will, S. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 2015, 51, 2–48. [Google Scholar] [CrossRef] [Green Version]
- Oltmann, H.; Reimann, J.; Will, S. Wide-angle light scattering (WALS) for soot aggregate characterization. Combust. Flame 2010, 157, 516–522. [Google Scholar] [CrossRef]
- Levendis, Y.A.; Estrada, K.R.; Hottel, H.C. Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles. Rev. Sci. Instrum. 1992, 63, 3608–3622. [Google Scholar] [CrossRef]
- Lee, W.; Na, Y.D. Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion. Jsme Int. J. Ser. B Fluids Therm. Eng. 2000, 43, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Hamins, A.; Mulholland, G.W.; Kashiwagi, T. Simultaneous optical measurement of soot volume fraction and temperature in premixed flames. Combust. Flame 1994, 99, 174–186. [Google Scholar] [CrossRef]
- Haynes, B.S.; Wagner, H.G. Soot formation. Prog. Energy Combust. Sci. 1981, 7, 229–273. [Google Scholar] [CrossRef]
- Haynes, B.; Wagner, H.G. The surface growth phenomenon in soot formation. Z. Phys. Chem. 1982, 133, 201–213. [Google Scholar] [CrossRef]
- Bockhorn, H. Soot Formation in Combustion: Mechanisms and Models; Springer: Berlin, Heidelberg, 1989. [Google Scholar]
- Glassman, I. Soot Formation in Combustion Processes. Symp. (International) on Combustion, 1989; Elsevier: Amsterdam, The Netherlands, 1989; pp. 295–311. [Google Scholar]
- Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 2002, 4, 2028–2037. [Google Scholar] [CrossRef]
- Imtenan, S.; Masjuki, H.; Varman, M.; Kalam, M.; Arbab, M.; Sajjad, H.; Rahman, S.A. Impact of oxygenated additives to palm and jatropha biodiesel blends in the context of performance and emissions characteristics of a light-duty diesel engine. Energy Convers. Manag. 2014, 83, 149–158. [Google Scholar] [CrossRef]
- Wang, X.; Cheung, C.; Di, Y.; Huang, Z. Diesel engine gaseous and particle emissions fueled with diesel–oxygenate blends. Fuel 2012, 94, 317–323. [Google Scholar] [CrossRef]
- Sadeghinezhad, E.; Kazi, S.; Sadeghinejad, F.; Badarudin, A.; Mehrali, M.; Sadri, R.; Safaei, M.R. A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement. Renew. Sustain. Energy Rev. 2014, 30, 29–44. [Google Scholar] [CrossRef]
- Lapuerta, M.; Armas, O.; García-Contreras, R. Effect of ethanol on blending stability and diesel engine emissions. Energy Fuels 2009, 23, 4343–4354. [Google Scholar] [CrossRef]
- Herreros, J.; Schroer, K.; Sukjit, E.; Tsolakis, A. Extending the environmental benefits of ethanol–diesel blends through DGE incorporation. Appl. Energy 2015, 146, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Happonen, M.; Heikkilä, J.; Aakko-Saksa, P.; Murtonen, T.; Lehto, K.; Rostedt, A.; Sarjovaara, T.; Larmi, M.; Keskinen, J.; Virtanen, A. Diesel exhaust emissions and particle hygroscopicity with HVO fuel-oxygenate blend. Fuel 2013, 103, 380–386. [Google Scholar] [CrossRef]
- Patil, A.; Taji, S. Effect of oxygenated fuel additive on diesel engine performance and emission: A review. IOSR J. Mech. Civ. Eng. 2013, pp. 30–35. Available online: http://iosrjournals.org/iosr-jmce/papers/RDME-Volume6/RDME-54.pdf (accessed on 10 December 2020).
- López, A.F.; Cadrazco, M.; Agudelo, A.F.; Corredor, L.A.; Vélez, J.A.; Agudelo, J.R. Impact of n-butanol and hydrous ethanol fumigation on the performance and pollutant emissions of an automotive diesel engine. Fuel 2015, 153, 483–491. [Google Scholar] [CrossRef]
- Zhang, Z.; Tsang, K.; Cheung, C.; Chan, T.; Yao, C. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine. Atmos. Environ. 2011, 45, 2001–2008. [Google Scholar] [CrossRef]
- Giakoumis, E.G.; Rakopoulos, C.D.; Dimaratos, A.M.; Rakopoulos, D.C. Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review. Renew. Sustain. Energy Rev. 2013, 17, 170–190. [Google Scholar] [CrossRef]
- Yoon, S.H.; Cha, J.P.; Lee, C.S. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine. Fuel Process. Technol. 2010, 91, 1364–1372. [Google Scholar] [CrossRef]
- Goto, S.; Oguma, M.; Suzuki, S. Research and Development of a Medium Duty DME Truck; SAE Technical Paper 2005-01-2194; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Mueller, C.J.; Pitz, W.J.; Pickett, L.M.; Martin, G.C.; Siebers, D.L.; Westbrook, C.K. Effects of oxygenates on soot processes in DI diesel engines: Experiments and numerical simulations. Sae Trans. 2003, 964–982. [Google Scholar]
- Westbrook, C.K.; Pitz, W.J.; Curran, H.J. Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. J. Phys. Chem. A 2006, 110, 6912–6922. [Google Scholar] [CrossRef] [Green Version]
- Kenney, T.E.; Gardner, T.P.; Low, S.S.; Eckstrom, J.C.; Wolf, L.R.; Korn, S.J.; Szymkowicz, P.G. Overall results: Phase I ad hoc diesel fuel test program. SAE Trans. 2001, 8–32. [Google Scholar] [CrossRef]
- Sirman, M.B.; Owens, E.C.; Whitney, K.A. Emissions comparison of alternative fuels in an advanced automotive diesel engine. Sae Trans. 2000, 2166–2176. [Google Scholar]
- Pellegrini, L.; Marchionna, M.; Patrini, R.; Florio, S. Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in an Old Light-Duty Diesel Car; SAE Technical Paper 2013-01-1035; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Iannuzzi, S.E.; Barro, C.; Boulouchos, K.; Burger, J. Combustion behavior and soot formation/oxidation of oxygenated fuels in a cylindrical constant volume chamber. Fuel 2016, 167, 49–59. [Google Scholar] [CrossRef]
- Arnal, C.; Alfè, M.; Gargiulo, V.; Ciajolo, A.; Alzueta, M.U.; Millera, Á.; Bilbao, R. Characterization of soot. In Cleaner Combustion; Springer: Berlin/Heidelberg, Germany, 2013; pp. 333–362. [Google Scholar]
- Altenhoff, M.; Aßmann, S.; Teige, C.; Huber, F.J.; Will, S. An optimized evaluation strategy for a comprehensive morphological soot nanoparticle aggregate characterization by electron microscopy. J. Aerosol Sci. 2020, 139, 105470. [Google Scholar] [CrossRef]
- Kuhn, P.B.; Ma, B.; Connelly, B.C.; Smooke, M.D.; Long, M.B. Soot and thin-filament pyrometry using a color digital camera. Proc. Combust. Inst. 2011, 33, 743–750. [Google Scholar] [CrossRef]
- Cignoli, F.; De Iuliis, S.; Manta, V.; Zizak, G. Two-dimensional two-wavelength emission technique for soot diagnostics. Appl. Opt. 2001, 40, 5370–5378. [Google Scholar] [CrossRef] [PubMed]
- Musculus, M.P.; Singh, S.; Reitz, R.D. Gradient effects on two-color soot optical pyrometry in a heavy-duty DI diesel engine. Combust. Flame 2008, 153, 216–227. [Google Scholar] [CrossRef]
- Walsh, K.T.; Fielding, J.; Smooke, M.D.; Long, M.B. Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proc. Combust. Inst. 2000, 28, 1973–1979. [Google Scholar] [CrossRef] [Green Version]
- Reimann, J.; Will, S. Optical diagnostics on sooting laminar diffusion flames in microgravity. Microgravity Sci. Technol. 2005, 16, 333–337. [Google Scholar] [CrossRef]
- McEnally, C.S.; Pfefferle, L.D. Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways. Combust. Flame 2007, 148, 210–222. [Google Scholar] [CrossRef]
- Das, D.D.; McEnally, C.S.; Pfefferle, L.D. Sooting tendencies of unsaturated esters in nonpremixed flames. Combust. Flame 2015, 162, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Köylü, U.O.; Faeth, G. Optical properties of soot in buoyant laminar diffusion flames. J. Heat Transf. 1994, 116, 971–979. [Google Scholar] [CrossRef]
- Olofsson, N.-E.; Simonsson, J.; Török, S.; Bladh, H.; Bengtsson, P.-E. Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering. Appl. Phys. B 2015, 119, 669–683. [Google Scholar] [CrossRef]
- Shaddix, C.R.; Harrington, J.E.; Smyth, K.C. Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combust. Flame 1994, 99, 723–732. [Google Scholar] [CrossRef]
- Sorensen, C. Light scattering by fractal aggregates: A review. Aerosol Sci. Technol. 2001, 35, 648–687. [Google Scholar] [CrossRef]
- Sorensen, C.; Cai, J.; Lu, N. Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames. Appl. Opt. 1992, 31, 6547–6557. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, C.; Wang, G. Size distribution effect on the power law regime of the structure factor of fractal aggregates. Phys. Rev. E 1999, 60, 7143. [Google Scholar] [CrossRef] [PubMed]
- Altenhoff, M.; Aßmann, S.; Perlitz, J.F.; Huber, F.J.T.; Will, S. Soot aggregate sizing in an extended premixed flame by high-resolution two-dimensional multi-angle light scattering (2D-MALS). Appl. Phys. B 2019, 125, 176. [Google Scholar] [CrossRef]
- Santoro, R.; Semerjian, H.; Dobbins, R. Soot particle measurements in diffusion flames. Combust. Flame 1983, 51, 203–218. [Google Scholar] [CrossRef]
- Puri, R.; Richardson, T.; Santoro, R.; Dobbins, R. Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame. Combust. Flame 1993, 92, 320–333. [Google Scholar] [CrossRef]
- Hull, P.; Shepherd, I.; Hunt, A. Modeling light scattering from diesel soot particles. Appl. Opt. 2004, 43, 3433–3441. [Google Scholar] [CrossRef] [Green Version]
- Huber, F.J.T.; Will, S.; Daun, K.J. Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data. J. Quant. Spectrosc. Radiat. Transf. 2016, 184, 27–39. [Google Scholar] [CrossRef]
- Huber, F.J.T.; Altenhoff, M.; Will, S. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence. Rev. Sci. Instrum. 2016, 87, 053102. [Google Scholar] [CrossRef]
- Oltmann, H.; Reimann, J.; Will, S. Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS). Appl. Phys. B 2012, 106, 171–183. [Google Scholar] [CrossRef]
- Aßmann, S.; Münsterjohann, B.; Huber, F.J.; Will, S. Droplet sizing in spray flame synthesis using wide-angle light scattering (WALS). Appl. Phys. B Lasers Opt. 2020, 126. [Google Scholar] [CrossRef]
- Palazzo, N.; Kögl, M.; Bauer, P.; Mannazhi, M.N.; Zigan, L.; Huber, F.J.T.; Will, S. Investigation of soot formation in a novel diesel fuel burner. Energies 2019, 12, 1993. [Google Scholar] [CrossRef] [Green Version]
- Maffi, S.; De Iuliis, S.; Cignoli, F.; Zizak, G. Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames. Appl. Phys. B 2011, 104, 357–366. [Google Scholar] [CrossRef]
- Eremin, A.; Gurentsov, E.; Popova, E.; Priemchenko, K. Size dependence of complex refractive index function of growing nanoparticles. Appl. Phys. B 2011, 104, 285–295. [Google Scholar] [CrossRef]
- Snelling, D.R.; Liu, F.; Smallwood, G.J.; Gülder, Ö.L. Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combust. Flame 2004, 136, 180–190. [Google Scholar] [CrossRef]
- de Iuliis, S.; Cignoli, F.; Zizak, G. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames. Appl. Opt. 2005, 44, 7414–7423. [Google Scholar] [CrossRef]
- Vattulainen, J.; Nummela, V.; Hernberg, R.; Kytölä, J. A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large diesel engines. Meas. Sci. Technol. 2000, 11, 103. [Google Scholar] [CrossRef]
- Cheng, A.; Dibble, R.W.; Buchholz, B.A. The Effect of Oxygenates on Diesel Engine Particulate Matter; SAE Technical Paper 2002-01-1705; SAE International: Warrendale, PA, USA,, 2002. [Google Scholar]
- Vertin, K.D.; Ohi, J.M.; Naegeli, D.W.; Childress, K.H.; Hagen, G.P.; McCarthy, C.I.; Cheng, A.S.; Dibble, R.W. Methylal and Methylal-Diesel Blended Fuels for Use in Compression-Ignition Engines; SAE Technical Paper 1999-01-1508; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- Song, K.H.; Litzinger, T.A. Effects of dimethyoxymethane blending into diesel fuel on soot in an optically accessible DI diesel engine. Combust. Sci. Technol. 2006, 178, 2249–2280. [Google Scholar] [CrossRef]
- Kocis, D.; Song, K.; Lee, H.; Litzinger, T. Effects of dimethoxymethane and dimethylcarbonate on soot production in an optically-accessible DI diesel engine. SAE Trans. 2000, 109, 2299–2308. [Google Scholar]
Additive Name | Additive Volume Concentration under Investigation |
---|---|
TPGME | 1%, 3%, 9% |
OME2 | 1%, 3%, 9% |
OME3-5 | 1%, 3%, 9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzo, N.; Zigan, L.; Huber, F.J.T.; Will, S. Impact of Oxygenated Additives on Soot Properties during Diesel Combustion. Energies 2021, 14, 147. https://doi.org/10.3390/en14010147
Palazzo N, Zigan L, Huber FJT, Will S. Impact of Oxygenated Additives on Soot Properties during Diesel Combustion. Energies. 2021; 14(1):147. https://doi.org/10.3390/en14010147
Chicago/Turabian StylePalazzo, Natascia, Lars Zigan, Franz J. T. Huber, and Stefan Will. 2021. "Impact of Oxygenated Additives on Soot Properties during Diesel Combustion" Energies 14, no. 1: 147. https://doi.org/10.3390/en14010147
APA StylePalazzo, N., Zigan, L., Huber, F. J. T., & Will, S. (2021). Impact of Oxygenated Additives on Soot Properties during Diesel Combustion. Energies, 14(1), 147. https://doi.org/10.3390/en14010147