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Abstract: This paper presents mixed analytical/numerical method for estimating the static top-to-
bottom compressive strength of corrugated packaging with different ventilation openings and holes,
in which the torsional and shear stiffness of corrugated cardboard as well as the panel depth-to-width
ratio are included. Analytical framework bases on Heimerls assumption with a modification to a
critical force, which is here computed by a numerical algorithm. The proposed method is compared
herein with the successful McKee formula and is verified with the large number of experiment results
of various packaging designs made of different qualities of corrugated cardboard. The results show
that, for various hole dimensions or location of openings in no-flap and flap boxes, the estimation
error may be reduced up to three times than in the simple analytical approach.

Keywords: corrugated board buckling; orthotropic panels; laboratory tests; box strength; openings;
ventilation holes; McKee formula

1. Introduction

The packaging industry plays an important role in the modern world. The leading
material used in this field is a corrugated cardboard. Corrugated boxes are used in many
branches of various industries, mainly to transport goods or products from one place
to another. During the transportation and storage, the boxes are subject to considerable
loading. In order to ensure appropriate strength of the boxes, it is necessary to use ap-
propriate estimation method and/or to conduct a series of experiments to determine a
behavior of the corrugated material and the whole construction of the box. The strength
estimation becomes challenging when box contains, e.g., hand holes and/or openings.
Correct characterization of material properties of the corrugated board and precise esti-
mation technique of the box strength allows to design the carton boxes in line with the
sustainable development strategy. In the material such as corrugated board, there are two
characteristic in-plane directions of orthotropy related to fiber orientation. The first one
is perpendicular to the main axis of the corrugation and it is called the machine direction
(MD). It is parallel to the paperboard fiber alignment. The second one is parallel to it and
called cross direction (CD).

One possibility for analysis of strength of the corrugated boxes is the execution of
several iterative experiments, in the loop in which testing, validation and optimization
of the box design take place. In the packaging industry the most commonly used are
compressive, bending or bursting strength tests of corrugated board. Another important
material property to examine is also a humidity, which has a big impact on the box strength.
However, the most important and practical are the box compression test (BCT) and the
edge crush test (ECT).

Another possibility is to use analytical formulas for prediction compressive strength
of boxes made from corrugated boards available in the literature. The formulas should
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be as simple as possible to make it useful for practical applications. Over the years,
many different approaches has been proposed. The parameters used in these formulas
can be categorized intro three groups: paper, board and box parameters [1]. In the first
group, one can distinguish two tests—ring crush test (RCT), Concora liner test (CLT), liner
type, weights of liner and fluting, corrugation ratio and a constant related to fluting. The
parameters of board include thickness, flexural stiffnesses in MD and CD, ECT and moisture
content. The parameters of boxes are dimensions, perimeter, applied load ratio, stacking
time, buckling ratio and printed ratio. In 1952, Kellicutt and Landt used the parameters of
paper (RCT, flute constant) and the box (perimeter, box constant) to propose one of the first
formula for prediction of compressive strength of boxes [2]. Maltenfort related the critical
force in the BCT to the parameters of the paper (CLT, liner type) and box dimensions [3].
The most popular and widely used formula has been proposed by McKee, Gander and
Wachuta in 1963 [4]. They took into account the parameters of the paperboard (ECT,
flexural stiffnesses) and the box perimeter. The formula is applicable for some relatively
simple containers. Over the years, many researchers tried to extend the applicability of the
McKee’s approach. Probably one of the first is the work of Allerby et al. [5] from 1985, in
which the authors modified constant and exponents of the McKee’s formula. Two years
later, Schrampfer et al. extended applicability of the McKee relationship for a wider range
of cutting methods and equipment [6]. Batelka et al. included in this relationship also
the dimensions of the box [7], while Urbanik et al. took into account also the Poisson’s
ratio [8]. In the original paper of McKee et al. [4], an arbitrary chosen constant value was
used, which makes their approach limited only for some typical boxes. This constant was
later analyzed in more complicated cases by Garbowski et al. [9]. If one would like to
include also the transverse shear, the additional tests are required and therefore updated
formulation should be used, which was recently modified by Aviles et al. [10] and later by
Garbowski et al. [11,12].

On the contrary, in the analysis of corrugated boxes numerical methods are very
often used to compute the strength of the boxes. The most common method is the finite
element method (FEM), which was successfully applied in many research on numerical
analysis of boxes made from corrugated cardboards, including investigations of buckling
phenomena [13] or transverse shear stiffness of corrugated cardboards [14,15].

In numerical simulations, the corrugated paperboards are commonly modelled as
sandwich panels [16]. The main goal in the numerical analysis is to obtain results as
accurate as possible with computational costs as small as possible. Thus, there is a need of
using models, which are simplification of the real objects without losing adequacy to reality.
In the numerical analysis of layered materials [17–19] and constructions, made from such
materials, it is useful to perform a process called homogenization [20,21]. As a consequence,
instead of structure of layers made from different materials one can obtain one layer
characterized by effective properties of the composite. Application of the external loads
to the homogenized plate should give similar effect like for the composite material with
heterogeneous core. One of the homogenization methods, which was based on strain energy
and can be applied for sandwich panels, was proposed by Hohe [22]. In this approach, an
equivalence of a representative element of the heterogeneous and homogenized elements
was assumed. A period homogenization method, in which an equivalent membrane
and pure bending characteristic of period plates is obtained, has been also proposed by
Buannic et al. [23]. They applied a modified version of this approach to take into account the
transfer shear effect in the analysis of sandwich panels. Biancolini used the FEM for analysis
of a micromechanical part of the considered plate [24]. Appling the energy equivalency
between the model and the equivalent plate, he obtained the stiffness properties of the
considered plate. Abbès and Guo decomposed the plates into two beams in directions
of the plate to obtain the torsion rigidity of the orthotropic sandwich plates [25]. Two
approaches to homogenization have been compared by Marek and Garbowski. These
considerations were based on the classical laminated plate theory and the deformation
energy equivalence method [26] or based on inverse analysis [27].
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The strength of the boxes made from corrugated cardboards can be reduced by many
factors, including moisture, prints, perforations, etc. However, one of the most common
factor for loss of the strength of boxes is the presence of openings on the walls of the
package, as most of the boxes contain ventilation or at least hand holes [28]. This issue was
a subject of some recently published papers. Fadji et al. [29] investigated an effect of the
geometrical features of the holes, including height, area, orientation, shape and number
of holes on the strength of boxes. The influence of ventilation holes on the stability and
strength of the boxes using FEM was examined by Fadiji et al. [30]. They considered certain
type of boxes, which are commonly used in the fresh fruit industry, in which the ventilation
holes play an important role.

To the best knowledge of the authors, there is no research in which the effect of
losing strength caused by holes is taken into account in the analytical prediction of the box
strength. In this paper, we extend the applicability of the approach presented in [9] for
corrugated boxes with holes.

2. Materials and Methods
2.1. Ultimate Compressive Strength of a Single Panel

The most popular and the simplest approach used these days for computation of
ultimate compressive load of corrugated cardboard boxes was proposed by McKee et al. [4].
The starting point in their study was the determination of the ultimate plate load Pf of a
rectangular panel with dimensions a× b, loaded vertically on the upper edge, in which the
plate under consideration is a separated panel of a box (Figure 1a), despite the fact that
the box is loaded as a three-dimensional structure during the compression test (Figure 1b).
All four edges of the each separated plate are pinned in the out-of-plane direction, and
the bottom edge is additionally constrained along b in the vertical direction. The basis for
the derivation given by McKee et al. is the empirical formula presented in Heimerl [31],
where the load Pf at failure [N/mm] is the result of a combination of buckling force and
compressive strength, namely:

Pf

Pcr
= k

(
ECT
Pcr

)r
, (1)

where r is an exponent, r ∈ (0, 1), k is a certain constant, Pcr is a critical load of a corrugated
panel [N/mm] and ECT is the edge-loaded compressive strength of a corrugated board in
cross direction [N/mm].
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Figure 1. (a) A single panel of width b and height a separated from cardboard packaging as a supported plate under
compression; (b) cardboard packaging in press during box compression testing; (c) box compression press used in laboratory
tests [32].
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To include the nonlinear material effect when no elastic buckling occurs the above
formula was later modified by Urbanik et al. [8,13]:

Pf

ECT
= k

(
Pcr

ECT

)un
, (2)

where n = 1− r. Integer u plays an activating role and if it is equal 1, it corresponds to
elastic buckling (ECT > Pcr), while if it is equal 0, it corresponds to inelastic buckling, so
the ultimate load Pf is proportional to ECT, namely:

Pf = k ECT. (3)

In both cases, if the selected panel of a corrugated box does not have any openings, see
Figure 1a, the analytical formula describing the critical load for a rectangular orthotropic
plate [9,33–35] can be utilized:

Pb
cr = kcr

π2 √D11D22

b2 , (4)

where Pb
cr is the critical load of the panel with dimensions a× b (a—panel height, b—panel

width [mm]), kcr is a dimensionless buckling coefficient that depends, among others, on
the ratio a/b, boundary conditions applied to the plate edges, the buckling mode and a
material characteristics, D11 is the effective bending stiffness in the MD [N/mm] and D22
is the effective bending stiffness in the CD [N/mm]. In this study, the first buckling mode
was used for computations in all cases. In this buckling mode, the displacements of panel
with and without hole usually represent a shape of the half-wave in both directions.

All fibrous materials, including corrugated cardboard, are characterized by orthotropy,
which means that the mechanical properties in such materials change depending on the
direction, here CD/MD. The buckling coefficient for such panels takes the following form:

kcr =

√
D11

D22

(
mb
a

)2
+ 2

(D12 + 2D33)√
D11D22

+

√
D22

D11

( a
mb

)2
, (5)

where m defines a buckling mode and counts the half-waves along the load direction, D33 is
an effective torsion stiffness [N/mm] and D12 = D11ν21 = D22ν12, ν12 and ν21 are in-plane
Poisson’s ratios.

2.2. Buckling—McKee’s Formula

If the analyzed panel does not contain any holes, a simplified formula for critical
load computation can be utilized. Such a formula was suggested by McKee et al. [4],
in order to maximally simplify the complicated equations describing the critical load of
compressed orthotropic plates so that the use of these equations could be common and
practical. Therefore, the authors replaced Equation (5) with a simpler formula:

kcr =

(
mb
θa

)2
+

(
θa
mb

)2
+ 2K, (6)

where θ =
√

D−1
11 D22 and K is a plate parameter assumed to be equal to 0.5, which leads

to: D12 + 2D33 = 0.5
√

D11D22. They also assumed that the plate has equal sides, i.e., b = c
and therefore b = Z/4 (where Z is the box perimeter), which led to further simplification
of Equation (5) to the form:

Pb
cr =

(4π)2√D11D22

Z2 kcr. (7)
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2.3. Buckling—Finite Element Method

However, if the analyzed panel contains any openings, the analytical approach be-
comes impractical due to the lack of an universal solution for a panel with different holes.
In such a case, the numerical method works best, although it is more difficult to implement,
it is very general and allows to determine the critical load of panels with any shape and
boundary conditions, including holes with complex shapes. In this study, the buckling was
computed for each separated panel in the 3D space having all external edges fixed in out of
plane direction, additionally the bottom edge was fixed in the vertical direction, other BC’s
were inactive.

The critical load can be calculated from the formula:

Pb
cr = λq, (8)

where λ is a critical loading multiplier, i.e., the smallest eigenvalue and q is a distributed
load on a panel upper edge [N/mm].

To calculate the critical force multiplier, the following two-step algorithm should be
used. In the first step, we need to:

• discretize the panel with finite elements (FE), see Figure 2a,
• compute the stiffness matrix Ke of each element,
• assemble the global stiffness matrix K0 of a whole panel,
• compute nodal forces representing initial loading configuration P∗, i.e., for loading

multiplier λ = 1 (one-parameter loading assumed P = λP∗),
• take boundary conditions into account,
• solve equation 0 d∗ = P∗ to obtain nodal displacements in pre-buckling state:

d∗ = K−1
0 ·P

∗, (9)

• extract element displacements d(e)∗ (from displacements of the system d∗) and com-
pute in each element the generalized stresses s(e)∗.

In the second step, we need to:

• generate initial geometrical stress matrices for each element Ke
σ (s∗e) and the whole

panel Kσ(s∗),
• formulate initial buckling problem:

[K0 + λKσ]v = 0, (10)

• solve the eigenproblem to determine the pairs (λ1, v1), . . . , (λN , vN), where N is a
number of degrees of freedom, λi is ith eigenvalue, vi = ∆di is ith eigenvector (post-
buckling deformation mode).
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In order to compute stiffness matrix of the plate, the proper formulation of the FE
must be used. In the classical plate FE, the field variables are approximated through shape
functions according to the associated node values as follows:

d =
Nn

∑
j=1

Nj(x, y)dj, (11)

where Nj(x, y) is a shape function associated with node j and Nn is a number of nodes in
the element:

dT
j =

[
uj vj wj θxj θyj

]
, (12)

is the displacement vector in the j-th node.
The membrane, bending and shear strains associated to the displacement in

Equation (11) can be therefore obtained as follows:

ε = ∑
j

Bm
j dj, (13)

κ = ∑
j

Bb
j dj, (14)

γ = ∑
j

Bs
j dj, (15)

where:

Bm
j =

 Nj,x 0 0 0 0
0 Nj,y 0 0 0

Nj,y Nj,x 0 0 0

, (16)

Bb
j =

 0 0 0 Nj,x 0
0 0 0 0 Nj,y
0 0 0 Nj,y Nj,x

, (17)

Bs
j =

[
0 0 Nj,x Nj 0
0 0 Nj,y 0 Nj

]
. (18)

The energy functional of the plate can be finally obtained as follows:

Π =
1
2

d
[∫

A
BTD BdA +

∫
A

STDs SdA
]

d−
[∫

A
q w dA

]
d, (19)

where BT =

[
(Bm)T ,

(
Bb
)T
]

, ST = (Bs)T ; D and Ds are stiffnesses of the plates [9]. By

using Lagrange’s equations for the Equation (19), the characteristic equation of the system
is obtained as follows:

K d = P, (20)

where:
K =

∫
A

(
BT D B + ST Ds S

)
dA, (21)

and:
P =

∫
A

q N dA. (22)

As the geometry of each panel does not have to be regular, especially in the case of
panels with openings, it was assumed that the FE mesh will be made of shell triangular
elements. Most Reissner-Mindlin triangular shell FE described in the literature were
developed using the assumed transverse shear strain techniques. Here, the 6-noded
quadratic triangle FE with assumed linear shear strains was utilized. Zienkiewicz et al. [36]
developed such a 6-noded plate triangle with a standard quadratic interpolation for the
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rotations and the deflection, and the assumed linear transverse shear strain field in the
following form:

γξ = α1 + α2ξ + α3η,
γη = α4 + α5ξ + α6η,

(23)

i.e.,:

A =

[
1 ξ η 0 0 0
0 0 0 1 ξ η

]
. (24)

Figure 2b,c show the position of the six shear sampling points and the ξ i directions.
Following the procedure presented in Appendix A, we find:

P =



1 ξ1 η1 0 0 0
1 ξ_2 η2 0 0 0
−a −aξ3 −aη3 a aξ3 aη3
−a −aξ4 −aη4 a aξ4 aη4
0 0 0 1 ξ5 η5
0 0 0 1 ξ6 η6

, (25)

T =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −a a 0 0 0 0 0 0
0 0 0 0 0 0 −a a 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1

, (26)

C =


J1 0

J2

. . .
0 J6

, (27)

^
Bs =


B1

B2

...
B6

, (28)

where:

a =

√
2

2
. (29)

Matrix Bs is computed by Equation (A24) in Appendix A. A full 3-point Gauss quadra-
ture is used here for the numerical integration of element transverse shear stiffness matrix:

K(e)
s =

∫
A(e)

STDs S dA(e). (30)

This element performs well for most of applications, although sometimes is too
flexible [36,37]. Improvements can be introduced by imposing a linear variation of the
normal rotation θn along all three triangle sides as:

θni −
1
2
(
θni−2 + θni+2

)
, (31)

where i = 4, 5, 6 are the mid-side nodes (Figure 2a).
Equation (31) can be later used for eliminating the normal rotation at the midsize

nodes [36,38].
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2.4. Box Compression Strength—McKee’s Formula

To compute failure load of a single panel we substitute the buckling force derived
from Equation (7) into Equation (1), after [4] we have:

Pf = k ECTr
(√

D11D22

)1−r
Z−2(1−r)(4π)2(1−r)k1−r

cr , (32)

which can be simplified to:

Pf = k1ECTr
(√

D11D22

)1−r
Z−2(1−r), (33)

where k1, under the assumption [4] that k1−r
cr is constant if a/Z > 1/7 and equals approxi-

mately 1.33, while r = 0.746 and k = 0.4215, is equal to:

k1 = 1.33 k (4π)2(1−r) ∼= 2.028. (34)

To calculate the failure load of the entire box, it is enough to multiply Equation (33) by
the Z, which is the perimeter of the box. The original assumption [4] was that the width
and length of a box are equal (i.e., b = c) thus the compressive strength of a box, known as
the long McKee formula, reads:

BCTMK1 = k1ECTr
(√

D11D22

)1−r
Z2r−1. (35)

The empirical observations [4] that
√

D11D22 ∼= 66.1 ECT h2, led to a further simplifi-
cation and finally to the most known short form of McKee’s equation:

BCTMK2 = k2ECT h2(1−r)Z2r−1, (36)

where k2, with previously assumed value of r = 0.746, equals:

k2 = k1(66.1)1−r ∼= 5.874, (37)

So, Equation (36) takes the final form:

BCTMK2 = 5.874 ECT h0.508Z0.492. (38)

This is the most commonly used formula. However, its accuracy is acceptable only for
the simplest boxes. The McKee formula should not be used if the length to width ratio or
the height to length ratio of the box is too large [9]. The same problem appear when box
contains any openings or ventilation holes. To overcome this limitations we have derived
an analytical formulation for box strength from Equation (1), in which the critical force is
computed using numerical methods instead of analytical formulas. Both will be shown in
the following sections.

2.5. Box Compression Strength—General Case

In order to calculate the compressive strength of a single panel of a box, see Figure 1a,
the force Pf described by the formula (1) should be multiplied by the i-th panel width b or
c. To get the failure load of an entire box (BCT), it is required to sum up the compressive
strength of all panels. Thus, in the general case, we get the following:

BCT = k ECTr

(
2

∑
i=1

[(
Pb

cr

)1−r

i

(
γb

p

)
i

]
γbb +

2

∑
i=1

[
(Pc

cr)
1−r
i

(
γb

p

)
i

]
γcc

)
, (39)

where (·)i indicates the i-th panel of width b or c (i = 1, . . . , 2). Pb
cr and Pc

cr are the critical
forces of panels of width b and c, respectively (see Figure 1a). γb

p and γc
p are the reduction
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factors taking into account the ratio of the compressive strength of the plate with and
without a hole for plate width b and c, respectively. γb and γc are the reduction coefficients
due to in-plate aspect ratio of the box dimensions, defined as:

γb =
√

b/c, γc = 1 i f b ≤ c, (40)

γc =
√

c/b, γb = 1 i f b > c. (41)

2.6. Practical Considerations

Equation (39) uses different definitions of the critical force, i.e., Equations (4) and (8),
depending on whether the i-th panel contains any hole or not. In any case, the values of
constants k and r in Equation (39) are required. As suggested by other authors [4,39–41],
k = 0.5 and r = 0.75 were assumed.

The compressive strength of rectangular boxes with various openings (with base
dimensions b × c, as shown in Figure 1a) after taking the typical values of k and r in
Equation (39) takes the form:

BCT = 0.5 ECT0.75

(
2

∑
i=1

[(
Pb

cr

)0.25

i

(
γb

p

)
i

]
γbb +

2

∑
i=1

[
(Pc

cr)
0.25
i

(
γb

p

)
i

]
γcc

)
, (42)

where Pb
cr and Pc

cr are defined in:

(a) Equation (4)—for orthotropic rectangular plates without holes (analytical),
(b) Equation (8)—for orthotropic rectangular plates with various openings (numerical –

FEM).

In all of the above equations describing the critical force Pc
cr, all definitions of width b

should be replaced by c, e.g., Equation (4) should read:

Pc
cr = kcr

π2√D11D22

c2 . (43)

3. Results
3.1. Box Compression Strength—Experiment vs. Estimation

In the following section, experimental and computational examples regarding boxes
are presented and the applicability of the analytical-numerical approach is validated. In
the paper, the analyzed cases represent the simplest slotted-type boxes with holes varied
in size, position at the panel side and location on the longer or shorter wall. Two typical
designs of FEFCO boxes with an addition of different holes were considered, i.e., FEFCO
F200—packaging without upper flaps, see Figure 3, and FEFCO F201—packaging with
flaps, see Figure 4. Two box dimensions were considered, namely, 300 × 200 × 200 mm
and 300 × 200 × 300 mm (length, width and height, respectively). Moreover, three
positions of the opening at the panel side were assumed, i.e., in the upper corner (O1), in
the middle of the package height at the edge of the panel (O2) and in the center of the panel
(O3). Also, two cases were considered, in which the opening was at the shorter wall (B), and
at the longer wall (L) of the box. In most cases, the openings were square, but rectangular
openings were also considered. The hole dimensions for cases O1B1S, O2B1S, O3B1S,
O1L1S, O2L1S and O3L1S were the same, namely, 100× 100 mm. For O3B1S1a, O3B1S1b,
O3B1S1c and O3B1S1d they varied with dimensions of 85 × 85, 120 × 120, 150 × 150
and 200× 200 mm, respectively. For O3L1S1a, O3L1S1b, O3L1S1c, O3L1S1d and O3L1S1e
they varied with dimensions of 85× 85, 120× 120, 150× 150, 200× 200 and 250× 250 mm,
respectively. For O3L1Ra and O3L1Rb the dimensions were 300× 200 and 300× 250 mm.
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testing machine, namely BCT-19T10 from FEMat [32]; see Figure 1c. According to the spec-
ifications, the machine measures the force up to 10 kN with a resolution of 0.1 N. The 
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Figure 4. Designs of flap boxes with openings considered in the study—modifications of FEFCO F201 with box height of
300 mm: (a) O1L1S, (b) O2L1S, (c) O3L1S, (d), O3B1S1a (e) O3B1S1b, (f) O3B1S1c, (g) O3B1S1d, (h) O3L1S1a, (i) O3L1S1b,
(j) O3L1S1c, (k) O3L1S1d, (l) O3L1S1e and with box height of 200 mm: (m) O1B1S, (n) O2B1S, and (o) O3B1S.

For the purposes of this study, the selected boxes were tested in a box compression
testing machine, namely BCT-19T10 from FEMat [32]; see Figure 1c. According to the
specifications, the machine measures the force up to 10 kN with a resolution of 0.1 N.
The displacement accuracy is 0.001 mm. In order to get reliable results, 4–6 samples
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of each packaging design were tested. In the study, for all cases the number of tested
samples exceeded 180. The boxes were manufactured from different three-layer corrugated
cardboard, namely, 350, 380, 400, and 480 g/m2. All those cardboards had B or E flute,
their thickness was 1.49, 1.52, 1.59, 2.80 and 2.82 mm. All cases tested are presented in
Tables 1 and 2 for FEFCO type boxes of F200 and F201, respectively. In Tables 1 and 2
“opening type” columns contain the information about the opening, for instance O1B1S,
means that the opening was located in the corner (O1) of the shorter wall (B). “Cardboard
quality” columns contain the code of cardboard, for instance 3B400-1, means that three
layer cardboard and B flute was used with 400 g/m2, 1st material production.

Table 1. Experimental data for FEFCO F200 boxes for different: opening type, box height, cardboard
quality and box compression strength.

No. Opening Type Box Height [mm] Cardboard Quality Box Strength [N]

1 O3B1S 200 3E350-3 901.4
2 O2B1S 200 3E350-3 742.3
3 O2B1S 200 3B400A1-1 1777.9
4 O1B1S 200 3B400A1-1 1842.7
5 O3B1S 200 3B400A1-1 2101.6
6 O1L1S 300 3B400A1-3 1819.4
7 O2L1S 300 3B400A1-3 1903.0
8 O3L1S 300 3B400A1-3 2184.3

Table 2. Experimental data for FEFCO F201 boxes for different: opening type, box height, cardboard
quality and box compression strength.

No. Opening Type Box Height [mm] Cardboard Quality Box Strength [N]

9 O1B1S 200 3E350-3 694.3
10 O3B1S 200 3E350-5 783.8
11 O1L1S 300 3E350-5 699.3
12 O3L1S 300 3E350-5 842.9
13 O2B1S 200 3E350-5 697.5
14 O3B1S 200 3E380A2-1 944.6
15 O2L1S 300 3E380A2-1 935.7
16 O3L1S 300 3E380A2-1 1085.3
17 O1L1S 300 3E380A2-2 854.8
18 O1B1S 200 3B400A1-1 1630.0
19 O3B1S 200 3B400A1-1 1902.9
20 O2B1S 200 3B400A1-1 1629.0
21 O1L1S 300 3B400A1-3 1647.5
22 O2L1S 300 3B400A1-3 1701.9
23 O3L1S 300 3B400A1-3 2133.6
24 O3B1S1a 300 3B480-1 1841.1
25 O3B1S1b 300 3B480-1 1717.9
26 O3B1S1c 300 3B480-1 1606.6
27 O3L1S1e 300 3B480-1 1362.9
28 O3L1S1b 300 3B480-1 1743.5
29 O3L1S1c 300 3B480-1 1772.4
30 O3L1S1d 300 3B480-1 1591.3
31 O3L1S1a 300 3B480-1 1782.3

During the tests, the boxes were folded by one operator manually, and the flaps of
the packaging were taped at the bottom and top, if applicable. All packaging structures
were cut on a plotter, so the material was not converted. Also, each box was inspected
for visual damage of the cardboard before it was submitted to displacement control pro-
tocol tests. TAPPI standard T402 was applied, the samples were laboratory conditioned,
i.e., temperature 23 ◦C ± 1 ◦C and relative humidity of 50% ± 2% was hold. Figure 5
demonstrates examples of laboratory measurements for selected designs of packaging with
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holes, namely F200–O1B1S, F201–O3B1S1c and F201–O3L1S1d. The curves of force versus
displacement are shown; a good repeatability of the measurement results is observed. The
samples were not inspected after the measurements in order to determine the deformation
or damage mechanism.
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Figure 5. Example measurements from a box compression test machine [32] for different boxes and holes: (a) F0200—O1B1S,
(b) F201—O3B1S1c and (c) F201O3L1S1d.

Moreover, the measured strength of the boxes with openings selected in this study
serve as a validation data for those obtained with analytical-numerical approach proposed
here, see Equation (39). In order to use Equation (39) the critical buckling loads of box
panels (with and without openings) were required. The material data used for computing
critical loads by FEM are presented in Table 3. The cardboard qualities were also presented
in Tables 1 and 2. All input data for Equation (39) used for the computations were attached
in Supplementary Materials, separately for F200 and F201.

Table 3. Material data for the cardboard qualities used in FEM computations of critical loads [42,43].

No. Cardboard Quality Thickness [mm] ECT D11 [N/mm] D22 [N/mm] D33 [N/mm] R44 [N/mm] R55 [N/mm]

1 3B400A1-1 2.82 5.79 3484.8 1789.8 2262.1 7.73 12.78
2 3B400A1-3 2.80 5.50 3443.5 1565.5 2115.5 6.09 11.30
3 3B480-1 2.82 5.29 3491.2 1820.1 2359.9 5.66 12.40
4 3E350-3 1.49 3.96 958.9 431.5 870.2 2.49 2.79
5 3E350-5 1.49 4.68 878.6 376.9 904.0 2.86 2.97
6 3E380A2-1 1.59 5.41 1272.1 505.4 1084.5 3.83 3.86
8 3E380A2-2 1.52 5.31 1042.9 445.1 963.2 3.39 3.70

In Figure 6, the data from the tests were presented graphically (black plot), also
separately for F200 (Figure 6a) and F201 (Figure 6b) boxes. Table 1, Table 2 and Figure 6
show the mean values of the ultimate load measured at the box failure (BCT). In Figure 6,
also the values obtained from the analytical-numerical approach proposed were presented
(blue plot), see Equation (39). In the analytical-numerical approach presented, k and r
used are the typical values taken from the literature, namely k = 0.5 and r = 0.75, see
Equation (42).
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The error of the method proposed may be calculated by the comparing the computed
values with the ultimate loads measured, namely:

error =

∣∣∣∣∣BCTexp − BCTest

BCTexp
·100%

∣∣∣∣∣ (44)

where BCTexp is an experimental average value of the box compression strength for a box
with a particular geometry, cardboard quality used and the type of opening and BCTest
is its counterpart obtained via analytical-numerical approach proposed here. The mean
error obtained for approach proposed here with typical parameters of k and r was equal
to 14.9%.

Also, similar computations for all boxes were performed by using the McKee formula.
The results are presented in Figure 6 (dashed magenta plot), see Equation (38). In a similar
way, the mean error of McKee short formula was computed, which was equal to 15.5%.

3.2. Reduction of the Estimation Error—Optimal Parameters

To determine how much the estimation error of the proposed method depends on the
parameters (k, r), the computations for different sets of those parameters were performed
for the experimental data obtained in the course of this research. The values of k and r,
see Equation (39), were modified and the mean error was computed for particular pair of
those parameters. Notice that the typical values of k and r from the literature are 0.5 and
0.75, respectively, see Equation (42). The mean errors obtained by systematic computations
are presented by contour plot in Figure 7. The contour plot values were computed by
averaging the magnitudes from Equation (44) for all box designs. The interval of k and r
was the same for both parameters, namely, from 0.3 to 1.0.
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different values of k and r.

Table 4 summarizes the mean errors computed for typical set of parameters (k = 0.5
and r = 0.75) and for the optimal parameter set obtained via optimization (k = 0.755 and
r = 0.435). The optimal solution was obtained by the systematic search in the k− r space,
see contour plot in Figure 7. Optimal set of k and r parameters used in the Equation (39)
gives the lowest computed mean error. The mean estimation errors using typical and
optimal set of parameters were equal 14.9% (red dot in Figure 7) and 6.5% (black cross in
Figure 7), respectively. Note that in Figure 7 the surface has a characteristic valley, in which
optimal value was found. The value of mean error obtained by the use of the optimal
parameters in the proposed analytical-numerical method is about three times smaller than
the error obtained by the use of typical values of k and r.

Table 4. Mean error of McKee formula and the method proposed for typical and optimal set of k and
r parameters.

Case k [—] r [—] Mean Error [%]

McKee formula 0.4215 0.746 15.5
method proposed (typical parameters) 0.500 0.750 14.9
method proposed (optimal parameters) 0.755 0.435 6.5

Having the optimal values of parameters (k, r), see Table 4, the analytical solutions
may be revalidated for considered designs of boxes. The results are presented in Figure 6,
see red plot. As expected, the value obtained from optimization are closer to the values
measured than those computed for typical k and r.

4. Discussion

Given these results, the conclusion can be drawn that the best performance of the
computational approach was obtained by the proposed analytical-numerical method with
the optimal parameters. If the typical parameter were used the error was much bigger. The
simple McKee formula gave almost three times bigger estimation error than for the method
proposed with optimal parameters. Using optimally selected parameters of k and r greatly
reduces the error in estimating the strength of boxes with openings considered in the study.

Notice that for the method proposed the difference in modelling boxes of FEFCO F200
and F201 was not observed, i.e., the errors are moderately similar. The mean error for
optimal parameters for F200 boxes was equal 6.8%, while for F201 boxes was equal 5.2%.
Considering the box strengths, see Figure 6a,b, one can notice that the greater grammage
of the cardboard, the obtained value of the box strength is greater. However, in the cases
24–31 (480 g/m2) the calculated values are lower than for the cases 18–23 (400 g/m2), this
is caused by the different papers (predominance of recycled or virgin fibers) used for the
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production of these corrugated boards, which is noticeable through measured material
properties, see Table 3. Comparing the parameters of the first three cardboard qualities:
3B400A1-1, 3B400A1-3 and 3B480-1, one can observe that the values are very close to each
other and the ECT values, used in the original McKee formula, are even greater for the
cardboards of lower grammage.

In general, the box strength is greater if the hole is smaller and its location is closer to
the center of the panel. It can be noticed in Figure 6b for the cases 24–26, which are ordered
according to the increasing size of hole for the same cardboard quality and location of
the hole—on the shorter wall (B) in the center of panel (O3). The only exception can be
observed comparing the cases 27–31, in which experimentally for the greater hole (case
29) the greater box strength was obtained than for smaller hole (case 28). This issue is
suspected to be caused by a initial imperfections of the corrugated board used for the
production of these boxes.

It should be underlined that for particular cardboard quality, the McKee formula
gives constant estimation of box strength. McKee formula results are independent from
the opening type (its position, shape or size). For instance, see the results for boxes from
no. 24 up to 31 in Figure 6b, which are presented for 3B480-1 cardboard quality. In
the study, not only various design of boxes with holes were tested, also the cardboard
with different quality was considered and packaging characterized with different overall
dimensions of width, length and height. Such systematic design of experiments allows
to use those data as a part of the input for numerical training, e.g., the artificial network.
Using artificial intelligence algorithms could be especially beneficial for optimal selection
of various structure parameters (not only two parameters selected in this study), if other
crucial effects for reliable strength estimation of boxes would be determined. Among
others, the structural parameters may describe the position of the opening, its area or shape.
etc. This could be the interest of further research.

5. Conclusions

The strength of regular flap boxes is easily determined with a use of a simple McKee
formula, however, if the box dimensions are not in standard proportions, the McKee
formula becomes inaccurate, as shown in our previous study. If the box contains any
openings the use of pure analytical formulas become even more impractical, because the
loss of accuracy is very noticeable. The article presents the analytical formula feed with
numerically obtained data for estimation of the strength of boxes with openings of various
dimensions and locations.

The proposed method was verified on the basis of experimental data, which covered
various examples of cardboard packaging. In the paper, the tested cases represent the
simplest boxes with holes varied in size, position at the panel side and position at the
longer or shorter wall. Also, two design of boxes with different cardboard qualities were
considered, namely, modified design of FEFCO F200 and FEFCO 201. Qualities of three
layer cardboards with E and B flute were used.

Due to the use of the new calculating approach proposed here, the estimation error
was on average reduced three times compared to the simplified McKee analytical method.
Proposed approach seems to be very promising in considering more complicated cases of
boxes with complex geometries or/and materials. Thus, future studies will be devoted
to adapting the analytical-numerical approach proposed here to estimate the strength
of boxes with perforations of different properties. The study may concern shelf-ready
boxes, in which the perforation of different cutting patterns may be used. Properties of the
perforations could be also selected in the artificial intelligence algorithms as mentioned
structural parameters, which among other factors, determines/decreases the strength of
the box. Especially that new innovative methods of perforating are currently being tested
in the corrugated board industry.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-107
3/14/1/155/s1. In TXT files, the computational results based on which Figure 6 was generated are

https://www.mdpi.com/1996-1073/14/1/155/s1
https://www.mdpi.com/1996-1073/14/1/155/s1
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presented, In these files, 1st and 2nd columns are k and r parameters. 3rd column is ECT value for
particular cardboard quality. 4th to 7th columns are critical loads of the ith panel (obtained from
FEM). 8th to 11th columns are the reduction factors due to in-plate aspect ratio of the box panel, γi,
where i = {1, 2, 3, 4} and denotes the number of the panel. 12th to 15th columns are the reduction
factors taking into account the ratio of the compressive strength of the plate with and without a
hole, γpi, where i = {1, 2, 3, 4} and denotes the number of the panel. 16th to 19th columns are the
widths of the i-th panel of the box.
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Appendix A

Derivation of the Substitute Transverse Shear Strain Matrix

An isoperimetric Reissner–Mindlin plate element with n nodes is assumed here,
for which the rotation, the vertical deflection and the also transverse shear strains are
independently interpolated according to the following equations:

ω = Nωw(e), θ = Nθθ
(e), γ = Nγγ

(e). (A1)

We also assume that this interpolation satisfies the conditions:

nθ + nω ≥ nγ,
nγ ≥ nω.

(A2)

In the first step, the transverse shear strains are interpolated in the natural coordinate
system ξ, η as:

γ′ =

{
γξ

γη

}
=

[
1 ξ η ξη · · · ξ pηq | 0 0 0 · · · 0
0 0 0 0 · · · 0 | 1 ξ η · · · ξrηs

]
α1
α2
...

αnγ

 = A α, (A3)

where nγ specifies the number of polynomial expansion sampling points for γξ and γη in
the element.

The transverse shear strains in the cartesian system are then obtained as:

γ =

{
γxz
γyz

}
= J−1 γ′, (A4)

where J is the in-plane Jacobian matrix [37,44,45]:

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (A5)

www.fematsystems.pl
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The transverse shear along a natural direction ξ i strain is defined as:

γξ i
= cos βiγξ + sin βiγη , (A6)

where βi is the angle between the ξ i direction and the natural ξ axis.
The shear strains γξ i

are sampled along the ξ i directions at each of the nγ points. From
Equation (A6) we obtain the following:

γξ i
= T(βi) γ̂

′ , (A7)

where:
γξ i

=
[

γ1
ξ i

γ2
ξ i
· · · γ

nγ

ξ i

]T
, (A8)

γ̂′ =
[

γ1
ξ γ1

η γ2
ξ γ2

η · · · γ
nγ

ξ γ
nγ
η

]T
, (A9)

where (·)i, i = 1, . . . , nγ etc. denote transverse shear values at each sampling point. From
Equation (A3) it is found that:

γ̂′ =

 A1

...
Anγ

α = Â(ξi, ηi)α. (A10)

Substituting Equation (A10) into (A7) gives:

γξ i
= P(ξi, ηi, βi)α, (A11)

where P = T Â is a nγ × nγ matrix. Vector α is obtained as

α = P−1 γξ i
. (A12)

Combining Equations (A3), (A7) and (A12) gives:

γ′ = A P−1 T γ̂′ . (A13)

The relationship between the Cartesian and the natural transverse shear strains at
each sampling point is:

γ̂
′
i =

{
γi
ξ

γi
η

}
= Ji

{
γi

xz
γi

yz

}
= Ji γ̂i, (A14)

where Ji is the in-plane Jacobian matrix at the ith sampling point. Thus:

γ̂
′
i =

 Ji 0
. . .

0 Jnγ




γ̂1

...
γ̂nγ

 = C γ̂. (A15)

Substituting Equations (A13) and (A15) into (A4) gives:

γ = J−1 A P−1 T C γ̂ = Nγγ̂, (A16)

where:
Nγ = J−1 A P−1 T C, (A17)

are the shape functions.
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The relationship between the transverse shear strains in cartesian coordinate system
and the nodal displacements in each element can be written by the weighted residual
procedure [37,46] as: x

A(e)

Wk[γ− (∇ω− θ)]dA = 0, (A18)

where ∇ =
[

∂
∂x , ∂

∂y

]T
and Wk are arbitrarily chosen weighting functions, e.g., Galerkin

weighting, i.e., Wk = Nγk . Substituting Equations. (A16) and the equation above into
(A18) [37] gives: x

A(e)

NT
γ NγdA

−1
x

A(e)

NT
γ BsdA, (A19)

Equation (A19) is then used to obtain the shear strains at the sampling points for each
element as:

γ̂ = B̂s a(e), (A20)

with:

B̂s =

x
A(e)

NT
γ NγdA

−1
x

A(e)

NT
γ BsdA, (A21)

If the point collocation method is used in Equation (A18), i.e., Wi = δi where δi is the
Dirac delta at the ith sampling point (i = 1, . . . , nγ), we obtain:

B̂s =

 B1
s

...
Bnγ

s

, (A22)

where Bi
s is the value of the original transverse shear strain matrix at the ith sampling point,

so finally:
γ = J−1A P−1 T C B̂sa(e) = Bs a(e), (A23)

where Bs is the substitute transverse shear strain matrix given by:

Bs = J−1A P−1 T C B̂s. (A24)
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